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Characterization. Powder X-ray diffraction (XRD) data were gathered on a Rigaku 

D-MAX 2500/PC diffractometer. X-ray photoelectron spectra (XPS) were collected 

on a X-ray photoelectron spectrometer (Thermo Scientific, K) equipped with a 

monochromatic Al Ka X-ray source (hv = 1486.6 eV). UV-vis diffuse reflectance 

spectra were collected on a Lambda 750 UV/VIS/NIR spectrometer. The morphology 

of the samples was observed by scanning electron microscopy (SEM) on a 

TESCAN-VEGA3 instrument. High-resolution transmission electron microscopy 

(HR-TEM) images were acquired on a Tecnai-G2-F30 high-resolution transmission 

electron microscope (FEI Company, USA). The photoluminescence (PL) spectra were 

obtained by a fluorescence-spectrophotometer (F-4500 FL). Ultraviolet photoelectron 

spectroscopy (UPS) were investigated by a VG Scienta R4000 analyzer having a 

monochromatic He I light source (21.2 eV). A sample bias of –5 V was applied to 

obtain the secondary electron cutoff (SEC). The electron spin response (ESR) signal 

of ∙O2
− was observed by a JEOL JES-FA200 spectrometer, and 

5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used as spin-trapped reagent. The 

time-resolved photoluminescence (TRPL) spectra were collected by an Edinburgh 

FLS920 fluorescence spectrofluorometer.

Photocatalytic activity for H2 and H2O2 production. The H2 evolution was 

performed in a quartz flask equipped with a flat optical entry window. 10 mg of the 

obtained photocatalysts was added into 100 mL 15% triethanolamine (TEOA) 

aqueous solution, and the system was deaerated by bubbling N2 for 30 min before turn 

on the light. A 300-W Xe lamp with cut-off filter (λ > 420 nm) was employed as the 
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visible-light source. The amount of H2 produced was determined using an online gas 

chromatography system (GC-7920). The apparent quantum efficiency (AQE) was 

determined under the same photocatalytic reaction conditions. The reaction mixtures 

were irradiated for 60 min. AQE can be calculated using the following equation:

2 the number of evolved hydrogen moleculesAQE 100%
the number of incident photons


 

For photocatalytic H2O2 production, 10 mg of the photocatalyst was added into 50 

mL 10% isopropanol (IPA) aqueous solution or ultrapure water. Then O2 was 

continually bubbled to achieve saturation adsorption before turn on the light. The 

suspension was illuminated by simulated sunlight (filter: AM1.5). 3 mL of the 

dispersion was collected at regular time. The produced H2O2 concentration was 

determined by iodometry.1 The AQE was calculated using the equation:

2 the number of evolved hydrogen peroxide moleculesAQE 100%
the number of incident photons


 

Photoelectrochemical measurements. The electrochemical impedance spectra 

(EIS) and photocurrent measurements were collected on a standard three-electrode 

electrochemical analyzer (PEC2000, Beijing). The FTO electrode coated with 

samples was acted as the working electrode, an Ag/AgCl (saturated KCl) as the 

reference electrode, and a Pt foil as the counter electrode. A 300-W Xe arc lamp 

(PLS-SXE300) was employed as the light source. A 0.5 M Na2SO4 solution was 

employed as the electrolyte. The working electrodes were prepared according to 

previous work.2
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Figure S1. The Raman spectrum of Co@NC composite.

