Supplementary Information

Nickel (II) nanoparticles immobilized on EDTA-modified Fe₃O₄@SiO₂ nanospheres as efficient and recyclable catalysts for **ligand-free Suzuki-Miyaura Coupling of Aryl Carbamates and Sulfamates**

Iman Dindarloo Inaloo,*a Sahar Majnooni, b Hassan Eslahi a and Mohsen Esmaeilpour a

^a Chemistry Department, College of Sciences, Shiraz University, Shiraz, Iran

^b Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

*Corresponding author. Tel.: +98 7116137107, fax: +98 7112286008. E-mail addresses: <u>iman.dindarlooinaloo@gmail.com</u> (I. Dindarloo Inaloo)

Contents

Contents	S2	
1. Reaction Optimization		
2. Experimental		
2.1. General experimental methods	S4	
2.2. Chemicals	S5	
3. NMR Spectra of Compounds		

1. Reaction Optimization:

Table S1. Optimization of catalyst loading.^a

^a Reaction conditions: phenyl carbamate (1 mmol), phenylboronic acid (1 mmol), NaOC₂H₄OH (2.0 mmol), Fe₃O₄@SiO₂-EDTA-Ni(II) catalyst, EG (3 mL), 100 °C, 6 h. ^b Isolated yield.

Table S2. Optimization of reaction temperature.^a

	$A1$ $B1$ $B(OH)_{2}$ $Fe_{3}O_{4}@SiO_{2}-EDTA-Ni(II)$ $EG, NaOC_{2}H_{4}OH, 6 h$	
Entry	Temperature (°C)	Yield (%) ^b
1	80	69
2	90	82
3	100	91
4	110	90
5	120	89

^a Reaction conditions: phenyl carbamate (1 mmol), phenylboronic acid (1 mmol), NaOC₂H₄OH (2.0 mmol), Fe₃O₄@SiO₂-EDTA-Ni(II) catalyst (0.018 g, 1 mol %), EG (3 mL), 6 h. ^b Isolated yield.

Table S3. Optimization of reaction time.^a

	$A1$ $B1$ $B(OH)_{2}$ $Fe_{3}O_{4}@SiO_{2}-EDTA-Ni(II),$ $FG, NaOC_{2}H_{4}OH, 100 °C$	
Entry	Time (h)	Yield (%) ^b
1	4	73
2	6	91
3	8	90
4	12	89

^a Reaction conditions: phenyl carbamate (1 mmol), phenylboronic acid (1 mmol), NaOC₂H₄OH (2.0 mmol), Fe₃O₄@SiO₂-EDTA-Ni(II) catalyst (0.018 g, 1 mol %), EG (3 mL), 100 °C. ^b Isolated yield.

2. Experimental:

2.1 General experimental methods:

The products were characterized by comparison of their spectral and physical data such as NMR and CHNS with available literature data. ¹H and ¹³C NMR spectra were recorded with Bruker Avance DPX 250MHz instruments with Me₄Si or solvent resonance as the internal standard. ¹H NMR spectroscopic data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q= quartet, quint = quintet, sext = sextet, sept = septet, br. = broad, m = multiplet), coupling constants (Hz), and integration. Elemental analysis was performed using Thermofinigan Flash EA-1112 CHNSO rapid elemental analyzer. Determination of the purity of the substrate and monitoring of the reaction were accomplished by thin-layer chromatography (TLC) on a silica-gel polygram SILG/UV 254 plates.

2.2 Chemicals:

All starting materials and solvents were purchased from the Merck, Flucka and Aldrich Chemical Companies in high purity.

Biphenyl (C1):

Colorless crystals; mp = 69-70 °C; ¹H NMR (250 MHz, CDCl₃) δ : 7.19-7.33 (m, 10H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ : 145.3, 130.1, 127.5, 127.2 ppm; Anal. Calcd. for C₁₂H₁₀; C: 93.46, H: 6.54%, Found: C: 93.38, H: 6.60%.

