## **Supporting Information**

## Engineering Surface Structure and Defect Chemistry of Nanoscale Cubic Co<sub>3</sub>O<sub>4</sub> Crystallites for Enhanced Lithium and Sodium Storage

Yanguo Liu, <sup>†,‡,#,\*</sup> Haicheng Wan, <sup>†,#</sup> Hongzhi Zhang, <sup>†</sup> Jiayuan Chen, <sup>†</sup> Fang Fang, <sup>§</sup> Nan Jiang, <sup>†</sup> Wanxing Zhang, <sup>†</sup> Fangwang Zhou, <sup>%</sup> Hamidreza Arandiyan, <sup>□,\*</sup> Yuan Wang, <sup>¶</sup> Guanyu Liu, <sup>I</sup> Zhiyuan Wang, <sup>†,‡</sup> Shaohua Luo, <sup>†,‡</sup> Xiaobo Chen, <sup>%,\*</sup> Hongyu Sun <sup>†,\*</sup>

<sup>†</sup> School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China

<sup>‡</sup> Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China

§ National New Energy Vehicle Technology Innovation Center, Beijing 100176, PR China

<sup>%</sup> Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, PR China

<sup>1</sup> Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia

<sup>¶</sup> School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, New South Wales 2052, Australia

<sup>1</sup> Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Canberra, ACT 2601 Australia

<sup>#</sup> The authors contribute equally to this work.

Corresponding authors. *E-mail addresses*: <u>lyg@neuq.edu.cn</u> (Y.L.), <u>hamid.arandiyan@sydney.edu.au</u> (H.A.), <u>txbchen@jnu.edu.cn</u> (X.C.), <u>hyltsun@gmail.com</u> (H.S.).



Fig. S1. (a-c) FESEM images and (d) particle size statistics of  $Co_3O_4$ -AP sample.



Fig. S2. (a, b) TEM images, (c) SAED pattern, and (d) HRTEM image of  $Co_3O_4$ -AP sample.



Fig. S3. Thermogravimetric curve of Co<sub>3</sub>O<sub>4</sub>-350 sample measured at the temperature range of 25–600

°C with a heating rate of 10 °C min<sup>-1</sup> under air atmosphere.



Fig. S4. XPS survey spectra of (a)  $Co_3O_4$ -AP and (b)  $Co_3O_4$ -350 samples.



Fig. S5. High-resolution XPS spectra of Co<sub>3</sub>O<sub>4</sub>-AP sample: (a) Co 2p region, and (b) O 1s region.



**Fig. S6.** (a) CV profiles of the  $Co_3O_4$ -AP electrode during the first three cycles at a scan rate of 0.5 mVs <sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves of  $Co_3O_4$ -AP electrode for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>.



**Fig. S7.** (a) CV profiles of the  $Co_3O_4$ -CoO electrode during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves of  $Co_3O_4$ -CoO electrode for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>.



Fig. S8. FESEM images of (a)  $Co_3O_4$ -AP and (b)  $Co_3O_4$ -350 electrodes after cycling test.



**Fig. S9.** Nyquist plots of  $Co_3O_4$ -AP (black squares),  $Co_3O_4$ -350 (red circles) and  $Co_3O_4$ -CoO (blue hexagons) samples used for LIBs test (a) before cycling and (b) after 50 charge-discharge cycles. The spectra were measured with an amplitude of 10 mV over the frequency range of 1 mHz and 100 kHz. The inset shows the equivalent electrical circuit used for fitting the EIS data.  $R_s$  is the electrolyte resistance,  $R_{ct}$  is the charge-transfer resistance,  $Z_w$  is the Warburg impedance, and CPE is the constant phase-angle element, respectively.



Fig. S10. XRD patterns of the  $Co_3O_4$  samples annealed at different temperatures. The pattern of  $Co_3O_4$ -AP is also shown for comparison.



Fig. S11. Thermogravimetric curve of  $Co_3O_4$ -400 sample measured at the temperature range of 25–600

°C with a heating rate of 10 °C min<sup>-1</sup> under air atmosphere.



Fig. S12. Thermogravimetric curve of Co<sub>3</sub>O<sub>4</sub>-450 sample measured at the temperature range of 25–600

°C with a heating rate of 10 °C min<sup>-1</sup> under air atmosphere.



