
Supporting Information:

d-SEAMS: Deferred Structural Elucidation

Analysis for Molecular Simulations

Rohit Goswami,†,†,¶ Amrita Goswami,‡,¶ and Jayant K. Singh∗,‡

†Currently at the Department of Chemistry, Indian Institute of Technology Kanpur,

Kanpur, 208016, Uttar Pradesh, India

‡Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur,

208016, Uttar Pradesh, India

¶Contributed equally to this work

E-mail: jayantks@iitk.ac.in

Phone: 0512-259 6141. Fax: 0512-259 0104

Design

The d-SEAMS framework is designed to be accessible to the end-user, while offering a pow-

erful system of building blocks and generics for extensions. The engine itself is written in C++

and is compiled to a binary. This binary accepts Lua input scripts to expose the functionality

of the software such that the underlying data-structures and computations are abstracted

away from the user. To facilitate reproduction of results and to prevent users from access-

ing conflicting or unphysical functional manipulations of the input data, YAML options mask

certain functions from being exposed. The YAML workflows are completely reproducible in

Lua scripts, but provide a way to share methodologies and also reduces the cognitive load of

S-1

jayantks@iitk.ac.in

going through the complete API documentation.

Figure S1: Work-flow of d-SEAMS. Nix uses cryptographic hashes to ensure reproducible
builds over all systems. Cmake compiles and builds the source code, using the dependencies
managed by nix. The Lua script provides an interface to the back-end functions. Com-
binations of these C++ functions can be called the ’meta’ functions. The YAML interface
exposes only relevant back-end and Lua functions, corresponding to the user-determined
pre-determined work-flow.

Figure S1 is a schematic of the overall design architecture of d-SEAMS. We have used

CMake to compile and build the source code, with the dependencies managed by nix. Al-

though the use of nix is recommended, users can directly manage the third-party depen-

dencies themselves and build from source using CMake. The Lua scripting interface exposes

C-like functions to create custom work-flows. The YAML configuration file provides options for

pre-determined work-flows. Users with different requirements and experience can interact

with d-SEAMS. The three main components of the code architecture are enumerated below:

• YAML configuration file: This contains options for pre-determined work-flows. For

example, a user who enters the option for the confined quasi-one-dimensional ice deter-

mination will only be exposed to the relevant functions for INT prism determination.

Multiple workflows can be selected at the same time.

S-2

• Lua Interface: C++ functions are registered as Lua functions, which are called from

a Lua script. Lua is a C-like scripting language, enabling users to call the Lua functions

without needing to learn a software-specific scripting convention. The advantage of

using Lua over directly calling C++ functions is that the users need not be concerned

with pointers and clean-up of the C++ structures. The Lua language also has a rich set

of cross platform extensions for file handling, and is also supported by major editors

for syntax highlighting.

• C++ Back-end: The back-end is written in modern C++, employing common data

structures, used uniformly throughout the code. Users can easily extend and write their

own C++ header files, and the documentation covers manipulating the build system to

accept both user-defined and external headers. Registering custom C++ functions as

Lua functions, to be subsequently called in Lua scripts, is also documented. GDBS1 can

be used for code debugging, since the back-end is in C++.

From a user perspective, we have designed the Lua functions to mimic the mindset of

a computational chemist, without burdening them with the software implementation. We

have also ensured reproducibility, both as an aid to the scienceS2 intended and also to

allow for bugs to be dealt with more efficiently. This reproducibility is ensured during

build, compile, and linking stages, by leveraging the functional, immutable binaries produced

by nix.S3 The dependencies are handled reproducibly, though for ease of extension by the

wider community, most of the build system is in CMake. We use nix to ensure that the

dependencies of the binary are fully reproducible, as a consequence of traversing the build

graph defined by the nix-derivation. The binary itself has a server-client architecture, to

ensure that the user can transparently interact with the code without needing a background

in functional programming. Since the back-end server is written entirely in modern C++,

the GDB debugger is usable throughout. The server-client nature of the system, though

currently a bottleneck in terms of parallelism, allows for a single compiled binary to be used

for the execution of multiple different Lua input scripts, with each script spawning a separate

S-3

process.

