Supporting Information

Spiroconjugated Donor- σ-Acceptor Charge-Transfer Dyes: Effect of the π-Subsystems on the Optoelectronic Properties

Jan S. Wössner ${ }^{[a]}$ and Birgit Esser*[a]

Table of Contents

1. Single-Crystal X-Ray Analysis S2
1.1 Growing singles crystals by solvent layering S2
1.2 Single-crystal structure and packing of 7 S3
1.3 Single-crystal structure and packing of 8 S5
1.4 Single-crystal structure and packing of 13 S7
1.5 Single-crystal structure and packing of 14 S8
1.6 Single-crystal structure and packing of 21 S9
1.7 Single-crystal structure and packing of 23 S11
1.8 Single-crystal structure and packing of 25 S13
1.9 Single-crystal structure and packing of 26 S15
1.10 Single-crystal structure and packing of 27 S17
1.11 Single-crystal structure and packing of 29 S19
1.12 Single-crystal structure and packing of 32 S21
2. Cyclic Voltammograms S23
3. Optical Properties S24
4. Thermal Measurements S25
4.1 Thermogravimetric Analyses S25
4.2 Differential Scanning Calorimetry. S26
5. DFT Calculations S27
5.2 TDDFT Calculations S30
5.3 Total Energies and Zero-Point Vibrational Energies S37
6. NMR-Spectra S44
7. References S65

1. Single-Crystal X-Ray Analysis

1.1 Growing singles crystals by solvent layering

Figure S1: A solution of the spirocompound $\mathbf{7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was layered with n-hexane. The crystals were grown at 268 K.

Figure S2: Single-crystals of 7.

Figure S3: A shock-cooled single-crystal of 7 mounted on a holder in perfluoroether oil.

1.2 Single-crystal structure and packing of 7

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single yellow block-shaped crystals of $\mathbf{7}$ were recrystallised from a mixture of CHCl_{3} and methanol by solvent layering. A suitable crystal $0.45 \times 0.30 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=100(2) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=284.33$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=9.424(9) \AA, \mathrm{b}=9.680(9) \AA, \mathrm{c}=13.829(10) \AA, \beta=$ 94.214(6) ${ }^{\circ}, \alpha=\gamma=90^{\circ}, V=1258.2(18) \AA^{\circ}, T=100(2) \mathrm{K}, Z=4$, $Z^{\prime}=1, \mu\left(\operatorname{MoK}_{\alpha}\right)=0.415,22528$ reflections measured, 2875 unique ($R_{\text {int }}=0.0422$) which were used in all calculations. The final $w R_{2}$ was 0.0947 (all data) and R_{1} was $0.0339(\mathrm{I}>2(\mathrm{I})$).

Compound	7
CCDC	1859605
Formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.501
μ / mm^{-1}	0.415
Formula Weight	284.33
Colour	yellow
Shape	block
Size/mm ${ }^{3}$	$0.45 \times 0.30 \times 0.10$
T/K	100(2)
Crystal System	monoclinic
Space Group	$P 2_{1 / n}$
a / \AA ¢	9.424(9)
b / \AA	9.680(9)
c / \AA	13.829(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.214(6)
$\gamma /{ }^{\circ}$	90
$\mathrm{V} / \mathrm{A}^{3}$	1258.2(18)
Z	4
Z^{\prime}	1
Wavelength/ \AA	0.710730
Radiation type	MoK α
$\Theta_{\text {min }} /{ }^{\circ}$	2.531
$\Theta_{\text {max }} /^{\circ}$	27.481
Measured Refl.	22528
Independent Refl.	2875
Reflections with $\mathrm{I}>2621$	
2(I)	
$R_{\text {int }}$	0.0422
Parameters	172
Restraints	0
Largest Peak	0.470
Deepest Hole	-0.289
GooF	1.064
$w R_{2}$ (all data)	0.0947
$w R_{2}$	0.0919
R_{1} (all data)	0.0371
R_{1}	0.0339

A yellow block-shaped crystal with dimensions $0.45 \times 0.30 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 100(2) K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=27.481^{\circ}(0.77 \AA)$.