Fig. S13. XRD patterns of a series of standard samples prepared by mixing polycrystalline  $Co_3O_4$  and CoO powders with designed composition (weight percent of CoO = 5, 10, 20, 40, 60%).



Fig. S14. The relationship between ratios of the two characteristic peaks (absolute intensity and integral

area) and CoO amount in the standard samples.



Fig. S15. (a-c) FESEM images and (d) particle size statistics of Co<sub>3</sub>O<sub>4</sub>-300 sample.



Fig. S16. (a-c) FESEM images and (d) particle size statistics of Co<sub>3</sub>O<sub>4</sub>-400 sample.



Fig. S17. (a-c) FESEM images and (d) particle size statistics of Co<sub>3</sub>O<sub>4</sub>-450 sample.



Fig. S18. (a-c) FESEM images and (d) particle size statistics of CoO-550 sample.



Fig. S19. (a, b) TEM images, (c) SAED pattern, and (d) HRTEM image of Co<sub>3</sub>O<sub>4</sub>-300 sample.



Fig. S20. (a, b) TEM images, (c) SAED pattern, and (d) HRTEM image of Co<sub>3</sub>O<sub>4</sub>-400 sample.



Fig. S21. (a, b) TEM images, (c) SAED pattern, and (d) HRTEM image of Co<sub>3</sub>O<sub>4</sub>-450 sample.



Fig. S22. (a, b) TEM images, (c) SAED pattern, and (d) HRTEM image of CoO-550 sample.



Fig. S23. High-resolution XPS spectra of Co<sub>3</sub>O<sub>4</sub>-300 sample: (a) Co 2p region, and (b) O 1s region.



Fig. S24. High-resolution XPS spectra of Co<sub>3</sub>O<sub>4</sub>-400 sample: (a) Co 2p region, and (b) O 1s region.



Fig. S25. High-resolution XPS spectra of Co<sub>3</sub>O<sub>4</sub>-450 sample: (a) Co 2p region, and (b) O 1s region.



Fig. S26. High-resolution XPS spectra of CoO-550 sample: (a) Co 2p region, and (b) O 1s region.



**Fig. S27.** Electrochemical performance of  $Co_3O_4$ -300 sample: (a) CV profiles during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>, (c) cycling performance and (c) rate capability.



**Fig. S28.** Electrochemical performance of  $Co_3O_4$ -400 sample: (a) CV profiles during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>, (c) cycling performance and (c) rate capability.



**Fig. S29.** Electrochemical performance of  $Co_3O_4$ -450 sample: (a) CV profiles during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>, (c) cycling performance and (c) rate capability.



**Fig. S30.** Electrochemical performance of CoO-550 sample: (a) CV profiles during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Li<sup>+</sup>/Li), (b) The charge-discharge curves for the first three cycles between 0.01 V and 3 V vs. Li<sup>+</sup>/Li at a current density of 0.1 A g<sup>-1</sup>, (c) cycling performance and (c) rate capability.



**Fig. S31.** (a) CV profiles of the  $Co_3O_4$ -AP electrode during the first three cycles at a scan rate of 0.5 mVs<sup>-1</sup> between 0.01 and 3 V (vs. Na<sup>+</sup>/Na), (b) The charge-discharge curves of  $Co_3O_4$ -AP electrode for the first three cycles between 0.01 V and 3 V vs. Na<sup>+</sup>/Na at a current density of 0.025 A g<sup>-1</sup>.



**Fig. S32.** Nyquist plots of  $Co_3O_4$ -AP (black squares) and  $Co_3O_4$ -350 (red circles) samples used for SIBs test (a) before cycling and (b) after 50 charge-discharge cycles. The spectra were measured with an amplitude of 10 mV over the frequency range of 1 mHz and 100 kHz. The inset shows the equivalent electrical circuit used for fitting the EIS data.  $R_s$  is the electrolyte resistance,  $R_{ct}$  is the charge-transfer resistance,  $Z_w$  is the Warburg impedance, and CPE is the constant phase-angle element, respectively.