Figure S2. The XPS survey spectra of fresh (a) and used CoP/Co@NPC-15/g-C3N4 

photocatalyst after H2O2 (b) and H2 (c) production.
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Figure S3. (αhν)2 vs radiation energy (hν) plot for g-C3N4.
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Figure S4. H2 evolution rate over (a) Co@NC/g-C3N4 and CoP/Co@NPC/g-C3N4 

after phosphidation for 15, 30, 45, and 60 min (upper); Effects of CoP/Co@NPC-15 

dosage on photocatalytic H2 evolution performance of g-C3N4 (below).
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Figure S5. XRD patterns of fresh and used CoP/Co@NPC-15/g-C3N4 photocatalyst.
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Figure S6. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Co 2p, and (d) P 2p 

in CoP/Co@NPC-15/g-C3N4 photocatalyst after H2 production.
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Figure S7. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Co 2p, and (d) P 2p 

in CoP/Co@NPC-15/g-C3N4 photocatalyst after H2O2 production.
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Figure S8. The photocatalytic decomposition of H2O2 (1 mmol L−1) under visible 

light irradiation

Table S1. Comparison of photocatalytic H2 evolution rates of various cocatalyst 

modified g-C3N4 photocatalysts.

Photocatalysts
Maximum rate

(µmol h-1 g-1)

photocatalyst 

dosage/mg
Scavenger

Light source

(Xe lamp)
Reference

3%CoP/Co@NPC-15/g-C3N4 374.1 10 15% TEOA λ > 420 nm This work

g-C3N4-3%Ni3B-2%Ni(OH)2 352.43 50 15% TEOA λ > 420 nm 3

40%Co@CNT/g-C3N4 1208 20 20% TEOA
Au Light,

λ > 420 nm
4

2.0 wt.% Mo-Mo2C/g-C3N4 219.7 5 10% TEOA λ > 420 nm 5

3%Ag-Cu/g-C3N4 246 40 10% TEA λ > 420 nm 6
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15% MoO2-C/g-C3N4 1070 10 10% TEOA λ > 400 nm 7

g-C3N4/0.5%graphene/1.2%

MoS2

317 50
0.1 mol L–1 

TEOA
λ > 420 nm 8

g-C3N4-0.5% carbon 

black-1.0%NiS
366.4 50 15 % TEOA λ > 420 nm 9

g-C3N4-1%Ni2P-1.5%MoS2 532.14 25 15 % TEOA λ > 400 nm 10

1%NiS/P-S codoped g-C3N4 305 100 20% TEOA λ > 400 nm 11

g-C3N4-0.5% acetylene 

black-2%CuS
348 50 10 % TEOA λ > 420 nm 12

g-C3N4/0.52%MoS2/3.18% 

red phosphorus
257.9 10 10 % TEOA λ > 420 nm 13

g-C3N4/2%CoMoS2/5%rGO 684 100 20 % TEOA λ > 400 nm 14
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Table S2. Comparison of photocatalytic H2O2 evolution rates of various g-C3N4 based 

photocatalysts.

Photocatalysts

H2O2 

production 

activity

(µmol h-1 g-1)

catalyst 

dosage/mg
Reaction solution Light source Reference

3%CoP/Co@NPC-15/g-C

3N4

940 10 10% IPA(50mL) AM 1.5G This work

1.76 wt%CoP/g-C3N4 70 20 10% ethanol(20mL) λ > 420 nm 15

Co3O4/g-C3N4 3780 20 water(20mL) λ > 420 nm 16

Ag@U-g-C3N4-NS 67.50 100 water(100mL) λ > 420 nm 17

P-porous g-C3N4 1083 50 5% ethanol(50mL) AM 1.5G 18

Reduced g-C3N4 170 100 water(100mL) λ > 420 nm 19

Ti3C2 Mxene/porous 
g-C3N4

131.71 50 10% IPA (50mL) λ > 420 nm 20

Cu2(OH)PO4/g-C3N4 1200 200 water(200mL) λ > 800 nm 21

SiW11/g-C3N4 152 100 5% methanol(100mL) AM 1.5G 22

Au/g-C3N4 330 30 5% IPA(30mL) λ > 420 nm 23

Holey defective g-C3N4 96.8 50 20% IPA(60mL) AM 1.5G 24

K-doped g-C3N4 473 100 10% ethanol (100 
mL) λ > 420 nm 25
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