## Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine *N*-oxide in *Pseudomonas chlororaphis* HT66

Shuqi Guo<sup>†</sup>, Rongfeng Liu<sup>†</sup>, Wei Wang<sup>†</sup>, Hongbo Hu<sup>†,‡</sup>, Zhiyong Li<sup>†</sup>, Xuehong Zhang <sup>†\*</sup>

<sup>†</sup> State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

<sup>‡</sup> National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

\*Corresponding author: xuehzhang@sjtu.edu.cn

Funding information

National Key Scientific Research Projects (No. 2019YFA09004302) and The National Natural Science Foundation of China (No. 31670033).

## The supporting information including:

## Supplementary tables and figures

**Table S1.** DNA sequences of *phzS* from *Pseudomonas aeruginosa* PAO1, *phzO* from*Pseudomonas chlororaphis* GP72 and *phzNO1* from *Nocardiopsis* sp. 13-12-13phenazine biosynthesis operons.

**Table S2.** <sup>1</sup>H (MeOH) and <sup>13</sup>C (MeOH) spectra data for 1-hydroxyphenazine *N*'10oxide recorded by 600 MHz NMR spectrometer.

Table S3. Primers used in this study.

Figure S1. The alignment of protein sequence between NaphzNO1 and LaphzNO1.

Figure S2. The MS/MS result of 1-hydroxyphenazine N'10-oxide.

**Figure S3.** The <sup>1</sup>H NMR spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 600 MHz).

**Figure S4.** The <sup>13</sup>C NMR spectrum of 1-hydroxyphenazine *N*°10-oxide (MeOH, 151 MHz).

**Figure S5.** The COSY spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 600 MHz).

**Figure S6.** The HSQC spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 151 MHz).

**Figure S7.** The HMBC spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 151 MHz).

**Figure S8.** Culture profiles of 1-hydroxyphenazine N'10-oxide-producing P. *chlororaphis* strains. (A) HT66-SN; (B) P3-SN. (Data represent the mean  $\pm$  SD from three independent cultures).

**Table S1.** DNA sequences of *phzS* from *Pseudomonas aeruginosa* PAO1, *phzO* from *Pseudomonas chlororaphis* GP72 and *phzNO1* from *Nocardiopsis* sp. 13-12-13 phenazine biosynthesis operons.