| Cells                                              | R <sub>s</sub> /Ω | CPE/F                 | R <sub>ct</sub> /Ω | Z <sub>w</sub> /Ω |
|----------------------------------------------------|-------------------|-----------------------|--------------------|-------------------|
| Co <sub>3</sub> O <sub>4</sub> -350 before cycling | 1.82              | 2.87×10-5             | 1048               | 3019              |
| Co <sub>3</sub> O <sub>4</sub> -AP before cycling  | 9.61              | 8.36×10-5             | 2264               | 17074             |
| Co <sub>3</sub> O <sub>4</sub> -CoO before cycling | 3.89              | 1.87×10-5             | 1235               | 2709              |
|                                                    |                   |                       |                    |                   |
| Co <sub>3</sub> O <sub>4</sub> -350 after cycling  | 0.70              | 1.14×10-5             | 805.9              | 2666              |
| Co <sub>3</sub> O <sub>4</sub> -AP after cycling   | 0.86              | 1.99×10 <sup>-5</sup> | 1281               | 4651              |
| Co <sub>3</sub> O <sub>4</sub> -CoO after cycling  | 2.55              | 1.53×10 <sup>-5</sup> | 1140               | 2680              |

Table S1. Kinetic parameters of  $Co_3O_4$ -350,  $Co_3O_4$ -AP, and  $Co_3O_4$ -CoO cells.

**Table S2.** CoO layer thickness in the composite samples ( $Co_3O_4$ -350,  $Co_3O_4$ -400, and  $Co_3O_4$ -450). The values in bracket are the weight percent of CoO calculated by the according methods. (\*, see Fig. S14)

|                                  | Co <sub>3</sub> O <sub>4</sub> -350 | Co <sub>3</sub> O <sub>4</sub> -400 | Co <sub>3</sub> O <sub>4</sub> -450 |
|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| TGA                              | 1.62 nm (6.6%)                      | 3.09 nm (12.9%)                     | 7.91 nm (31.8%)                     |
| XRD (absolute intensity ratio) * | 0.73 nm (3%)                        | 0.97 nm (4.2%)                      | 7.34 nm (29.8%)                     |
| XRD (integral area ratio) *      | 0.48 nm (2%)                        | 1.38 nm (5.9%)                      | 9.36 nm (36.7%)                     |
| HRTEM                            | 1.13 nm                             | 2.05 nm                             | 4.13 nm                             |