Nix

The nix derivation provides a deterministic package-level lock on all dependencies and is

written in nix, a lazy, dynamically typed, purely functional language.S4 Nix manages the

installation of libraries and extra tooling required. Through the nix-shell, we provide a

reproducible environment for developers to ensure that their contributions are in keeping

with the libraries and third-party tools used by the upstream developers. Given that nix

also includes rollbacks, it allows for all dependencies to be reverted to arbitrary instances in

the project history. However, if the user does not use nix, this would necessarily have to be

handled manually.

Lua

Existing molecular dynamics packages suffer from not having design parameters built-in, and

with time, this has led to unique and non-standard syntax being used, as seen in the input

scripts of LAMMPSS5 and GROMACS,S6 amongst others. Popular text editors do not offer

syntax highlighting for these custom non-standard and software-specific syntaxes. For such

software-specific syntaxes, the code is unusable without learning from the documentation.

We also note that the version dependence of each internal segment of large and complex

software systems can become intractable without continuous development, and as a result,

these may spawn multiple language-specific errors. Thus, they tend to work best on the

distribution on which the creators have worked.

We have opted to use Lua as the scripting interface, which has C-like functions. It is

widely supported in terms of syntax highlighting, and can be interfaced with C++ code.

Furthermore, the error handling is such that it is amenable for arbitrarily complex GDB

debugger workflows,S1 and the rich standard library of Lua, along with user extensions, have

no clashes. Lua is also user-friendly due to its C-like syntax. The rich table and object

S-4

handling makes writing out image data convenient.

We have used the excellent FOSS (free and open source) sol3 library (https://github.com/ThePhD/sol2)

for generating C++ library bindings to Lua. It is a header-only library so in theory it is

a lightweight dependency for those compiling without nix. The canonical bindings from

lua are to ANSI-C. Leveraging sol3 minimizes the creation of boiler-plate code and it also

provides native support for handling class objects, unlike the standard bindings.

Lua has been the darling of the gaming development community, and has proven its

worth in many related domains such as image handling. Apart from the user-friendly helper

functions, our design has the Lua interface, which offers every core function to the user.

This permits arbitarily complicated workflows to be used without re-compiliation, which is

a boon for HPC cluster usage. We recommend strongly in the docs, that foreign code, once

interfaced to the C++ engine, should be bound in Lua for the end-users as well.

Figure S2: The Lua input script, where the user is able to call any of the functions not voided by

the options in the YAML file.

Figure S2 shows a typical Lua input script, which calls functions exposed by the current

YAML file work-flow.

S-5

YAML

Figure S3: The YAML file, where boolean values are set to restrict functions exposed to the Lua

scripting engine.

To improve usability and reduce the time required reading the API documentation, we have

split the usage into a unique YAML-Lua design. The Lua interface is for power users, however,

to reduce mistakes, options set in the YAML files will deactivate certain functions, in order to

prevent incorrect manipulations of the internal data-structures. The YAML interface diverts

the flow of functionality and code to different paths, and thus different algorithms. This also

prevents name-clashes of similar functions for mutually exclusive work-flows. For example,

an input system can either be a bulk system, a quasi-one-dimensional system or a quasi-

two-dimensional system. The YAML file offers truthy options, an example of which is shown

in Figure S3, and subsequently masks functions not applicable for the given system type.

In summary, the code architecture can be briefly described as follows:

• The d-SEAMS binary is built using CMake. To prevent dependency-clashes, library

version-mismatch errors, and for ease of installation, users are recommended to install

and build d-SEAMS using nix. A complete list of all the third-party libraries required

is also provided (https://docs.dseams.info).

• The back-end is written in modern C++17. Functions for algorithms of separate work-

flows (quasi-one- or quasi-two- dimensional, or bulk systems) are differentiated into

distinct namespaces. The developer manual (https://docs.dseams.info/) provides API-

level documentation of the C++ back-end.