4-Methylbiphenyl (C2 and C19):

Colorless crystals; mp = 46-47 °C; ¹H NMR (250 MHz, CDCl₃) δ : 7.62-7.74 (m, 2H), 7.37-7.55 (m, 7H), 2.53 (s, 3H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 138.1, 132.1, 131.4, 130.1, 129.4, 128.8, 127.8, 127.5, 21.6 ppm; Anal. Calcd. for C₁₃H₁₂; C: 92.81, H: 7.19%, Found: C: 92.78, H, 7.18%.

3-Methylbiphenyl (C3):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ : 7.70 (, J= 9.7 Hz, 2H), 7.22-7.33 (m, 7H), 2.52 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 141.7, 140.4, 138.3, 129.5, 128.5, 128.2, 126.7, 124.7, 20.7 ppm; Anal. Calcd. for C₁₃H₁₂; C: 92.81, H, 7.19%, Found: C: 92.79, H, 7.16%.

2-Methylbiphenyl (C4):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ : 7.22-7.38 (m, 9H), 2.28 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 141.6, 141.3, 135.2, 130.3, 128.7, 128.5, 127.5, 127.0, 126.4, 125.2, 21.5 ppm; Anal. Calcd. for C₁₃H₁₂; C: 92.81, H, 7.19%, Found: C: 92.76, H, 7.17%.

1-Phenylnaphthalene (C5):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ : 7.82-7.99 (m, 7H), 7.24-7.52 (m, 5H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 141.7, 140.6, 137.3, 133.5, 131.2, 129.2, 128.6, 128.4, 126.8, 126.2, 126.0, 125.9, 125.0 ppm; Anal. Calcd. for C₁₆H₁₂; C: 94.08, H: 5.92%, Found: C: 93.98, H: 5.98%.

2-Phenylnaphthalene (C6):

Colorless crystals; mp = 98-100 °C;.¹H NMR (250 MHz, CDCl₃) δ : 8.02 (s, 1H), 7.87-7.90 (m, 4H), 7.68-7.79 (m, 2H), 7.41-7.49 (m, 3H), 7.36 (d, *J*= 9.7 Hz, 2H) ppm;¹³C NMR (63 MHz, CDCl₃) δ : 141.3, 138.6, 134.2, 133.9, 132.9, 132.2, 128.7, 127.1, 127.0, 126.9, 125.9, 125.8 ppm; Anal. Calcd. for C₁₆H₁₂; C: 94.08%, H, 5.92, Found: C: 94.01, H: 5.91%.

Biphenyl-4-ol (C7):

Colorless crystals, mp = 165-166 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.33-7.17 (m, 7H), 6.94-6.88 (m, 2H), 4.00 (s, br, 1H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 156.8, 142.2, 135.8, 132.0, 128.7, 128.5, 128.4, 120.2; Anal. Calcd. for C₁₂H₁₀O; C: 84.68%, H, 5.92, Found: C: 84.91, H: 5.99%.

MeO

4-Methoxybiphenyl (C8):

Colorless crystals, mp = 88-90 °C. ¹H NMR (250 MHz, CDCl₃) δ: 7.33-7.22 (m, 7H), 7.08-7.03 (m, 2H), 3.87 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ: 153.5, 142.8, 136.1, 133.0, 129.5,

128.5, 128.2, 118.9, 55.35 ppm; Anal. Calcd. for C₁₃H₁₂O; C: 84.75, H: 6.57, Found: C: 84.68, H: 6.59 %.

2-Methoxybiphenyl (C9):

Colorless liquid. ¹H NMR (250 MHz, CDCl₃) δ: 7.54 (d, *J*= 8.1 Hz, 2H), 7.29-7.42 (m, 5H), 6.97-7.04 (m, 2H), 3.79 (s, 3H) ppm;¹³C NMR (63 MHz, CDCl₃) δ: 157.0, 138.9, 131.2, 129.6, 128.9, 128.1, 127.0, 121.1, 111.5, 55.6 ppm; Anal. Calcd. for C₁₃H₁₂O; C: 84.75, H: 6.57, Found: C: 84.67, H: 6.59%.