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9978 reflections, 44% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 27.481° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1360 before and 0.0558 after correction. The Ratio of minimum to maximum transmission is 0.7882 . The $\lambda / 2$ correction factor is Not present. The absorption coefficient μ of this material is $0.415 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.588 and 0.746 .

The structure was solved and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1360 before and 0.0558 after correction. The Ratio of minimum to maximum transmission is 0.7882 . The $\lambda / 2$ correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

1.3 Single-crystal structure and packing of 8

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single brown block-shaped crystals of 8 were recrystallised from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cyclohexane by solvent layering. A suitable crystal $0.31 \times 0.23 \times 0.20 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Rigaku Spider diffractometer. The crystal was kept at a steady $T=100 \mathrm{~K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=284.33$, orthorhombic, Pnma (No. 62), $\mathrm{a}=15.3775(11) \AA, \quad \mathrm{b}=7.2583(6) \AA, \quad \mathrm{c}=$ 11.0501(9) $\AA, \alpha=\beta=\gamma=90^{\circ}, V=1233.35(17) \AA^{3}, T=100 \mathrm{~K}$, $Z=4, Z^{\prime}=0.5, \mu\left(\mathrm{MoK}_{\alpha}\right)=0.424,15119$ reflections measured, 1525 unique ($R_{\text {int }}=0.0610$) which were used in all calculations. The final $w R_{2}$ was 0.1243 (all data) and R_{1} was 0.0475 (I > 2(I)).

Compound	$\mathbf{8}$
CCDC	1874678
Formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$
$D_{\text {calc. } / \mathrm{g} \mathrm{cm}^{-3}}$	1.531
μ / mm^{-1}	0.424
Formula Weight	284.33
Colour	brown
Shape	block
Size $/ \mathrm{mm}^{3}$	$0.31 \times 0.23 \times 0.20$
T / K	100
Crystal System	orthorhombic
Space Group	Pnma
a / \AA	$15.3775(11)$
b / \AA	$7.2583(6)$
c / \AA	$11.0501(9)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V/Å3	$1233.35(17)$
Z	4
Z^{\prime}	0.5
Wavelength $/ \AA$	0.71073
Radiation type	MoK α
$\Theta_{\text {min }}{ }^{\circ}$	3.228
$\Theta_{\text {max }}{ }^{\circ}$	27.474
Measured Refl.	15119
Independent Refl.	1525
Reflections with I >1375	
$2(\mathrm{I})$	
R Rint	0.0610
Parameters	103
Restraints	0
Largest Peak	0.489
$D e e p e s t ~ H o l e ~$	-0.393
GooF	1.131
$w R_{2}$ (all data)	0.1243
$w R_{2}$	0.1193
R_{1} (all data)	0.0560
R_{1}	0.0475

A brown block-shaped crystal with dimensions $0.31 \times 0.23 \times 0.20 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Rigaku Spider diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=100 \mathrm{~K}$.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The maximum resolution that was achieved was $\Theta=27.474^{\circ}(0.77 \AA)$.

The diffraction pattern was indexed and the unit cell was refined on 1088 reflections, 7% of the observed reflections.

Data reduction, scaling and absorption corrections were performed. The final completeness is 99.80 $\%$ out to 27.474° in Θ. A empirical absorption correction was performed using Empirical Absorption Correction March 2001 T Higashi. The absorption coefficient μ of this material is $0.424 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.668 and 1.000 .

The structure was solved and the space group Pnma (\# 62) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: Empirical Absorption Correction March 2001 T Higashi
The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

1.4 Single-crystal structure and packing of 13

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single colourless block-shaped crystals of 13 were recrystallised from a mixture of CHCl_{3} and methanol by solvent layering. The data for 13 were collected from a shockcooled single crystal at 100 (2) K on a Bruker D8 VENTURE dual wavelength $\mathrm{Mo} / \mathrm{Cu}$ three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker PHOTON III detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used $\mathrm{Cu} K_{\alpha}$ radiation $(\lambda=$ 1.54184 Å). All data were integrated with SAINT and a multiscan absorption correction using SADABS-2016/2 was applied. The structure were solved by direct methods using SHELXT 2014/5 (Sheldrick, 2014) and refined by full-matrix least-squares methods against F^{2} by SHELXL-2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their $U_{\text {iso }}$ values constrained to 1.5 times the $U_{\text {eq }}$ of their pivot atoms for terminal sp ${ }^{3}$ carbon atoms and 1.2 times for all other carbon atoms. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1964046 contain the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic

Data Centre
via www.ccdc.cam.ac.uk/structures.