| -    |                                                             |
|------|-------------------------------------------------------------|
| Gene | DNA sequences                                               |
| phzS | CGACACCGCTGCGCCGGCGTTTCATGGCGGATAACCGCAAGCGGTTATTCGCCCTACGC |
|      | GGCCTTGGAGCCCATCTAACCGCACGCGGTCATGCGTACCGCGGCCTCGGAGCCGGTT  |
|      | CGTAGGGCGAATGACGCCACCGGCGTTATCCGCCGCTGCGCCGACGTTTCATCGCGGT  |
|      | AAACGGTCATCCATCCCAGCCGAACCCCCATCGATTCGAACACTCGAGAAAAGGAAGC  |
|      | ACCC                                                        |
|      | ATGAGCGAACCCATCGATATCCTCATCGCCGGCGCCGGCATCGGCGGCCT          |
|      | CAGTTGCGCCCTGGCCCTGCACCAGGCCGGCATCGGCAAGGTCACGCTGC          |
|      | TGGAAAGCAGCAGCGAGATACGCCCCCTTGGCGTCGGCATCAATATCCAG          |
|      | CCGGCGGCGGTCGAGGCCCTTGCCGAACTGGGCCTCGGCCCGGCGCTGGC          |
|      | GGCCACCGCCATCCCCACCACGAGCTGCGCTACATCGACCAGAGCGGCG           |
|      | CCACGGTATGGTCCGAGCCGCGCGGGGGGGGGAAGCCGGCAACGCCTATCCG        |
|      | CAGTACTCGATCCATCGCGGCGAACTGCAGATGATCCTGCTCGCCGCGGT          |
|      | GCGCGAGCGCCTCGGCCAACAGGCGGTACGCACCGGTCTCGGCGTGGAGC          |
|      | GTATCGAGGAGCGCGACGGCCGCGTGCTGATCGGCGCCCGCGACGGACAC          |
|      | GGCAAGCCCCAGGCGCTCGGTGCCGATGTGCTGGTCGGCGCCGACGGTAT          |
|      | CCATTCGGCGGTCCGCGCGCGCCCTGCATCCCGACCAGAGGCCGCTGTCCC         |
|      | ACGGTGGGATCACCATGTGGCGCGGCGTCACCGAGTTCGACCGCTTCCTC          |
|      | GACGGCAAGACCATGATCGTCGCCAACGACGAGCACTGGTCGCGCCTGGT          |
|      | CGCCTATCCGATCTCGGCGCGCGTCACGCGGCCGAAGGCAAGTCGCTGGTGA        |
|      | ACTGGGTGTGCATGGTGCCGAGCGCCGCCGTCGGCCAGCTCGACAACGAG          |
|      | GCCGACTGGAACCGCGACGGGCGCCTGGAGGACGTGCTGCCGTTCTTCGC          |
|      | CGACTGGGACCTGGGCTGGTTCGACATCCGCGACCTGCTGACCCGCAACC          |
|      | AGTTGATCCTGCAGTACCCGATGGTAGACCGCGATCCGCTGCCGCACTGG          |
|      | GGCCGGGGACGCATCACCCTGCTCGGCGACGCCGCCCACCTGATGTATCC          |
|      | GATGGGCGCCAACGGCGCTTCGCAAGCAATCCTCGACGGCATCGAGCTGG          |
|      | CCGCCGCGCTGGCGCGCAACGCCGACGTGGCCGCAGCCCTGCGCGAATAC          |
|      | GAAGAAGCGCGGCGGCCGACCGCCAACAAGATCATCCTGGCCAACCGAG           |
|      | AACGGGAAAAAGAGGAATGGGCCGCGGGCTTCGCGACCGAAGACCGAGAA          |
|      | GAGCGCGGCGCTGGAAGCGATCACCGGCAGCTACCGCAACCAGGTGGAA           |
|      | CGGCCACGCTAG                                                |
| phzO | GTACCGAGATAAACATGCTTTGAAGTGCCTGGCTGCTCCAACTTCGAACTC         |
|      | ATTGCGCGAACTTCAACACTTATGACATCCGGTCAACATGAGAAGAGTCC          |
|      | ATATGCGAAAGAACGCGTATTCGAAATACCAAACAGAGAGTCCGGATCAC          |
|      | CAAAGTGTGTAACGACATTAATTCCTATCTGAATCTTATAGTTGCTCTAGA         |
|      | ACGTTGTCCTTGACCCAGCGATAGACATCGGGCCAGAGACGACACAAACA          |
|      | AAGTTAGACATTACTGAGGCTGCTACCATGCTAGATCTTCAAAACAAGCG          |
|      | TAAATATCTGAAAAGTGCAGAATCCTTCAAAGCTTCACTGCGTGATGACC          |
|      | GCACTGTTATTTATCAAGGCCAAGTTGTTGAGGATGTGACTACACACTTCT         |

CTACGGCTGGAGGCATATCGCAAGTTGCAGAAATCTACGAAGAACAATTC AGCGGTGAACACGACGACATTCTGACTTACGTACGCCCCGACGGTTACCT GGCCTCTTCTGCCTATATGCCCCCTAGAAACAAAGAAGACTTGGCGTCGCG ACGCCGCGCAATCACGTACGTCTCGCAAAAAACCTGGGGCACCCACTGCC GCAACCTGGACATGATCGCCAGCTTCACCGTCGGCATGATGGGATATCGG CCGACATTCAGGAAAAAATGCCCTGAGTACGCAGAAAACATTACCGAATA CCATGACTACGCCGAGCGCAACAGCCTGTATTTGTCTGAGGCCATTGTTGA TCCACAGGGCTATCGGGCACGTACCCACGGCACCGACCTCAACCTGCCGC CGCCCGATCGTGCCGTGATGAGGATCAACAAGCAGAACGCCGAGGGCATC TGGATCAGCGGCGTCAAAGGCGTGGGCACGGTAGCACCGCAGTCCAATGA AATATTTGTTGGCAGCTTGTTCCCCGCAGCGCCCAACGAGTCATTCTGGGC TTACGTCCCTGCCGATGCGCCGGGGGGGGGAAGATTTTTTGCCGAGAGATTGT CTCCCAGCCTCACGCCAGCGCCTATGACCACCCGCTCATATCCAAAGGTGA AGAAGCCGAGGCGATGGTGGTATTCGATAACGTGTTCATTCCACGCTGGC GAATCATGGCGGCGAACGTGCCGGAACTGGCCAACGCCGGCTTCTTCAGC CTGTGGACCTCATACAGCCATTGGTACACGCTCGTGCGCCTGGAAACCAA GGCTGACCTGTATGCCGGACTGGCCAAGGTGATCATGGAAGTCCTGGGCC TTGAGGGGATTGCGGTGGTTC