S-6

• User-facing Lua functions are registered on the C++ side. The sol3 library is used to

generate C++ library bindings to the Lua functions. The user-functions are documented

in the d-SEAMS wiki page (https://wiki.dseams.info).

• The YAML file provides options for deciding the work-flow, which expose the functions

valid for the particular work-flow selected. For example, the bulk radial distribution

function would yield incorrect results for a monolayer system, for which the in-plane

radial distribution function is appropriate. By setting the option for a quasi-two-

dimensional system in the YAML file, the user is only exposed to the function for the

in-plane radial distribution. The yaml-cpp library (https://github.com/jbeder/yaml-

cpp) is used to parse the YAML options.

• The developer manual provides instructions for users to extend d-SEAMS, add to the

C++ back-end, and write their own Lua bindings.

Lua Input Files

In this section, we have provided the Lua input scripts used for generating the results de-

scribed in the manuscript. For more complete descriptions and further guidance on how

to use the scripts, we invite the reader to visit the relevant examples documented in the

d-SEAMS wiki page (https://wiki.dseams.info).

Heterogenous Nucleation on an Ice-Promoting Surface

We have used the topological network criterionS7 for identifying Double-Diamond Cages

(DDCs) and Hexagonal Cages (HCs) and analyzing the stacking of ice on a smooth silver-

iodide surface. This is similar to the example provided on the d-SEAMS wiki for homogenous

bulk nucleation using the topological network criterion (https://wiki.dseams.info/examples/bulktopologicalcriterion).

The vars.lua file contains user-defined variables required for the analysis.

vars.lua

S-7

1 cuto f fRad ius = 3 . 5 ; −−− This i s f o r H2O

2 oxygenAtomType = 4 ; −−− This i s a s s i gned by LAMMPS

3 hydrogenAtomType = 1 ; −−− Hydrogen atom type as s i gned (not used here)

4 targetFrame =1; −−− The f i r s t frame (i n c l u s i v e)

5 f ina lFrame =2392; −−− This i s i n c l u s i v e

6 frameGap=1; −−− The gap between frames

7 maxDepth = 6 ; −−− The maximum depth upto which r in g s w i l l be s ea rched .

8 −−− S l i c e Informat ion

9 i s S l i c e = fa l se ; −−− This i s t rue i f the ana l y s i s i s to be done only f o r a

volume s l i c e

10 s l i c eLowerL imi t s = {0 ,0 , 0} ; −−− Lower l im i t o f the s l i c e (f o r box dim , keep

the va l u e s the same as 0)

11 s l i c eUpperL imi t s = {0 ,0 , 0} ; −−− Upper l im i t o f the s l i c e

12

13 −−− Paths f o r the output d i r e c t o r i e s and lua s c i p t

14 outDir=”runOne/” ; −−− The su bd i r e c t o r y used ;

15 f u n c t i o n S c r i p t=” l u a i n p u t s / iceType / f u n c t i o n s . l u a ” −−− This i s r e l a t i v e to the

b inary l o c a t i o n

16

17 −− Var iab l e f o r the t o p o l o g i c a l network c r i t e r i o n

18 pr intCages = fa l se ; −−− Prin t s out every cage f o r every frame i f t rue

The functions.lua file interacts with the C++ backend using the C-like lua functions reg-

istered in the src/main.cpp. Users interested in extending d-SEAMS and adding new Lua

functions are advised to refer to the documentation.

functions.lua

1 for frame=targetFrame , f inalFrame , frameGap do

2 resCloud=readFrameOnlyOne (t r a j e c t o r y , frame , resCloud , oxygenAtomType , i s S l i c e ,

s l i c eLowerL imi t s , s l i c eUpperL imi t s) −−− Get the frame

3 nLi s t=ne ighborL i s t (cuto f fRadius , resCloud , oxygenAtomType) ; −−− Ca l cu l a t e

S-8

the n e i g h b o r l i s t by ID

4 i c eNe ighbourL i s t = bondNetworkByIndex (resCloud , nL i s t) ; −−− Ca l cu l a t e the

n e i g h b o r l i s t by index

5 −−−

6 −−− S ta r t o f ana l y s i s us ing r i n g s (by index from here onwards.)