Compound	13
CCDC number	1964046
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2}$
Formula weight	196.19
Temperature [K]	100(2)
Crystal system	monoclinic
Space group (number)	$P 2_{1} / \mathrm{c}$ (14)
$a[A ̊]$	9.559(13)
b [Å]	5.316(5)
$c[A ̊]$	17.355(16)
$\alpha[A ̊]$	90
$\beta[A ̊]$	92.38(12)
γ [Å]	90
Volume [${ }^{\text {²] }}$]	881.1(17)
Z	
$\rho_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.479
$\mu\left[\mathrm{mm}^{-1}\right]$	0.809
F(000)	408
Crystal size [mm ${ }^{3}$]	$0.16 \times 0.06 \times 0.03$
Crystal colour	colourless
Crystal shape	block
Radiation	$\mathrm{CuK}_{\alpha}(\lambda=1.54184)$
2θ range [${ }^{\circ}$]	10.20 to 147.47
Index ranges	$-11 \leq h \leq 11$
	$-6 \leq k \leq 5$
	$-21 \leq 1 \leq 21$
Reflections collected	21945
	1726
reflections	$R_{\text {int }}=0.1011$
	$R_{\text {sigma }}=0.0417$
Completeness to $\theta=$ 67.684°	99.10
Data / Restraints / Parameters	1726/0/136
Goodness-of-fit on F^{2}	1.455
Final R indexes	$R_{1}=0.0779$
$[1 \geq 2 \sigma()]$	$\mathrm{w} R_{2}=0.1968$
Final R indexes	$R_{1}=0.1021$
[all data]	$\mathrm{w} \mathrm{R}_{2}=0.2149$
Largest peak/hole [e ${ }^{3}$]	0.27/-0.36

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2}$

100(2)
monoclinic
2.
5.316(5)

90
2.38(12)
881.1(17)

4
1.479
0.809
$.16 \times 0.06 \times 0.03$
colourless $K_{\alpha}(\lambda=1.54184)$
0.20 to 147.47
$11 \leq h \leq 11$
$-21 \leq 1 \leq 21$
$R_{\text {int }}=0.1011$
$R_{\mathrm{gma}}=0.0417$

726/0/136
1.455
0.079
$R_{1}=0.1021$
$W R_{2}=0.2149$
$0.27 /-0.36$

1.5 Single-crystal structure and packing of 14

Crystal Data and Experimental

Experimental. Single colourless block-shaped crystals of 14 were recrystallised from a mixture of CHCl_{3} and methanol by solvent layering. The data for 14 were collected from a shock-cooled single crystal at $100(2) \mathrm{K}$ on a Bruker APEX2 QUAZAR three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker APEXII detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used Mo_{α} radiation ($\lambda=0.71073$ Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS-2016/2 was applied. The structure were solved by direct methods using SHELXT 2014/5 (Sheldrick, 2014) and refined by full-matrix least-squares methods against F^{2} by SHELXL-2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their $U_{\text {iso }}$ values constrained to 1.5 times the $U_{\text {eq }}$ of their pivot atoms for terminal sp^{3} carbon atoms and 1.2 times for all other carbon atoms. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1964067 contain the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Compound	14
CCDC number	1964067
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
Formula weight	265.08
Temperature [K]	100(2)
Crystal system	monoclinic
Space group (number)	C2/m (12)
$a[\AA]$	13.357(10)
b [A]	12.364(9)
$c[A ̊]$	7.308(5)
$\alpha[A ̊]$	90
β [Å]	118.676(16)
$\gamma[A ̊]$	90
Volume [${ }^{\text {a }}$]	1058.8(13)
Z	4
$\rho_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.663
$\mu\left[\mathrm{mm}^{-1}\right]$	0.595
F(000)	1072
Crystal size [mm^{3}]	$0.140 \times 0.100 \times 0.080$
Crystal colour	yellow
Crystal shape	block
Radiation	$\mathrm{MoK}_{\alpha}(\lambda=0.71073)$
2Θ range [${ }^{\circ}$]	4.79 to 60.17
Index ranges	$-18 \leq h \leq 18$
	$-17 \leq k \leq 17$
	$-10 \leq 1 \leq 10$
Reflections collected	12615
Independent	1541
reflections	$R_{\text {int }}=0.0355$
	$R_{\text {sigma }}=0.0221$
$\begin{aligned} & \text { Completeness to } \theta= \\ & 25.242^{\circ} \end{aligned}$	100.00
Data / Restraints / Parameters	1541/0/85
Goodness-of-fit on F^{2}	0.865
Final R indexes	$R_{1}=0.0260$
$[/ \geq 2 \sigma(l)]$	$w R_{2}=0.0992$
Final R indexes	$R_{1}=0.0292$
[all data]	$w R_{2}=0.1040$
Largest peak/hole [eÅ]	0.47/-0.23