GCCAGCGGGTCAGCGAAATAGTGCAGCTTGCGGAAATACTCAAAGGCATG TGCATCGCCTCCATCGAAACGGCCGAGATGTCCGAAGGCGACATATTGCT GCCTGGCCCCAACGCACTGGCCGCCGGAAGGATTTTTGCCATGGAGAAAT TGCCTCGGGTGCTGCATTTGCTCAGAGAGCTGTGCGGACAGGGCTTGATC CTCAGGTTCAACGAGAAAGACTTGGCCACCGACGCCGCCTTTGGCCAGAA GTTCTCCTGGTTTCTTGACACGCAAAGCGTGGGCGCCAGAGAGAAGAACC TGCTGATGAATCTGGTGTGGGGACGTGGCTGCCAGTGAGCACTCCACACGT GCATTGGTGTTTGAAGAACAGCACGCACTCAGCGAGCCCCTGCTGCGCGA TAGCCTGGTGCTGGACTACGACTACCGCAAAAGCACAAGCCTGATACGCC GTATGGTGGGGGCTCAACGCCAAATAG

naphzNO1

GTGACCAACGCGAAGAACACCGATCTCGACGCGATCGTCGTCGGTGCCGG GTTCGCCGGCATCTACGCGCTGCACAAGCTCCGCAACGAACTGGGTCTGTC ACCGCTACCCCGGCGCCATGTCCGACAGCGAGGGCTTCATCTACCAGTACT CCTTCGACCGCGACCTGCGGGGGGGGGGGGGGGCCTGGGAAGAAGCGCTACCTG TCCCAGGCGGAGATCCTGGGCTACCTGGAGGCGGTCGTGGAGCGGCACGA CCTCGCCAGGGACATCCAGCTCAACACCGGCGTCGAGACGCTGGTCTACG ACGAGGCCGCCGCCTGTGGACCGCGACCACCAGTGACGGCCAGACCCTC ACCGCCCGCTACGTGGTGACCGCCCTCGGACCGCTGTCCACCTCCCACTTC CCCGACTTCAAGGGCCGCGACAGCTTCCGGGGCCGCCTGGTCCACACCGG CTCCTGGCCCGACGACCTCGACATCGAGGGCAAGAGGGTCGGCGTCATCG GCACCGGCTCCACCGGAACCCAGTTCATCTGCGCGGCCTCGAAGGTGGCC GGGCAGCTCACCGTGTTCCAGCGGACCCCCAGTACAACGTGCCCTCGGG CAACGCCGAGGTGGACGAGGCCTACTTCACCGACCTGCGCGGCCGCTACG ACCAGGTCTGGGAGCAGGCCAAGAAGTCCCGCGTGGCGTGCGGCTTCGAG GAGAGCGAGATCGCCGCGATGAGCGTCTCCGAGGAGGAGCGCCGACGCG

TCTTCCAGGAGAACTGGGACCGGGGGCAACGGCTTCCGCTTCATGTTCGGC ACCTTCTCCGACATCATCTTCGACCCCGAGGCCAACGAGGCGGCGGCCGA CTTCATCCGGTCCAAGATCCGGGAGATCGTCAAGGACCCGGAGACCGCCC GCAAGCTCCAGCCGACCGACTACTACGCCAAGCGCCCGGTCTGCAACGAG GACTACTACGAGTCCTACAACCGGGACAACGTCAGCCTGGTGAGCCTCAA GGAGACCCCGATCCGGGAGTTCACGCCCACGGGGATCGTGACCGAGGACG GGGTGGAGCACGAGCTGGACATCGTCGTCTTCGCGACCGGTTTCGAGGCC GTCGAGGGCAGCTACCGGCAGATGGAGATCCGCGGCCGGGGCGGCGTGA CCATCGAGGAGCACTGGGGGGGGGCACGCCCGCCAGCTACCTCGGGGTCAAC GTCTCGGGCTTCCCCAACATGTTCATGGTCTACGGCCCCAACAGCGTCTTC AGCAACCTGCCCACGGCCATCGAGACCCAGGTCGAGTGGATCACCGACCT GGTCCGGATGATGGAGGAGCGCGACCTGACCTCCATCGAGCCGACCCCGG AGGCGGAGGAGGGCTGGACCGAGCTGTGCACGCAGATCGCCGACCACTCC CTGTTCCCCAAGGTCAACTCCTGGATCTTCGGGGGCGAACATCCCGGGCAA GAAGAAGCGGGTCCTGTTCTACTTCGCGGGGGCTCGGCAACTACCGCCAGA AGCTCGGTGACGTGGCCGCGGCCGACTACGAGGGCTTCATGCTCAAGGGC AACCCCTCGGTGGTGACCGCCTGA TACGAATCCCATCCCAACTGCTGCCCTAACTCCATTTTGAGCACCACTAAA GTTGAAAACAGGCCGTTAGACTAGACCAACCTGAACCCTGTCAACAAGC AAAACCACAGAGTCATAGACCGCTTCGTACTAGCACTAGATTTCCTGCATC CGCCCCAACTAACTGGCCATAGGACATTGCATCCTGACGATGTTAGTAAG