4-Biphenylcarbaldehyde (C10):

Colorless crystals, mp = 57-58 °C. ¹H NMR (250 MHz, CDCl₃) δ : 10.13 (s, 1H), 7.38-7.23 (m, 7H), 7.07-7.00 (m, 2H) ppm;¹³C NMR (63MHz, CDCl₃) δ : 196.5, 153.4, 133.4, 126.3, 125.9, 125.6, 124.3, 120.8, 116.1 ppm; Anal. Calcd. for C₁₃H₁₀O; C: 85.69, H: 5.53, Found: C: 85.65, H: 5.54 %.

1-(4-Biphenylyl)ethanone (C11):

Colorless crystals, mp = 115-116 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.85 (dd, *J*= 7.5 Hz, *j*= 2 Hz, 2H), 7.41 (dd, *J*= 7.5 Hz, *j*= 2 Hz, 2H), 7.35-7.29 (m, 5H), 2.50 (m, 3H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 197.2, 153.1, 135.9, 130.1, 128.9, 128.8, 128.7, 123.9, 117.9, 26.6 ppm; Anal. Calcd. for C₁₄H₁₂O; C: 85.68, H: 6.16 %, Found: C: 85.61, H: 6.19 %.

4-Nitrobiphenyl (C12):

Light yellow crystals, mp = 111-112 °C. ¹H NMR (250 MHz, CDCl₃) δ : 8.31 (d, *J*= 9.0 Hz, 2H), 7.45-7.76 (m, 7H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 147.8, 141.1, 129.7, 129.5, 128.9, 127.9, 127.6, 124.9 ppm; Anal. Calcd. for C₁₂H₉NO₂; C: 72.35, H: 4.55, N: 7.03, Found: C: 72.32, H: 4.51, N: 7.06 %.

4-Biphenylcarbonitrile (C13):

Colorless crystals, mp = 81-82 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.58-7.76 (m, 6H), 7.41-7.48 (m, 3H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 146.2, 139.8, 132.1, 129.9, 129.3, 128.7, 127.3, 118.6, 110.8 ppm; Anal. Calcd. for C₁₃H₉N; C: 87.12, H: 5.06, N: 7.82%, Found: C: 87.08, H: 5.01, N: 7.89%.

4-Fluorobiphenyl (C14):

Colorless crystals, mp = 72-74 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.53-7.58 (m, 2H), 7.34-7.45 (m, 5H), 7.13 (t, *J*= 9.0 Hz, 2H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 163.7, 161.1, 137.1, 128.8, 128.7, 127.5, 127.4, 115.3 ppm; Anal. Calcd. For: C₁₂H₉F; C: 83.70, H: 5.27%, Found. C: 83.55, H: 5.38%.

4-(Trifluoromethyl)biphenyl (C15):

Colorless crystals, mp = 64-65 °C. ¹H NMR (250 MHz, CDCl₃) δ: 7.46-7.37 (m, 5H), 7.28 (d, *J*= 7.5 Hz, 2H) 7.08 (d, *J*= 7.5 Hz, 2H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ: 144.5, 139.5, 132.1, 131.9, 130.9, 128.8, 128.4, 125.1, 123.4 ppm; Anal. Calcd. For: C₁₃H₉F₃; C: 70.27, H: 4.08%, Found. C: 70.24, H: 4.11%.