7 r i n g s=getPr imi t iveRings (i ceNe ighbourLi s t , maxDepth) ; −−− Gets every r ing (

non−p r im i t i v e s inc luded)

8 bulkTopo log ica lNetworkCr i te r ion (outDir , r ings , i ceNe ighbourL i s t ,

c lusterCloud , targetFrame , pr intCages) ; −−− Finds DDCs and HCs

9 end

Homogenous Nucleation: Growth of the Largest Ice Cluster

Here, we have used a topological network criterionS7 to analyze a successful nucleation event

for a system of 4096 monoatomic (mW) water molecules.S8 This is, in essence, the same

as the example provided on the d-SEAMS wiki for homogenous bulk nucleation using the

topological network criterion (https://wiki.dseams.info/examples/bulktopologicalcriterion).

The trajectory provided in the example in the docs is shorter than the production run

trajectory analyzed in the manuscript.

The vars.lua file contains user-defined variables required for the analysis.

vars.lua

1 cuto f fRad ius = 3 . 5 ; −−− This i s f o r H2O

2 oxygenAtomType = 2 ; −−− This i s a s s i gned by LAMMPS

3 hydrogenAtomType = 1 ; −−− Hydrogen atom type as s i gned (not used here)

4 targetFrame =1; −−− The f i r s t frame (i n c l u s i v e)

5 f ina lFrame =4000; −−− This i s i n c l u s i v e

6 frameGap=1; −−− The gap between frames

7 maxDepth = 6 ; −−− The maximum depth upto which r in g s w i l l be s ea rched .

8 −−− S l i c e Informat ion

S-9

9 i s S l i c e = fa l se ; −−− This i s t rue i f the ana l y s i s i s to be done only f o r a

volume s l i c e

10 s l i c eLowerL imi t s = {0 ,0 , 0} ; −−− Lower l im i t o f the s l i c e (f o r box dim , keep

the va l u e s the same as 0)

11 s l i c eUpperL imi t s = {0 ,0 , 0} ; −−− Upper l im i t o f the s l i c e

12

13 −−− Paths f o r the output d i r e c t o r i e s and lua s c i p t

14 outDir=”runOne/” ; −−− The su bd i r e c t o r y used ;

15 f u n c t i o n S c r i p t=” l u a i n p u t s / iceType / f u n c t i o n s . l u a ” −−− This i s r e l a t i v e to the

b inary l o c a t i o n

16

17 −− Var iab l e f o r the t o p o l o g i c a l network c r i t e r i o n

18 pr intCages = fa l se ; −−− Prin t s out every cage f o r every frame i f t rue

The functions.lua has been provided below.

functions.lua

1 for frame=targetFrame , f inalFrame , frameGap do

2 resCloud=readFrameOnlyOne (t r a j e c t o r y , frame , resCloud , oxygenAtomType , i s S l i c e ,

s l i c eLowerL imi t s , s l i c eUpperL imi t s) −−− Get the frame

3 nLi s t=ne ighborL i s t (cuto f fRadius , resCloud , oxygenAtomType) ; −−− Ca l cu l a t e

the n e i g h b o r l i s t by ID

4 i c eNe ighbourL i s t = bondNetworkByIndex (resCloud , nL i s t) ; −−− Ca l cu l a t e the

n e i g h b o r l i s t by index

5 −−−

6 −−− S ta r t o f ana l y s i s us ing r i n g s (by index from here onwards.)

7 r i n g s=getPr imi t iveRings (i ceNe ighbourLi s t , maxDepth) ; −−− Gets every r ing (

non−p r im i t i v e s inc luded)

8 bulkTopo log ica lNetworkCr i te r ion (outDir , r ings , i ceNe ighbourL i s t ,

c lusterCloud , targetFrame , pr intCages) ; −−− Finds DDCs and HCs

9 end

S-10

Quasi-Two-Dimensional Systems

We have used d-SEAMS to analyze flat Monolayer Square Ice (fMSI) by:

1. Creating LAMMPS data files, containing the connectivity information and particle

classification types labelled by d-SEAMS using topological network criteria, specialized

for quasi-two-dimensional ice.S9 These data files are compatible with OVITO.S10

2. ASCII output files are written out by d-SEAMS, which contain the calculated coverage

area percentage metric for each frame.