|                                                                           | reversible capacity(cycles)         | rate capability               | voltage range               | Ref       |
|---------------------------------------------------------------------------|-------------------------------------|-------------------------------|-----------------------------|-----------|
| materials                                                                 | /mA h g <sup>-1</sup>               | /mA h g <sup>-1</sup>         | /V, vs. Li <sup>+</sup> /Li |           |
| triple shelled Co <sub>3</sub> O <sub>4</sub> hollow microspheres         | 1615.8 (30) @0.05 A g <sup>-1</sup> | 1117.3 @2 A g <sup>-1</sup>   | 0.05 - 3.0                  | 1         |
| micron sized Co <sub>3</sub> O <sub>4</sub> hollow powders                | 702 (300) @1 A g <sup>-1</sup>      | 581 @10 A g <sup>-1</sup>     | 0.001-3.0                   | 2         |
| Co <sub>3</sub> O <sub>4</sub> nanotubes                                  | 380 (80) @0.05 A g <sup>-1</sup>    |                               | 0.01-3.0                    | 3         |
| porous Co <sub>3</sub> O <sub>4</sub> hollow dodecahedra                  | 780 (100) @0.1 A g <sup>-1</sup>    | 610 @8.9 A g <sup>-1</sup>    | 0.01 - 3.0                  | 4         |
| mesoporous and single-crystal Co <sub>3</sub> O <sub>4</sub> arrays       | 788.7 (25) @1.34 A g <sup>-1</sup>  | 320 @26.7 A g <sup>-1</sup>   |                             | 5         |
| Co <sub>3</sub> O <sub>4</sub> mesoporous nanostructures                  | 889 (80) @0.2 A g <sup>-1</sup>     | 804 @1 A g <sup>-1</sup>      | 0.01-3.0                    | 6         |
| bacteria directed porous Co <sub>3</sub> O <sub>4</sub>                   | 903 (20) @0.18 A g <sup>-1</sup>    |                               | 0.01 - 3.0                  | 7         |
| mesoporous quasi-single-crystalline Co <sub>3</sub> O <sub>4</sub>        | 1400 (20) @0.05 A g <sup>-1</sup>   | 1333.4 @0.9 A g <sup>-1</sup> | 0-3.0                       | 8         |
| nanobelts                                                                 |                                     |                               |                             |           |
| Co <sub>3</sub> O <sub>4</sub> octahedra                                  | 714 (50) @1 A g <sup>-1</sup>       | 700 @2 A g <sup>-1</sup>      | 0.01 - 3.0                  | 9         |
| Co <sub>3</sub> O <sub>4</sub> nanocubes                                  | 650 (400) @0.5 A g <sup>-1</sup>    | 610 @2 A g <sup>-1</sup>      | 0.01-3.0                    | 10        |
| mesoporous Co <sub>3</sub> O <sub>4</sub> nanoflowers                     | 980 (30) @0.05 A g <sup>-1</sup>    | 875 @0.5 A g <sup>-1</sup>    | 0.01 - 3.0                  | 11        |
| Micro-/Nanostructured Co3O4                                               | 980 (60) @0.1 A g <sup>-1</sup>     | 130 @10 A g <sup>-1</sup>     | 0.01-3.0                    | 12        |
| $Co_3O_4$ nanocages with highly exposed {110}                             | 864 (50) @0.18 A g <sup>-1</sup>    | 700 @1.78 A g <sup>-1</sup>   |                             | 13        |
| facets                                                                    |                                     | 216 @4.45 A g <sup>-1</sup>   |                             |           |
| SiO <sub>2</sub> -doped Co <sub>3</sub> O <sub>4</sub> hollow nanospheres | 971 (150) @2 A g <sup>-1</sup>      | 853 @3 A g <sup>-1</sup>      | 0.001-3.0                   | 14        |
| peapod-like Co <sub>3</sub> O <sub>4</sub> @CNT arrays                    | 862 (100) @0.1A g <sup>-1</sup>     | 408 @5 A g <sup>-1</sup>      | 0-3.0                       | 15        |
| $3D Co_3O_4$ and CoO@C wall arrays                                        | 804 (60) @0.5 A g <sup>-1</sup>     | 420 @1 A g-1                  | 0.01-3.0                    | 16        |
| Co <sub>3</sub> O <sub>4</sub> nanoparticles confined into single-        | 530 (200) @1 A g <sup>-1</sup>      | 425 @5 A g <sup>-1</sup>      | 0.01-3.0                    | 17        |
| walled carbon nanotube matrix                                             |                                     |                               |                             |           |
| MWCNTs/Co <sub>3</sub> O <sub>4</sub> derived from MOF                    | 813 (100) @0.1A g <sup>-1</sup>     | 514 @1 A g <sup>-1</sup>      | 0.01 - 3.0                  | 18        |
| atomically thin Co <sub>3</sub> O <sub>4</sub> nanosheets/graphene        | 851.5 (2000) @2 A g <sup>-1</sup>   | 509.3 @5 A g <sup>-1</sup>    | 0.01 - 3.0                  | 19        |
| composite                                                                 |                                     |                               |                             |           |
| Co <sub>3</sub> O <sub>4</sub> @carbon                                    | 1050 (50) @0.89 A g <sup>-1</sup>   | 380 @8.9 A g <sup>-1</sup>    | 0.01 - 3.0                  | 20        |
| Carbon-doped Co <sub>3</sub> O <sub>4</sub> nanocrystals                  | 950 (300) @0.5 A g <sup>-1</sup>    | 853 @10 A g <sup>-1</sup>     | 0.01-3.0                    | 21        |
| Co <sub>3</sub> O <sub>4</sub> /C composite                               | 928 (50) @0.2 A g <sup>-1</sup>     | 470 @3.2 A g <sup>-1</sup>    | 0.01-3.0                    | 22        |
| Co <sub>3</sub> O <sub>4</sub> /graphene hybrids                          | 778 (42) @0.2 A g <sup>-1</sup>     | 600 @1 A g <sup>-1</sup>      | 0.001 - 3.0                 | 23        |
| Co <sub>3</sub> O <sub>4</sub> nanosheets-3D graphene networks            | 630 (50) @0.2 A g <sup>-1</sup>     | 130 @5 A g <sup>-1</sup>      | 0.05-3.0                    | 24        |
| Co <sub>3</sub> O <sub>4</sub> /Nitrogen doped graphene framework         | 890 (200) @0.1 A g <sup>-1</sup>    | 500 @5 A g <sup>-1</sup>      | 0.01-3.0                    | 25        |
| graphene wrapped TiO2@Co3O4 coaxial                                       | 437 (200) @0.1 A g <sup>-1</sup>    | 204@0.8 A g <sup>-1</sup>     | 0.005 - 3.0                 | 26        |
| nanobelt arrays                                                           |                                     |                               |                             |           |
| CoO-Co <sub>3</sub> O <sub>4</sub> nanoribbon/RGO                         | 994 (200) @0.1 A g <sup>-1</sup>    | 450 @5 A g <sup>-1</sup>      | 0.01-3.0                    | 27        |
| Co <sub>3</sub> O <sub>4</sub> -AP                                        | 705 (50) @0.1 A g <sup>-1</sup>     | 240 @5 A g <sup>-1</sup>      | 0.01-3.0                    | This work |
| Co <sub>3</sub> O <sub>4</sub> -350                                       | 1050 (50) @0.1 A g <sup>-1</sup>    | 808 @5 A g <sup>-1</sup>      | 0.01-3.0                    | This work |