2-Phenylpyridine (C16):

Colorless crystals, mp = 75-76 °C. ¹H NMR (250 MHz, CDCl₃) δ: 8.71 (s, 1H), 7.43-7.99 (m, 7H), 7.23 (d, *J*= 9.0 Hz, 1H) ppm;¹³C NMR (63 MHz, CDCl₃) δ: 157.1, 149.3, 139.5, 137.0, 127.7, 126.3, 122.4, 120.3 ppm; Anal. Calcd. For: C₁₁H₉N; C: 85.13, H: 5.85, N: 9.03%, Found. C: 85.31, H: 5.52, N: 9.13%.

3-Phenylpyridine (C17):

Colorless crystals, mp = 114-116 °C. ¹H NMR (250 MHz, CDCl₃) δ: 8.86 (s, 1H), 8.59 (d, *J*= 4.0 Hz, 1H), 7.86-7.88 (m, 1H), 7.33-7.59 (m, 6H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ: 149.4, 149.3, 137.8, 136.8, 134.5, 129.1, 128.3, 127.1, 123.4 ppm; Anal. Calcd. For: C₁₁H₉N; C: 85.13, H: 5.85, N: 9.03%, Found. C: 85.26, H: 5.57, N: 9.14%.

5-Phenylpyrimidine (C18):

Colorless crystals, mp = 39-41 °C. ¹H NMR (250 MHz, CDCl₃) δ : 9.23 (s, 1H), 8.86 (d, *J*= 8.0 Hz, 2H), 7.53-7.48 (m, 5H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 157.5, 153.0, 132.4, 130.9, 129.2, 128.8, 127.1; Anal. Calcd. For: C₁₀H₈N₂; C: 76.90, H: 5.16, N: 17.94%, Found. C: 76.84, H: 5.10, N: 18.05%.

4,4'-Dimethylbiphenyl (C20):

Colorless crystals, mp = 118-120 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.40 (d, *J*= 6.3 Hz, 4H), 7.11 (d, *J*= 6.3 Hz, 4H), 2.33 (s, 6H) ppm; ¹³CNMR (63MHz, CDCl₃) δ : 141.6, 136.7, 129.8, 129.3, 127.0, 126.5, 19.8 ppm; Anal. Calcd. For: C₁₄H₁₄; C: 92.26, H: 7.74%, Found. C: 92.35, H: 7.64%.

3,4'-Dimethylbiphenyl (C21):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) *δ*: 8.06 (s, 1H), 7.89 (d, *J*= 7.5 Hz, 2H), 7.55-7.47 (m, 5H), 2.47 (s, 3H), 2.28 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) *δ*: 158.4, 137.9, 130.9, 129.2, 129.0, 128.9, 127.0, 126.0, 123.3, 118.7, 30.3, 28.9 ppm; Anal. Calcd. For: C₁₄H₁₄; C: 92.26, H: 7.74%, Found. C: 92.33, H: 7.67%.

2,4'-Dimethylbiphenyl (C22):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ : 7.64 (dd, *J*= 7.5 Hz, *j*= 2 Hz, 2H), 7.46 (dd, *J*= 7.5 Hz, *j*= 2 Hz, 2H), 7.21 (m, 3H), 6.79 (s, 1H), 2.25 (s, 3H), 2.11 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 157.2, 134.1, 130.9, 128.8, 128.7, 126.2, 125.9, 125.8, 124.9, 120.5, 23.7, 22.3 ppm; Anal. Calcd. For: C₁₄H₁₄; C: 92.26, H: 7.74%, Found. C: 92.30, H: 7.68%.

3,4,4'-Trimethylbiphenyl (C23):

Colorless crystals, mp = 75-77 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.25-7.18 (m, 2H), 7.00 (d, J= 6.3 Hz, 2H), 6.92-6.87 (m, J= 6.3 Hz, 3H), 2.33 (s, 3H), 2.32 (s, 3H), 2.13 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 155.5, 139.6, 133.6, 131.6, 129.1, 128.2, 126.5, 125.1, 122.3, 118.6, 29.1, 28.1, 21.3 ppm; Anal. Calcd. For: C₁₅H₁₆; C: 91.78, H: 8.22%, Found. C: 91.83, H: 8.25%.