1.6 Single-crystal structure and packing of 21

Crystal Data and Experimental

	Compound	21
	CCDC	1864464
	Formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{4}$
	$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.534
	μ / mm^{-1}	0.113
	Formula Weight	252.21
	Colour	yellow
	Shape	block
	Size/mm ${ }^{3}$	$0.16 \times 0.13 \times 0.11$
	T/K	100
	Crystal System	monoclinic
(displacement ellipsoids are shown at 50\% probability;	Space Group	$P 21 / n$
hydrogen atoms are omitted for clarity)	a / \AA	9.217(11)
	b/Å	12.573(9)
xperimental. Single yellow block-shaped crystals of 21	c / \AA	9.542(8)
ere recrystallised from a mixture of CHCl_{3} and n-hexane by	$\alpha /{ }^{\circ}$	90
olvent layering. A suitable crystal $0.16 \times 0.13 \times 0.11 \mathrm{~mm}^{3}$ was	$\beta /{ }^{\circ}$	99.09(5)
	$\gamma /{ }^{\circ}$	90
ected and mounted on a MITIGEN holder in perfluoroether	V / \AA^{3}	1091.9(18)
il on an Bruker SMART APEX2 area detector diffractometer.	Z	4
crystal was kept at a steady $T=100 \mathrm{~K}$ during data	Z^{\prime}	1
tion. The structure was solved with the ShelXT	Wavelength/Å	0.710730
drick, 2015) structure solution program using the	Radiation type	MoK_{α}
drick, 2015) structure solution program using the	$\Theta_{\text {min }} /{ }^{\circ}$	2.701
nsic Phasing solution method and by using Olex2	$\Theta_{\max } /{ }^{\circ}$	27.482
Dolomanov et al., 2009) as the graphical interface. The model	Measured Refl.	12122
vas refined with version 2018/3 of ShelXL (Sheldrick, 2015)	Independent Refl.	2497
sing Least Squares minimisation.	Reflections with 2(I)	>2215
rystal Data. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{4}, M_{r}=252.21$, monoclinic, $P 2_{1} / n$ (No.	$R_{\text {int }}$	0.0207
4), $\mathrm{a}=9.217(11) \AA, \mathrm{b}=12.573(9) \AA, \mathrm{c}=9.542(8) \AA, \beta=$	Parameters	172
$9.09(5)^{\circ}, \alpha=\gamma=90^{\circ}, V=1091.9(18) \AA^{3}, T=100 \mathrm{~K}, Z=4, Z^{\prime}=$	Restraints	0
$9.09(5)^{\circ}, \alpha=\gamma=90^{\circ}, V=1091.9(18) A^{3}, T=100 \mathrm{~K}, Z=4, Z^{\prime}=$	Largest Peak	$\begin{aligned} & 0.302 \\ & -0.268 \end{aligned}$
, $\mu\left(\operatorname{MoK}_{\alpha}\right)=0.113,12122$ reflections measured, 2497 unique	Deepest Hole	-0.268
$\left.R_{\text {int }}=0.0207\right)$ which were used in all calculations. The final	$w R_{2}$ (all data)	$\begin{aligned} & 1.045 \\ & 0.0901 \end{aligned}$
R_{2} was 0.0901 (all data) and R_{1} was 0.0363 (I > 2(I)).	$w R_{2}$	0.0870
	R_{1} (all data)	0.0409
	R_{1}	0.0363

A yellow block-shaped crystal with dimensions $0.16 \times 0.13 \times 0.11 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 100 K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=27.482^{\circ}(0.77 \AA$).