Table S3. Performance comparison of some LIB anodes based on typical  $Co_3O_4$  structures.

| materials                                                    | reversible capacity(cycles)         | rate capability             | voltage range               | Ref       |
|--------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------|
|                                                              | /mA h g <sup>-1</sup>               | /mA h g <sup>-1</sup>       | /V, vs. Li <sup>+</sup> /Li |           |
| Co <sub>3</sub> O <sub>4</sub> nanocrystallites              | 348 (50) @0.1 A g <sup>-1</sup>     | 160 @4.47 A g <sup>-1</sup> | 0.5-3.0                     | 28        |
| Shale-like Co <sub>3</sub> O <sub>4</sub>                    | 380 (50) @0.05 A g <sup>-1</sup>    | 153.8 @5 A g <sup>-1</sup>  | 0.005 - 2.9                 | 29        |
| bowl-like hollow Co <sub>3</sub> O <sub>4</sub> microspheres | 290 (10) @0.18 A g <sup>-1</sup>    |                             | 0.01 - 2.0                  | 30        |
| Co <sub>3</sub> O <sub>4</sub> anchored carbon nanotubes     | 403 (100) @0.05 A g <sup>-1</sup>   | 190 @3.2 A g <sup>-1</sup>  | 0.01-3.0                    | 31        |
| Co <sub>3</sub> O <sub>4</sub> carbon nanofiber mats         | 400 (700) @0.5 A g <sup>-1</sup>    | 401 @2 A g <sup>-1</sup>    | 0.01-3.0                    | 32        |
| Co <sub>3</sub> O <sub>4</sub> /MCNTs                        | 293 (15) @0.03 A g <sup>-1</sup>    |                             | 0.005 - 2.5                 | 33        |
| Mesoporous Co <sub>3</sub> O <sub>4</sub> sheets/3D graphene | 523.5 (50) @0.025 A g <sup>-1</sup> | 82.3 @0.5 A g <sup>-1</sup> | 0.01 - 3.0                  | 34        |
| networks                                                     |                                     |                             |                             |           |
| Monodispersed hierarchical Co <sub>3</sub> O <sub>4</sub>    | 440 (30) @0.16 A g <sup>-1</sup>    | 184 @3.2 A g <sup>-1</sup>  | 0.05-3.0                    | 35        |
| spheres/CNT                                                  |                                     |                             |                             |           |
| Co <sub>3</sub> O <sub>4</sub> -AP                           | 27 (50) @0.025 A g <sup>-1</sup>    | 17 @5 A g <sup>-1</sup>     | 0.01-3.0                    | This work |
| Co <sub>3</sub> O <sub>4</sub> -350                          | 81 (50) @0.025 A g <sup>-1</sup>    | 73 @5 A g <sup>-1</sup>     | 0.01-3.0                    | This work |

Table S4. Performance comparison of some SIB anodes based on typical  $Co_3O_4$  structures.