3. An ASCII output file is produced for the in-plane radial distribution function.

The system analyzed here is similar to the example provided in the wiki for monolayer

ice classification (https://wiki.dseams.info/examples/monolayer). The vars.lua for the user-

defined variables is provided below. Users should note that all units are the same as those

in the input trajectory files. Here, all distance units are in Angstroms.

vars.lua

1 cuto f fRad ius = 3 . 5 ; −−− This i s f o r H2O

2 oxygenAtomType = 2 ; −−− This i s a s s i gned by LAMMPS

3 hydrogenAtomType = 1 ; −−− Hydrogen atom type as s i gned

4 targetFrame =1; −−− The f i r s t frame (i n c l u s i v e)

5 f ina lFrame =1000; −−− This i s i n c l u s i v e

6 frameGap=1; −−− The gap between frames

7 maxDepth = 4 ; −−− The maximum depth upto which r in g s w i l l be s ea rched .

8 −−− S l i c e Informat ion

9 i s S l i c e = true ; −−− This i s t rue i f the ana l y s i s i s to be done only f o r a

volume s l i c e

S-11

10 s l i c eLowerL imi t s = {0 ,0 , 0} ; −−− Lower l im i t o f the s l i c e (f o r box dim , keep

the va l u e s the same as 0)

11 s l i c eUpperL imi t s = {50 ,0 , 0} ; −−− Upper l im i t o f the s l i c e

12

13 −−− Paths f o r the output d i r e c t o r i e s and lua s c i p t

14 outDir=”runOne/” ; −−− The su bd i r e c t o r y used ;

15 f u n c t i o n S c r i p t=” l u a i n p u t s / iceType / f u n c t i o n s . l u a ” −−− This i s r e l a t i v e to the

b inary l o c a t i o n

16

17 −−− Var iab l e s f o r the monolayer on ly :

18 con f in ingSheetArea = 50∗50 ;

19

20 −−− Var iab l e s f o r the RDF only

21 rd f = true ; −−− This shou ld on ly be s e t to t rue i f you want to c a l c u l a t e the

RDF

22 rd fCuto f f = 12 ; −−− This shou ld be l e s s than h a l f the box l en g t h

23 binwidth = 0 .05 ; −−− This i s the b inwid th or d e l t a r

The functions.lua input script containing the Lua functions is reproduced below. The

wiki provides more information on using the functions for the radial distribution function

(https://wiki.dseams.info/examples/rdf2d).

functions.lua

1 for frame=targetFrame , f inalFrame , frameGap do

2 resCloud=readFrameOnlyOne (t r a j e c t o r y , frame , resCloud , oxygenAtomType , i s S l i c e ,

s l i c eLowerL imi t s , s l i c eUpperL imi t s) −−− Get the frame

3 nLi s t=ne ighborL i s t (cuto f fRadius , resCloud , oxygenAtomType) ; −−− Ca l cu l a t e

the n e i g h b o r l i s t by ID

4 hbnList=getHbondNetwork (t r a j e c t o r y , resCloud , nList , frame , hydrogenAtomType)

−−− Get the hydrogen−bonded network f o r the curren t frame

5 hbnList=bondNetworkByIndex (resCloud , hbnList) −−− Hydrogen−bonded network

us ing i n d i c e s not IDs

S-12

6 r i n g s=getPr imi t iveRings (hbnList , maxDepth) ; −−− Gets every r ing (non−

p r im i t i v e s inc luded)

7 r i n gAna ly s i s (outDir , r ings , hbnList , resCloud , maxDepth , conf in ingSheetArea

, targetFrame) ; −−− Does the r ing ana l y s i s f o r quasi−two−dimensiona l i c e