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 6594 reflections, 54% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 99.80% out to 27.482° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1123 before and 0.0342 after correction. The Ratio of minimum to maximum transmission is 0.9450 . The $\lambda / 2$ correction factor is Not present. The absorption coefficient μ of this material is $0.113 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.705 and 0.746 .

The structure was solved and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1123 before and 0.0342 after correction. The Ratio of minimum to maximum transmission is 0.9450 . The $\lambda / 2$ correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z is 1 .

1.7 Single-crystal structure and packing of 23

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single yellow plate-shaped crystals of 23 were recrystallised from CDCl_{3} by slow evaporation. A suitable crystal $0.30 \times 0.11 \times 0.03 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=109(2)$ K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}, M_{r}=268.27$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=9.457(3) \AA, \mathrm{b}=9.423(4) \AA, \mathrm{c}=13.368(5) \AA, \beta=$ $90.586(16)^{\circ}, \alpha=\gamma=90^{\circ}, V=1191.1(8) \AA^{3}, T=109(2) \mathrm{K}, Z=4$, $Z^{\prime}=1, \mu\left(\operatorname{MoK}_{\alpha}\right)=0.271,9330$ reflections measured, 2752 unique ($R_{\text {int }}=0.0302$) which were used in all calculations. The final $w R_{2}$ was 0.1227 (all data) and R_{1} was 0.0562 (I > 2(I)).

Compound	23
CCDC	1874255
Formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.496
μ / mm^{-1}	0.271
Formula Weight	268.27
Colour	yellow
Shape	plate
Size/mm ${ }^{3}$	$0.30 \times 0.11 \times 0.03$
T/K	109(2)
Crystal System	monoclinic
Space Group	$P 2_{1} / n$
$a / \AA{ }^{\text {a }}$	9.457(3)
b/A	9.423(4)
c / \AA	13.368(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.586(16)
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	1191.1(8)
Z	4
Z^{\prime}	1
Wavelength/Å	0.710730
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	2.626
$\Theta_{\max } /{ }^{\circ}$	27.551
Measured Refl.	9330
Independent Refl.	2752
Reflections with I > 2257	
2(I)	
$R_{\text {int }}$	0.0302
Parameters	227
Restraints	424
Largest Peak	0.519
Deepest Hole	-0.367
GooF	1.128
$w R_{2}$ (all data)	0.1227
$w^{2} 2$	0.1179
R_{1} (all data)	0.0716
R_{1}	0.0562

A yellow plate-shaped crystal with dimensions $0.30 \times 0.11 \times 0.03 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 109(2) K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=27.551^{\circ}$ ($0.77 \AA$) .

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 3436 reflections, 37% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 99.80% out to 27.551° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1259 before and 0.0500 after correction. The Ratio of minimum to maximum transmission is 0.9233 . The $\lambda / 2$ correction factor is Not present. The absorption coefficient μ of this material is $0.271 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.688 and 0.746 .

The structure was solved and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1259 before and 0.0500 after correction. The Ratio of minimum to maximum transmission is 0.9233 . The $\lambda / 2$ correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

Figure S4: Packing model of 23.

1.8 Single-crystal structure and packing of 25

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single yellow block-shaped crystals of 25 were recrystallised from a mixture of CHCl_{3} and cyclohexane by solvent layering. A suitable crystal $0.20 \times 0.14 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=100$ (2) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{O}_{8}, M_{r}=656.61$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=11.825(15) \AA, \mathrm{b}=17.04(3) \AA, \mathrm{c}=16.23(2) \AA, \beta=$ $109.86(3)^{\circ}, \alpha=\gamma=90^{\circ}, V=3076(8) \AA^{3}, T=100(2) \mathrm{K}, Z=4, Z^{\prime}=$ $1, \mu\left(\mathrm{MoK}_{\alpha}\right)=0.099,59170$ reflections measured, 7087 unique ($R_{\text {int }}=0.0797$) which were used in all calculations. The final $w R_{2}$ was 0.1830 (all data) and R_{1} was 0.0684 (I > 2(I)).