## References

- Wang, J.-Y.; Yang, N.-L.; Tang, H.-J.; Dong,Z.-H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H.-J.; Tang, Z.-Y.; Wang, D.Accurate Control of Multishelled Co3O4Hollow Microspheres as High-Performance Anode Materials in Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2013, 52, 6417-6420.
- (2) Park, J.-S.; Cho, J.-S; Kim, J.-H.; Choi, Y.-J.; Kang, Y.-C. Electrochemical Properties of Micron-sized Co<sub>3</sub>O<sub>4</sub> Hollow Powders Consisting of Size Controlled Hollow Nanospheres. J. Alloys Compd. 2016, 689, 554-563.
- (3) Lou, X.-W.; Deng, D.; Lee, J.-Y.; Feng, J.; Archer, L.-A.; Self-Supported Formation of Needlelike Co<sub>3</sub>O<sub>4</sub> Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Adv. Mater. 2008, 20, 258-262.
- Wu, R.-B.; Qian, X.-K.; Rui, X.-H.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q.-Y.; Feng, X.-Q.; Long, Y.; Wang, L.-Y.; Huang, Y.Z. Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co<sub>3</sub>O<sub>4</sub> Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small 2014, 10, 1932-1938.
- (5) Wang, Y.; Xia, H.; Lu, L.; Lin, J.-Y. Excellent Performance in Lithium-Ion Battery Anodes: Rational Synthesis of Co(CO<sub>3</sub>)<sub>0.5</sub>(OH)0.11H<sub>2</sub>O Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co<sub>3</sub>O<sub>4</sub>. ACS Nano 2010, 4, 1425-1432.
- (6) Sun, H.-Y.; Zhao, Y.-Y.; Mølhave, K.; Zhang, M.; Zhang, J.-D. Simultaneous Modulation of Surface Composition, Oxygen Vacancies and Assembly in Hierarchical Co<sub>3</sub>O<sub>4</sub> Mesoporous Nanostructures for Lithium Storage and Electrocatalytic Oxygen Evolution. Nanoscale 2017, 9, 14431–14441.
- (7) Shim, H.-W.; Jin, Y.-H.; Seo, S.-D.; Lee, S.-H.; Kim, D.-W. Highly Reversible Lithium Storage in Bacillus subtilis-Directed Porous Co<sub>3</sub>O<sub>4</sub> Nanostructures. ACS Nano 2011, 5, 443– 449.
- (8) Tian, L.; Zou, H.-L.; Fu, J.-X.; Yang, X.-F.; Wang, Y.; Guo, H.-L.; Fu, X.-H.; Liang, C.-L.; Wu, M.-M.; Shen, P.-K.; Gao, Q.-M. Topotactic Conversion Route to Mesoporous Quasi -

Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. Adv. Funct. Mater. 2010, 20, 617–623.

- (9) Xiao, X.-L.; Liu, X.-F.; Zhao, H.; Chen, D.-F.; Liu, F.-Z.; Xiang, J.-H.; Hu, Z.-B.; Li, Y.-D.
   Adv. Mater. 2012, 8, 5762–5766.
- (10) Xu, J.-M.; Wu, J.-S.; Luo, L.-L.; Chen, X.-Q.; Qin, H. B.; Dravid, V.; Mi, S.-B.; Jia, C.-L.
   Co<sub>3</sub>O<sub>4</sub> Nanocubes Homogeneously Assembled on Few-layer Graphene for High Energy Density Lithium-ion Batteries. J. Power Sources 2015, 274, 816–822.
- (11) Sun H.-Y.; Ahmad M.; Zhu J. Morphology-controlled Synthesis of Co<sub>3</sub>O<sub>4</sub> Porous Nanostructures for the Application as Lithium-ion Battery Electrode. Electrochim. Acta 2013, 89, 199–205.
- (12) Huang, G.-Y.; Xu, S.M.; Lu, S.-S.; Li, L.-Y.; Sun, H.Y. Micro-/Nanostructured Co<sub>3</sub>O<sub>4</sub> Anode with Enhanced Rate Capability for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.
- (13) Liu, D.-Q.; Wang, X.; Wang, X.-B.; Tian, W.; Bando, Y. Golberg, D. Co<sub>3</sub>O<sub>4</sub> Nanocages with Highly Exposed {110} Facets for High-performance Lithium Storage. Sci. Rep. 2013, 3, 2543.
- (14) Won, J.-M.; Cho, J.-S.; Kang, Y.-C. Superior Electrochemical Properties of SiO<sub>2</sub>-doped Co<sub>3</sub>O<sub>4</sub>
   Hollow Nanospheres Obtained Through Nanoscale Kirkendall Diffusion for Lithium-ion
   Batteries. J. Alloys Compd. 2016, 680, 366–372.
- (15) Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y.-Y.; Zhao, D.-Y.; Schüth, F. Controllable Synthesis of Mesoporous Peapod-like Co<sub>3</sub>O<sub>4</sub>@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2015, 54, 7060–7064.
- (16) Wu, F.-F.; Ma, X.-J.; Feng, J.-K.; Qian, Y.-T.; Xiong, S.-L. 3D Co<sub>3</sub>O<sub>4</sub> and CoO@C Wall Arrays: Morphology Control, Formation Mechanism, and Lithium-storage Properties. J. Mater. Chem. A 2014, 2, 11597–11605.
- (17) Xie, Z.-Q.; Jiang, C.-M.; Xu, W.-W.; Cui, X.-D.; Reyes, C.; Martí, A.; Wang, Y. Facile Self-