8 −−− RDF ana l y s i s

9 calcRDF (outDir , rdf , resCloud , rd fCuto f f , binwidth , targetFrame , f ina lFrame) ;

10 −−−

11 end

Quasi-One-Dimensional Systems

In the manuscript, we have tracked the liquid-to-solid phase change of quasi-one-dimensional

water, constrained by a smooth (13, 0) single walled nanotube (SWNT), using the heightn%

order parameter. The example (https://wiki.dseams.info/examples/icenanotube) provides

figshare links to input trajectory files and descriptions of a similar tetragonal ice nanotube.

vars.lua

1 cuto f fRad ius = 3 . 5 ; −−− This i s f o r H2O

2 oxygenAtomType = 2 ; −−− This i s a s s i gned by LAMMPS

3 hydrogenAtomType = 1 ; −−− Hydrogen atom type as s i gned

4 targetFrame =1; −−− The f i r s t frame (i n c l u s i v e)

5 f ina lFrame =1000; −−− This i s i n c l u s i v e

6 frameGap=1; −−− The gap between frames

7 maxDepth = 6 ; −−− The maximum depth upto which r in g s w i l l be s ea rched .

8 −−− S l i c e Informat ion

9 i s S l i c e = fa l se ; −−− This i s t rue i f the ana l y s i s i s to be done only f o r a

volume s l i c e

10 s l i c eLowerL imi t s = {0 ,0 , 0} ; −−− Lower l im i t o f the s l i c e (f o r box dim , keep

the va l u e s the same as 0)

11 s l i c eUpperL imi t s = {0 ,0 , 0} ; −−− Upper l im i t o f the s l i c e

12

S-13

13 −−− Paths f o r the output d i r e c t o r i e s and lua s c i p t

14 outDir=”runOne/” ; −−− The su bd i r e c t o r y used ;

15 f u n c t i o n S c r i p t=” l u a i n p u t s / iceType / f u n c t i o n s . l u a ” −−− This i s r e l a t i v e to the

b inary l o c a t i o n

The functions.lua input script is also reproduced below.

functions.lua

1 for frame=targetFrame , f inalFrame , frameGap do

2 resCloud=readFrameOnlyOne (t r a j e c t o r y , frame , resCloud , oxygenAtomType , i s S l i c e ,

s l i c eLowerL imi t s , s l i c eUpperL imi t s) −−− Get the frame

3 nLi s t=ne ighborL i s t (cuto f fRadius , resCloud , oxygenAtomType) ; −−− Ca l cu l a t e

the n e i g h b o r l i s t by ID

4 hbnList=getHbondNetwork (t r a j e c t o r y , resCloud , nList , frame , hydrogenAtomType)

−−− Get the hydrogen−bonded network f o r the curren t frame

5 hbnList=bondNetworkByIndex (resCloud , hbnList) −−− Hydrogen−bonded network

us ing i n d i c e s not IDs

6 r i n g s=getPr imi t iveRings (hbnList , maxDepth) ; −−− Gets every r ing (non−

p r im i t i v e s inc luded)

7 pr i smAnalys i s (outDir , r ings , hbnList , resCloud , maxDepth , targetFrame) ; −−−

Does the prism ana l y s i s f o r quasi−one−dimensiona l i c e

8 end

Output Files Produced by d-SEAMS

d-SEAMS is capable of producing two types of output:

1. LAMMPS data files are produced for each frame or configuration read in. These data

files contain the positional data of particles classified and labelled by d-SEAMS. The

S-14

connectivity information obtained from the application of topological network criteria

is written out to the data files in the guise of bonds. Thus, each snapshot can be

visualized directly in OVITOS10 or VMD.S11 We have used OVITO to generate the

images in this work.

2. ASCII files are also written out, containing the order parameters calculated for each

frame. The radial distribution function averaged over the input frames can also be

optionally written out in the form of an ASCII text file. The columns of data are

space-separated, and prefaced by a comment line.