Compound	25
CCDC	1864468
Formula	$\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{O}_{8}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.418
μ / mm^{-1}	0.099
Formula Weight	656.61
Colour	yellow
Shape	block
Size/mm ${ }^{3}$	$0.20 \times 0.14 \times 0.07$
T/K	100(2)
Crystal System	monoclinic
Space Group	$P 2_{1} / n$
$a / \AA{ }^{\text {a }}$	11.825(15)
b/Å	17.04(3)
c / \AA	16.23(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	109.86(3)
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	3076(8)
Z	4
Z^{\prime}	1
Wavelength/Å	0.710730
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	1.791
$\Theta_{\max } /{ }^{\circ}$	27.618
Measured Refl.	59170
Independent Refl.	7087
Reflections with I >5273	
2(I)	
$R_{\text {int }}$	0.0797
Parameters	451
Restraints	0
Largest Peak	0.614
Deepest Hole	-0.399
GooF	1.090
$w R_{2}$ (all data)	0.1830
$w^{2} 2$	0.1686
R_{1} (all data)	0.0914
R_{1}	0.0684

A yellow block-shaped crystal with dimensions $0.20 \times 0.14 \times 0.07 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 100(2) K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=27.618^{\circ}(0.77 \AA$).

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9915 reflections, 17% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 27.618° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1627 before and 0.0847 after correction. The Ratio of minimum to maximum transmission is 0.6467 . The $\lambda / 2$ correction factor is Not present. The absorption coefficient μ of this material is $0.099 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.482 and 0.746 .

The structure was solved and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1627 before and 0.0847 after correction. The Ratio of minimum to maximum transmission is 0.6467 . The $\lambda / 2$ correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z is 1 .

Figure S5: Packing of 25.

1.9 Single-crystal structure and packing of 26

Crystal Data and Experimental

Experimental. Single yellow block-shaped crystals of 26 were obtained by the vapor diffusion DMSO $/ \mathrm{H}_{2} \mathrm{O}$ at ambient temperature. A suitable crystal $0.33 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$ was selected with perfluorpolyether on a Mitegen Loop on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=100.01 \mathrm{~K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{O}_{4}, M_{r}=352.33$, orthorhombic, Pna_{1} (No. 33), $\mathrm{a}=17.395(8) \AA, \mathrm{b}=9.112(4) \AA, \mathrm{c}=10.203(3) \AA, \alpha=$ $\beta=\gamma=90^{\circ}, V=1617.2(11) \AA^{3}, T=100.01 \mathrm{~K}, Z=4, Z^{\prime}=1$, $\mu\left(\operatorname{MoK}_{\alpha}\right)=0.099,36026$ reflections measured, 4166 unique ($R_{\text {int }}=0.0381$) which were used in all calculations. The final $w R_{2}$ was 0.0944 (all data) and R_{1} was $0.0342(\mathrm{I}>2(\mathrm{I})$).

Compound	26
CCDC	1912192
Formula	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{O}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.447
μ / mm^{-1}	0.099
Formula Weight	352.33
Colour	yellow
Shape	block
Size/mm ${ }^{3}$	$0.33 \times 0.10 \times 0.08$
T/K	100.01
Crystal System	orthorhombic
Flack Parameter	-0.6(4)
Hooft Parameter	-0.3(2)
Space Group	Pna2 ${ }_{1}$
a / \AA	17.395(8)
b/Å	9.112(4)
c / \AA	10.203(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	1617.2(11)
Z	4
Z^{\prime}	1
Wavelength/ \AA	0.71073
Radiation type	MoK ${ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.342
$\Theta_{\max } /{ }^{\circ}$	28.704
Measured Refl.	36026
Independent Refl.	4166
Reflections with I >3953	
2(I)	
$R_{\text {int }}$	0.0381
Parameters	244
Restraints	1
Largest Peak	0.298
Deepest Hole	-0.177
GooF	1.085
$w R_{2}$ (all data)	0.0944
$w R_{2}$	0.0925
R_{1} (all data)	0.0364
R_{1}	0.0342

A yellow block-shaped crystal with dimensions $0.33 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$ was selected and fixed with perfluorpolyether on a Mitegen Loop. Data were collected using an Bruker SMART APEX2 area detector diffractometer operating at $T=100.01 \mathrm{~K}$.