assembly Route to Co<sub>3</sub>O<sub>4</sub> Nanoparticles Confined into Single-walled Carbon Nanotube Matrix for Highly Reversible Lithium Storage. Electrochim. Acta 2017, 235, 613–622.

- (18) Huang, G.; Zhang, F.-F.; Du, X.-C.; Qin, Y.-L.; Yin, D.-M.; Wang, L.-M. Metal Organic Frameworks Route to in Situ Insertion of Multiwalled Carbon Nanotubes in Co<sub>3</sub>O<sub>4</sub> Polyhedra as Anode Materials for Lithium-Ion Batteries. ACS Nano 9 (2015) 1592–1599.
- (19) Dou, Y.-H.; Xu, J.-T.; Ruan, B.-Y.; Liu, Q.-N.; Pan, Y.-D.; Sun, Z.-Q.; Dou, S.-X. Atomic Layer-by-Layer Co<sub>3</sub>O<sub>4</sub>/Graphene Composite for High Performance Lithium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1501835.
- (20) Wang, Y.; Zhang, H.-J.; Lu, L.; Stubbs, L.-P.; Wong, C.-C.; Lin, J.-Y. Designed Functional Systems from Peapod-like Co@Carbon to Co<sub>3</sub>O<sub>4</sub>@Carbon Nanocomposites. ACS Nano 2010, 4, 4753–4761.
- (21) Yan, C.; Zhu, Y.; Li, Y.; Fang, Z.; Peng, L.; Zhou, X.; Chen, G.; Yu, G. Local Built-In Electric Field Enabled in Carbon-Doped Co<sub>3</sub>O<sub>4</sub> Nanocrystals for Superior Lithium-Ion Storage. Adv. Funct. Mater. 2018, 28 1705951.
- (22) Wang, S.; Zhu, Y.; Xu, X.; Sunarso, J.; Shao, Z. Adsorption-based Synthesis of Co<sub>3</sub>O<sub>4</sub>/C
   Composite Anode for High Performance Lithium-ion Batteries. Energy 2017, 125, 569-575.
- (23) Kim, H.; Seo, D.-H.; Kim, S.-W.; Kim, J.; Kang, K.; Highly Reversible Co<sub>3</sub>O<sub>4</sub>/graphene Hybrid Anode for Lithium Rechargeable Batteries. Carbon 2011, 49, 326–332.
- (24) Sun, H.-Y.; Liu, Y.-G.; Yu, Y.-L.; Ahmad, M.; Nan, D.; Zhu, J. Mesoporous Co<sub>3</sub>O<sub>4</sub> Nanosheets-3D Graphene Networks Hybrid Materials for High-performance Lithium Ion Batteries. Electrochim. Acta 2014, 118, 1–9.
- (25) Xing, X.; Liu, R.-L.; Liu, S.-Q.; Xiao, S.; Xu, Y.; Wang, C.; Wu, D.-Q. Surfactant-assisted Hydrothermal Synthesis of Cobalt Oxide/nitrogen-doped Graphene Framework for Enhanced Anodic Performance in Lithium Ion Batteries. Electrochim. Acta 2016, 194, 310–316.
- (26) Luo, Y.-S.; Luo, J.-S. Zhou, W.-W.; Qi, X.-Y.; Zhang, H.; Yu, D.-Y.; Li, C.-M.; Fan, H.-J.; Yu, T. Controlled Synthesis of Hierarchical Graphene-wrapped TiO<sub>2</sub>@ Co<sub>3</sub>O<sub>4</sub> Coaxial Nanobelt