1-(4-Methylphenyl)naphthalene (C24):

Colorless crystals, mp = 49-51 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.84-7.93 (m, 3H), 7.29-7.53 (m, 8H), 2.46 (s, 3H) ppm; ¹³CNMR (62.9 MHz, CDCl₃) δ : 140.3, 137.8, 136.9, 133.7, 131.7, 129.9, 129.0, 128.2, 127.4, 126.8, 126.1, 125.9, 125.7, 125.3, 21.2 ppm; Anal. Calcd. For: C₁₇H₁₄; C: 93.54, H: 6.46%, Found. C: 93.39, H: 6.60%.

4-Methoxy-4'-methylbiphenyl (C25):

Colorless crystals, mp = 109-111 °C. ¹H NMR (250 MHz, CDCl₃) δ : 6.97 (d, *J*= 7.0 Hz, 2H), 6.88 (d, *J*= 7.0 Hz, 2H), 6.75-6.65 (m, 5H), 3.71 (s, 3H), 2.08 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ: 158.1, 138.1, 130.1, 127.7, 126.7, 125.0, 120.9, 117.2, 66.9, 24.3 ppm; Anal. Calcd. For: C₁₄H₁₄O; C: 84.81, H: 7.12%, Found. C: 84.78, H: 7.13%.

4-Methyl-4'-(trifluoromethyl)biphenyl (C26):

Colorless crystals, mp = 123-124 °C. ¹H NMR (250 MHz, CDCl₃) δ: 7.70 (s, 4H), 7.48 (d, *J*= 6.5 Hz, 2H), 7.27 (d, *J*= 9.2 Hz, 2H), 2.40 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ: 144.6, 138.0, 136.8, 129.4, 128.7, 128.4, 127.0, 125.6, 123.0, 21.1 ppm; Anal. Calcd. For: C₁₄H₁₁F₃; C: 71.18, H: 4.69%, Found. C: 71.01, H: 4.55%.

4'-Methyl-4-biphenylcarbonitrile (C27):

Colorless crystals, mp = 107-109 °C. ¹H NMR (250 MHz, CDCl₃) δ: 7.85 (d, *J*= 7.5 Hz, 2H), 7.66 (d, *J*= 7.5 Hz, 2H), 7.52-7.37 (m, 4H), 2.36 (s, 4H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ: 157.5, 146.3, 132.4, 130.9, 128.8, 127.8, 126.1, 124.4, 122.7, 107.0, 24.7 ppm; Anal. Calcd. For: C₁₄H₁₁N; C: 87.01, H: 5.74, N: 7.25%, Found. C: 86.92, H: 5.71, N: 7.27%.

4-Methyl-4'-nitrobiphenyl (C28):

Light yellow crystals, mp = 139-140 °C. ¹H NMR (250 MHz, CDCl₃) δ : 8.22-8.18 (m, 2H), 7.57-7.52 (dd, *J*= 9.0 Hz, *j*= 1.7 Hz, 2H), 7.42-7.36 (m, 4H), 2.25 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 156.5, 143.7, 135.3, 131.9, 128.7, 128.5, 125.2, 117.7, 27.7 ppm; Anal. Calcd. For: C₁₃H₁₁NO₂; C: 73.23, H: 5.20, N: 6.57, Found. C: C: 73.16, H: 5.16, N: 6.66 %.

4'-Methyl-4-biphenylcarbaldehyde (C29):

Colorless crystals, mp = 105-107 °C. ¹H NMR (250 MHz, CDCl₃) δ : 10.27 (s, 1H), 7.92-7.86 (m, 4H), 7.51-7.45 (m, 2H), 7.28 (dd, *J*= 7.5 Hz, *j*= 2.0 Hz, 2H), 2.06 (s, 3H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ : 200.2, 156.2, 142.8, 130.9, 128.7, 126.2, 125.9, 120.5, 22.3 ppm; Anal. Calcd. For: C₁₄H₁₂O; C: 85.68, H: 6.16 %, Found. C: 85.61, H: 6.13 %.