CCATTAGTGCCTCCCAGCCGACGAATGAACCTGCCTCTTCACAATAATGCA ACAGTTCACCCGGTGTGACTGCAGCCAGCTCGTTCACGCCCTAATCACTAC AAGATCTGGTAGTTCCAGCCCCAAGAAATGCAGGTGTATAAACAACACCC GTTCAGCACCGCCACGAAGGAACAATAGTTAAAAAACTGTAAATTATCTAC CCGCACCAAATTAACTAACCATTTACTTTCAAAAAATACCAGCCCAACTAA GGAGGATGCCGCC

\*The red capital letter indicates promoter of the gene *phzS*.

P<sub>PHZ</sub>

| -                                       | -                                                                               |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|-----------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $\delta_{\rm H}(J  {\rm in}  {\rm Hz})$ | $\delta_{ m C}$                                                                 | HMBC                                                                                                                                                                                                                                      | HSQC<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                     | COSY                                                                      |
|                                         | 153.5                                                                           | Н-3,4                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| 8.7/1.0                                 | 120.2                                                                           | H-4                                                                                                                                                                                                                                       | 7.66, dd                                                                                                                                                                                                                                                                                                                                                                                                          | H-3                                                                       |
| 8.7/7.8                                 | 134.0                                                                           |                                                                                                                                                                                                                                           | 7.78, dd                                                                                                                                                                                                                                                                                                                                                                                                          | H-4,2                                                                     |
| 7.8/1.0                                 | 113.3                                                                           | H-2                                                                                                                                                                                                                                       | 7.07, dd                                                                                                                                                                                                                                                                                                                                                                                                          | Н-3                                                                       |
|                                         | 147.9                                                                           | H-3                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                         | 146.6                                                                           | H-9,7                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| 8.9                                     | 130.8                                                                           | H-8,9a                                                                                                                                                                                                                                    | 8.16, d                                                                                                                                                                                                                                                                                                                                                                                                           | H-7                                                                       |
|                                         | 133.5                                                                           | H-9                                                                                                                                                                                                                                       | 7.95, m                                                                                                                                                                                                                                                                                                                                                                                                           | H-8,6                                                                     |
|                                         | 132.5                                                                           | H-6                                                                                                                                                                                                                                       | 7.88, m                                                                                                                                                                                                                                                                                                                                                                                                           | H-9,7                                                                     |
| 8.9                                     | 119.1                                                                           | H-7                                                                                                                                                                                                                                       | 8.62, d                                                                                                                                                                                                                                                                                                                                                                                                           | H-8                                                                       |
|                                         | 134.2                                                                           | H-6,8                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                         | 126.4                                                                           | H-4,2                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                         | δ <sub>H</sub> ( <i>J</i> in Hz)<br>8.7/1.0<br>8.7/7.8<br>7.8/1.0<br>8.9<br>8.9 | $\begin{array}{c c} \delta_{\rm H}(J \mbox{ in Hz}) & \delta_{\rm C} \\ & 153.5 \\ 8.7/1.0 & 120.2 \\ 8.7/7.8 & 134.0 \\ 7.8/1.0 & 113.3 \\ 147.9 \\ 146.6 \\ 8.9 & 130.8 \\ 133.5 \\ 132.5 \\ 8.9 & 119.1 \\ 134.2 \\ 126.4 \end{array}$ | $\begin{array}{c c} \delta_{\rm H}(J  {\rm in}  {\rm Hz}) & \delta_{\rm C} & {\rm HMBC} \\ \\ & 153.5 & {\rm H-3,4} \\ 8.7/1.0 & 120.2 & {\rm H-4} \\ 8.7/7.8 & 134.0 \\ 7.8/1.0 & 113.3 & {\rm H-2} \\ 147.9 & {\rm H-3} \\ 146.6 & {\rm H-9,7} \\ 8.9 & 130.8 & {\rm H-8,9a} \\ 133.5 & {\rm H-9} \\ 132.5 & {\rm H-6} \\ 8.9 & 119.1 & {\rm H-7} \\ 134.2 & {\rm H-6,8} \\ 126.4 & {\rm H-4,2} \\ \end{array}$ | $\begin{array}{c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$ |