Arrays for High-performance Lithium Storage. J. Mater. Chem. A 2013, 1, 273–281.

- (27) Sun, L. N.; Deng, Q.-W.; Li, Y.-L.; Mi, H.-W.; Wang, S.-H.; Deng, L.-B.; Ren, X.-Z.; Zhang,
   P.-X. CoO-Co<sub>3</sub>O<sub>4</sub> Heterostructure Nanoribbon/RGO Sandwich-like Composites as Anode
   Materials for High Performance Lithium-ion Batteries. Electrochim. Acta 2017, 241, 252–260.
- (28) Longoni, G.; Fiore, M.; Kim, J.; Jung, Y.-M.; Kim, D.-K.; Mari, C.-M.; Ruffo, R. Co<sub>3</sub>O<sub>4</sub> Negative Electrode Material for Rechargeable Sodium Ion Batteries: An Investigation of Conversion Reaction Mechanism and Morphology-performances Correlations. J. Power Sources 2016, 332, 42–52.
- (29) Li, H.-H.; Li, Z.-Y.; Wu, X.-L.; Zhang, L.-L.; Fan, C.-Y.; Wang, H.-F.; Li, X.-Y.; Wang, K.;
  Sun, H.-Z.; Zhang, J.-P. Shale-like Co<sub>3</sub>O<sub>4</sub> for High Performance Lithium/sodium Ion Batteries.
  J. Mater. Chem. A 2016, 4, 8242–8248.
- (30) Wen, J.-W.; Zhang, D.-W.; Zang, Y.; Sun, X.; Cheng, B.; Ding, C.-X.; Yu, Y.; Chen, C.-H. Li and Na Storage Behavior of Bowl-like Hollow Co<sub>3</sub>O<sub>4</sub> Microspheres as an Anode Material for Lithium-ion and Sodium-ion Batteries. Electrochim. Acta 2014, 132, 193–199.
- (31) Rahman, M.-M.; Sultana, I.; Chen, Z.; Srikanth, M.; Li, L.-H.; Dai, X.-J.; Chen, Y. Ex Situ Electrochemical Sodiation/desodiation Observation of Co<sub>3</sub>O<sub>4</sub> Anchored Carbon Nanotubes: a High Performance Sodium-ion Battery Anode Produced by Pulsed Plasma in a Liquid. Nanoscale 2015, 7, 13088–13095.
- (32) Fu, B.; Zhou, X.; Wang, Y. Co<sub>3</sub>O<sub>4</sub> Carbon Nanofiber Mats as Negative Electrodes for Sodiumion Batteries. Mater. Lett. 2016, 170, 21–24.
- (33) Deng, Q.; Wang, L.; Li, L. Electrochemical Characterization of Co<sub>3</sub>O<sub>4</sub>/MCNTs Composite Anode Materials for Sodium-ion Batteries. J. Mater. Sci. 2015, 50, 4142–4148.
- (34) Liu, Y.; Cheng, Z.; Sun, H.; Arandiyan, H.; Li, J.; Ahmad, M. Mesoporous Co<sub>3</sub>O<sub>4</sub> sheets/3D Graphene Networks Nanohybrids for High-performance Sodium-ion Battery Anode. J. Power Sources 2015, 273, 878–884.
- (35) Jian, Z.; Liu, P.; Li, F.; Chen, M.; Zhou, H. Monodispersed Hierarchical Co<sub>3</sub>O<sub>4</sub> Spheres

Intertwined with Carbon Nanotubes for Use as Anode Materials in Sodium-ion Batteries. J. Mater. Chem. A 2014, 2, 13805–13809.