Data were measured using ω and ϕ scans using $\operatorname{MoK}_{\alpha}$ radiation. The total number of runs and images was based on the strategy calculation from the program Bruker APEX3 software The maximum resolution that was achieved was $\Theta=28.704^{\circ}(0.74 \AA$) .

The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program Bruker APEX3 software and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9866 reflections, 27% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 28.704° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1307 before and 0.0507 after correction. The Ratio of minimum to maximum transmission is 0.8728 . The $\lambda / 2$ correction factor is not present. The absorption coefficient μ of this material is $0.099 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.651 and 0.746 .

The structure was solved and the space group Pna2 (\# 33) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.1307 before and 0.0507 after correction. The Ratio of minimum to maximum transmission is 0.8728 . The $\lambda / 2$ correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z is 1 .

The Flack parameter was refined to $-0.6(4)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.3(2). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

1.10 Single-crystal structure and packing of 27

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single colourless block-shaped crystals of 27 were recrystallised from a mixture of CHCl_{3} and methanol by solvent layering. A suitable crystal $0.20 \times 0.17 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=100(2) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{O}_{4}, M_{r}=378.36$, orthorhombic, $\mathrm{P}_{1} 2_{12} 2_{1}$ (No. 19), $\mathrm{a}=13.845(5) \AA, \mathrm{b}=13.921$ (5) $\AA, \mathrm{c}=18.938(7) \AA, \alpha=$ $\beta=\gamma=90^{\circ}, V=3650(2) \AA^{3}, T=100(2) K, Z=8, Z^{\prime}=2$, $\mu\left(\mathrm{MoK}_{\alpha}\right)=0.093,74657$ reflections measured, 7595 unique ($R_{\text {int }}=0.0809$) which were used in all calculations. The final $w R_{2}$ was 0.0839 (all data) and R_{1} was 0.0404 (I $>2(\mathrm{I})$).

Compound	27
CCDC	1900045
Formula	$\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{O}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.377
μ / mm^{-1}	0.093
Formula Weight	378.36
Colour	colourless
Shape	block
Size/mm ${ }^{3}$	$0.20 \times 0.17 \times 0.10$
T/K	100(2)
Crystal System	orthorhombic
Flack Parameter	0.6(4)
Hooft Parameter	1.0(5)
Space Group	$P 212121$
a / \AA	13.845(5)
b/Å	13.921(5)
c / \AA	18.938(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	3650(2)
Z	8
Z'	2
Wavelength/Å	0.710730
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	1.075
$\Theta_{\max } /{ }^{\circ}$	26.570
Measured Refl.	74657
Independent Refl.	7595
Reflections with $\mathrm{I}>6776$	
2(I)	
$R_{\text {int }}$	0.0809
Parameters	524
Restraints	0
Largest Peak	0.170
Deepest Hole	-0.175
GooF	1.074
$w R_{2}$ (all data)	0.0839
$w R_{2}$	0.0794
R_{1} (all data)	0.0506
R_{1}	0.0404

A colourless block-shaped crystal with dimensions $0.20 \times 0.17 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ $100(2)$ K. Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=26.570^{\circ}(0.79 \AA)$. The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9959 reflections, 13% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 26.570° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.0773 before and 0.0683 after correction. The Ratio of minimum to maximum transmission is 0.9188 . The $\lambda / 2$ correction factor is Not present. The absorption coefficient μ of this material is $0.093 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.685 and 0.745 . The structure was solved and the space group $P 2_{1} 2_{1} 2_{1}$ (\#19) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. _refine_special_details: Refined as a 2 -component twin. _exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.0773 before and 0.0683 after correction. The Ratio of minimum to maximum transmission is 0.9188 . The $\lambda / 2$ correction factor is Not present. The value of Z^{\prime} is 2 . This means that there are two independent molecules in the asymmetric unit.