2-Phenylthiophene (C30):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ: 7.30-7.22 (m, 5H), 7.15-6.85 (m, 2H), 6.83 (s, 4H) ppm; ¹³CNMR (63 MHz, CDCl₃) δ: 155.7, 143.5, 127.5, 127.3, 127.2, 123.8, 119.7, 107.0 ppm; Anal. Calcd. For: C₁₀H₈S; C: 74.96, H: 5.03, S: 20.01%, Found. C: 74.91, H: 5.01, S: 20.08%.

2-(4-Methoxyphenyl)thiophene (C31):

Colorless crystals, mp = 105-107 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.53 (d, *J*= 4.7 Hz, 2H), 7.20-7.26 (m, 2H), 6.91-7.06 (m, 3H), 3.83 (s, 3H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ : 159.1, 143.9, 127.8, 127.4, 127.2, 123.8, 122.0, 114.1, 55.4 ppm; Anal. Calcd. For: C₁₁H₁₀OS; C: 69.44, H: 5.30, S: 16.85 %, Found. C: 69.51, H: 5.39, S: 16.90 %.

2-(Biphenyl-4-yl)thiophene (C32):

Colorless crystals, mp = 171-173 °C. ¹H NMR (250 MHz, CDCl₃) δ : 7.54-7.59 (m, 5H), 7.32-7.49 (m, 7H) ppm; ¹³C NMR (63 MHz, CDCl₃): δ : 150.1, 142.4, 141.3, 133.1, 129.6, 128.8, 128.3, 128.0, 127.8, 127.5 ppm; Anal. Calcd. for C₁₆H₁₂S; C: 81.32, H: 5.12, S: 13.57%, Found: C: 81.21, H: 5.07, S: 13.73%.

2-(Naphthalen-1-yl)thiophene (C33):

Colorless liquid; ¹H NMR (250 MHz, CDCl₃) δ: 8.22-8.25 (m, 1H), 7.84-7.97 (m, 2H), 7.44-7.58 (m, 3H), 7.18-7.32 (m, 4H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ: 141.1, 133.25, 132.0, 131.5, 129.3, 128.7, 127.5, 127.2, 126.8, 126.7, 125.8, 125.2 ppm; Anal. Calcd. for C₁₄H₁₀S; C: 79.96, H: 4.79, S: 15.25%, Found: C: 79.89, H: 4.77, S: 15.34%.

3 NMR Spectra of Compounds:

Scheme S2. ¹³C-NMR spectra (63 MHz) of biphenyl (C1) in CDCl₃.

Scheme S3. ¹H-NMR spectra (250 MHz) of 4-methylbiphenyl (C2 and C19) in CDCl₃.

Scheme S4. ¹³C-NMR spectra (63 MHz) of 4-methylbiphenyl (C2 and C19) in CDCl₃.

Scheme S5. ¹H-NMR spectra (250 MHz) of 3-methylbiphenyl (C3) in CDCl₃.

Scheme S6. ¹³C-NMR spectra (63 MHz) of 3-methylbiphenyl (C3) in CDCl₃.

Scheme S7. ¹H-NMR spectra (250 MHz) of 2-methylbiphenyl (C4) in CDCl₃.

Scheme S8. ¹³C-NMR spectra (63 MHz) of 2-methylbiphenyl (C4) in CDCl₃.

Scheme S9.¹H-NMR spectra (250 MHz) of 1-phenylnaphthalene (C5) in CDCl₃.

Scheme S10. ¹³C-NMR spectra (63 MHz) of 1-phenylnaphthalene (C5) in CDCl₃.

Scheme S11. ¹H-NMR spectra (250 MHz) of 2-phenylnaphthalene (C6) in CDCl₃.