**Table S2.** <sup>1</sup>H (MeOH) and <sup>13</sup>C (MeOH) spectra data for 1-hydroxyphenazine *N* 10oxide recorded by 600 MHz NMR spectrometer.

| primes         | Sequence $5' \rightarrow 3'$             | application        |
|----------------|------------------------------------------|--------------------|
| phzS-F1        | ccggggatcctctagaCGAAGTATCAGGCAATGGCGTCA  |                    |
| phzS-R1        | TCAGGGCTGCAGGCGGGT                       |                    |
| phzS-F         | ACCCGCCTGCAGCCCTGACGACACCGCTGCGCCGGCGT   | phzS replaced gene |
| phzS-R         | CTAGCGTGGCCGTTCCACCTGGTTG                | phzH               |
| phzS-F2        | GTGGAACGGCCACGCTAGTACGAGCCTGAGGGAGCCAC   |                    |
| phzS-R2        | ggccagtgccaagcttCGCCATATGCTGGTCGGC       |                    |
| phzO-F1        | acatgattacgaattaGCCGCTGTTGGGTAAAGG       |                    |
| phzO-R1        | GTTTATCTCGGTACCTCAGGGTTGCAAACGCC         |                    |
| <i>phzO</i> -F | GGTACCGAGATAAACATGCTTTGAAGTGC            | phzO replaced gene |
| phzO-R         | CTATTTGGCGTTGAGCCCCACCATA                | phzH               |
| phzO-F2        | CTCAACGCCAAATAGTACGAGCCTGAGGGAGCCACGGCAG |                    |
| phzO-R2        | cgactctagaggatcaTGGCCGAACCACCCTTGC       |                    |
| NaphzNO1-F1    | ccggggatcctctagaTGCGCGAAGGGTAATGC        |                    |
| NaphzNO1-R1    | GCAAAGACTCCTGAGTTCAAGC                   | Numb-NO1 nonlogod  |
| NaphzNO1-PF    | GAACTCAGGAGTCTTTGCTACGAATCCCATCCCAACTGC  |                    |
| NaphzNO1-PR    | GGCGGCATCCTCCTTAGTTG                     | (DE DB ware used   |
| NaphzNO1-F     | ACTAAGGAGGATGCCGCCGTGACCAACGCGAAGAACACC  | (Pr, PK were used  |
| NaphzNO1-R     | TCAGGCGGTCACCACCGA                       | to clone PHZ       |
| NaphzNO1-F2    | TCGGTGGTGACCGCCTGAGCCACCTGACGCAACAATAAAG | promoter.          |
| NaphzNO1-R2    | ggccagtgccaagcttTGTTGTTGCTGGGTGAGGGTT    |                    |
| PET-NaphzNO1-F | GGAATTCCATATG GTGACCAACGCGAAGAACACC      | NaphzNO1           |
| PET-NaphzNO1-R | CCGCTCGAGTCAGGCGGTCACCACCGA              | expression         |

Table S3. Primers used in this study.

\*The lowercase indicates that the overlapped fragments were used to construct plasmids by the In-fusion method. The italic capital letter indicates the overlapped fragments between Upstream and downstream homologous arms. The red capital letter indicates enzyme cut site.



Figure S1. The alignment of protein sequence between NaphzNO1 and LaphzNO1.





**Figure S3.** The <sup>1</sup>H NMR spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 600 MHz).



**Figure S4.** The <sup>13</sup>C NMR spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 151 MHz).



\*The peak at ~78 ppm in  $^{13}$ C-NMR was impurity signal interference.



**Figure S5.** The COSY spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 600 MHz).



**Figure S6.** The HSQC spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 151 MHz).

\*The peak at ~78 ppm in <sup>13</sup>C-NMR was impurity signal interference.



**Figure S7.** The HMBC spectrum of 1-hydroxyphenazine *N*'10-oxide (MeOH, 151 MHz).

**Figure S8.** Culture profiles of 1-hydroxyphenazine N'10-oxide-producing P. *chlororaphis* strains. (A): HT66-SN; (B): P3-SN. (Data represent the mean  $\pm$  SD from three independent cultures).