Here, we provide a sample LAMMPS data file produced by d-SEAMS, which can be

directly read in and visualized by OVITO. This data file was created by d-SEAMS, from the

positional data of a single DDC. Here, the atom type or label ’dummy’ refers to unclassified

particles, while the atom types ’hc’ and ’ddc’ refer to particles comprising HCs and DDCs

respectively. The atom type ’mixed’ refers to atoms in mixed rings, which are shared between

DDCs and HCs. In OVITO, the particles are labelled by the labels provided in the LAMMPS

data file. The connectivity information is also preserved in the form of bonds of type 1.

1 Written out by D−SEAMS

2 14 atoms

3 18 bonds

4 0 ang l e s

5 0 d i h e d r a l s

6 0 impropers

7 4 atom types

8 1 bond types

9 0 ang le types

10 0 d ihed ra l types

11 0 improper types

12 0 50 .967 x lo xhi

13 0 50 .967 y lo yhi

S-15

14 0 50 .967 z l o zh i

15

16 Masses

17

18 1 15 .999400 # dummy

19 2 15 .999400 # hc

20 3 15 .999400 # ddc

21 4 15 .999400 # mixed

22

23 Atoms

24

25 1 1 3 0 25 .4799996 25 .4799996 19 .1100006

26 2 2 3 0 25 .4799996 25 .4799996 25 .4799996

27 3 3 3 0 25 .4799996 22 .2950001 22 .2950001

28 4 4 3 0 25 .4799996 28 .6650009 22 .2950001

29 5 5 3 0 22 .2950001 22 .2950001 25 .4799996

30 6 6 3 0 22 .2950001 25 .4799996 22 .2950001

31 7 7 3 0 28 .6650009 25 .4799996 22 .2950001

32 8 8 3 0 23 .8880006 20 .7029991 23 .8880006

33 9 9 3 0 23 .8880006 27 .073 23 .8880006

34 10 10 3 0 27 .073 27 .073 20 .7029991

35 11 11 3 0 20 .7029991 23 .8880006 23 .8880006

36 12 12 3 0 27 .073 23 .8880006 23 .8880006

37 13 13 3 0 23 .8880006 23 .8880006 20 .7029991

38 14 1 3 0 23 .8880006 23 .8880006 27 .073

39

40 Bonds

41

42 1 1 1 10

43 2 1 1 13

44 3 1 2 14

45 4 1 2 9

46 5 1 2 12

S-16

47 6 1 3 12

48 7 1 3 8

49 8 1 3 13

50 9 1 4 9

51 10 1 4 10

52 11 1 5 14

53 12 1 5 11

54 13 1 5 8

55 14 1 6 9

56 15 1 6 11

57 16 1 6 13

58 17 1 7 12

59 18 1 7 10

References

(S1) Stallman, R.; Pesch, R.; Shebs, S., et al. Debugging with GDB. Free Software Foun-

dation 2002, 51, 02110–1301.

(S2) Mesirov, J. Accessible Reproducible Research. Science 2010, 327, 415–416.

(S3) Dolstra, E.; de Jonge, M.; Visser, E. Nix: A Safe and Policy-Free System for Software

Deployment. Proceedings of the 18th USENIX Conference on System Administration.

USA, 2004; p 79–92.

(S4) Dolstra, E.; Löh, A. NixOS. SIGPLAN Not. 2008, 43, 367.

(S5) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Com-

put. Phys. 1995, 117, 1–19.

S-17

(S6) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lin-

dahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level

Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25.

(S7) Haji-Akbari, A.; Debenedetti, P. G. Direct Calculation of Ice Homogeneous Nucleation

Rate for a Molecular Model of Water. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10582–

10588.

(S8) Molinero, V.; Moore, E. B. Water Modeled As an Intermediate Element between

Carbon and Silicon†. J. Phys. Chem. B 2009, 113, 4008–4016.

(S9) Goswami, A.; Singh, J. K. A General Topological Network Criterion for Exploring the

Structure of Icy Nanoribbons and Monolayers. Phys. Chem. Chem. Phys. 2020, 22,

3800–3808.

(S10) Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–

the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2009, 18, 015012.

(S11) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol.

Graphics 1996, 14, 33–38.

S-18