Scheme S12. ¹³C-NMR spectra (63 MHz) of 2-phenylnaphthalene (C6) in CDCl₃.

Scheme S14. ¹³C-NMR spectra (63 MHz) of biphenyl-4-ol (C7) in CDCl₃.

Scheme S15. ¹H-NMR spectra (250 MHz) of 4-methoxybiphenyl (C8) in CDCl₃.

Scheme S16. ¹³C-NMR spectra (63 MHz) of 4-methoxybiphenyl (C8) in CDCl₃.

Scheme S18. ¹³C-NMR spectra (63 MHz) of 2-methoxybiphenyl (C9) in CDCl₃.

Scheme S20. ¹³C-NMR spectra (63 MHz) of 4-biphenylcarbaldehyde (C10) in CDCl₃.

Scheme S22. ¹³C-NMR spectra (63 MHz) of 1-(4-biphenylyl)ethanone (C11) in CDCl₃.

Scheme S26. ¹³C-NMR spectra (63 MHz) of 4-biphenylcarbonitrile (C13) in CDCl₃.

Scheme S27. ¹H-NMR spectra (250 MHz) of 4-fluorobiphenyl (C14) in CDCl₃.

Scheme S28. ¹³C-NMR spectra (63 MHz) of 4-fluorobiphenyl (C14) in CDCl₃.

Scheme S30. ¹³C-NMR spectra (63 MHz) of 4-(trifluoromethyl)biphenyl (C15) in CDCl₃.

Scheme S32. ¹³C-NMR spectra (63 MHz) of 2-phenylpyridine (C16) in CDCl₃.

Scheme S34. ¹³C-NMR spectra (63 MHz) of 3-phenylpyridine (C17) in CDCl₃.

Scheme S36. ¹³C-NMR spectra (63 MHz) of 5-phenylpyrimidine (C18) in CDCl₃.

Scheme S38. ¹³C-NMR spectra (63 MHz) of 4,4'-dimethylbiphenyl (C20) in CDCl₃.

Scheme S40. ¹³C-NMR spectra (63 MHz) of 3,4'-dimethylbiphenyl (C21) in CDCl₃.

Scheme S42. ¹³C-NMR spectra (63 MHz) of 2,4'-dimethylbiphenyl (C22) in CDCl₃.

Scheme S44. ¹³C-NMR spectra (63 MHz) of 3,4,4'-trimethylbiphenyl (C23) in CDCl₃.

Scheme S48. ¹³C-NMR spectra (63 MHz) of 4-methoxy-4'-methylbiphenyl (C25) in CDCl₃.

Scheme S50. ¹³C-NMR spectra (63 MHz) of 4-methyl-4'-(trifluoromethyl)biphenyl (C26) in CDCl₃.

Scheme S51. ¹H-NMR spectra (250 MHz) of 4'-methyl-4-biphenylcarbonitrile (C27) in CDCl₃.

Scheme S52. ¹³C-NMR spectra (63 MHz) of 4'-methyl-4-biphenylcarbonitrile (C27) in CDCl₃.

Scheme S54. ¹³C-NMR spectra (63 MHz) of 4-methyl-4'-nitrobiphenyl (C28) in CDCl₃.

Scheme S56. ¹³C-NMR spectra (63 MHz) of 4'-methyl-4-biphenylcarbaldehyde (C29) in CDCl₃.

Scheme S58. ¹³C-NMR spectra (63 MHz) of 2-phenylthiophene (C30) in CDCl₃.

Scheme S61. ¹H-NMR spectra (250 MHz) of 2-(biphenyl-4-yl)thiophene (C32) in CDCl₃.

Scheme S62. ¹³C-NMR spectra (63 MHz) of 2-(biphenyl-4-yl)thiophene (C32) in CDCl₃.

Scheme S64. ¹³C-NMR spectra (63 MHz) of 2-(naphthalen-1-yl)thiophene (C33) in CDCl₃.