The Flack parameter was refined to 0.6(4). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 1.0(5). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Figure S6: Packing model of 27.

1.11 Single-crystal structure and packing of 29

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single colourless block-shaped crystals of 29 were recrystallised from a mixture of CHCl_{3} and methanol by solvent layering. The data for 29 were collected from a shockcooled single crystal at 100(2) K on a Bruker APEX2 QUAZAR three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker APEXII detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA$). All data were integrated with SAINT and a multi-scan absorption correction using SADABS2016/2 was applied. The structure were solved by direct methods using SHELXT 2014/5 (Sheldrick, 2014) and refined by full-matrix least-squares methods against F^{2} by SHELXL2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their $U_{\text {iso }}$ values constrained to 1.5 times the $U_{\text {eq }}$ of their pivot atoms for terminal sp ${ }^{3}$ carbon atoms and 1.2 times for all other carbon atoms. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1964127 contain the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Compound	29
CCDC number	1964127
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{18} \mathrm{O}_{4}$
Formula weight	478.47
Temperature [K]	100(2)
Crystal system	orthorhombic
Space group (number)	C222 ${ }_{1}$ (20)
$a[A ̊]$	8.351(4)
b [Å]	21.414(6)
$c[A ̊]$	13.480(4)
α [Å]	90
$\beta[A ̊]$	90
γ [Å]	90
Volume [${ }^{3}$]	2410.7(15)
Z	4
$\rho_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.318
$\mu\left[\mathrm{mm}^{-1}\right]$	0.086
F(000)	992
Crystal size [mm ${ }^{3}$]	$0.10 \times 0.08 \times 0.05$
Crystal colour	yellow
Crystal shape	block
Radiation	MoK ${ }_{\alpha}(\lambda=0.71073)$
2θ range [${ }^{\circ}$]	3.80 to 61.92
Index ranges	$-11 \leq h \leq 12$
	$-30 \leq k \leq 30$
	$-19 \leq 1 \leq 19$
Reflections collected	39656
	3683
reflections	$R_{\text {int }}=0.0253$
	$R_{\text {sigma }}=0.0141$
Completeness to $\theta=$ 25.242°	99.50
Data / Restraints / Parameters	3683/0/168
Goodness-of-fit on F^{2}	1.071
Final R indexes	$R_{1}=0.0362$
$[1 \geq 2 \sigma()]$	$w R_{2}=0.1175$
Final R indexes	$R_{1}=0.0375$
[all data]	$\mathrm{w} R_{2}=0.1194$
Largest peak/hole [eÅ ${ }^{3}$]	0.41/-0.23
Flack X parameter	0.01(17)

A colourless block-shaped crystal with dimensions $0.10 \times 0.08 \times 0.05 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 100 K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=33.185^{\circ}(0.65 \AA)$.

The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 3683 reflections.

Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 33.185° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1407 before and 0.0485 after correction. The Ratio of minimum to maximum transmission is 0.9321 . The $\lambda / 2$ correction factor is not present. The absorption coefficient μ of this material is $0.291 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.696 and 0.747 .

The structure was solved and the space group $C 222_{1}$ (20) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

The Flack parameter was refined to 0.01 (17). A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Figure S7: Packing of 29.

1.12 Single-crystal structure and packing of 32

Crystal Data and Experimental

(displacement ellipsoids are shown at 50\% probability; hydrogen atoms are omitted for clarity)

Experimental. Single colourless block-shaped crystals of 32 were recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation. A suitable crystal $0.25 \times 0.14 \times 0.08 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder in perfluoroether oil on an Bruker SMART APEX2 area detector diffractometer. The crystal was kept at a steady $T=100 \mathrm{~K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4}, \quad M_{r}=563.40$, orthorhombic, $P 2{ }_{1} 2_{1} 2_{1}$ (No. 19), $\mathrm{a}=5.3479(8) \AA, \quad \mathrm{b}=17.257(3) \AA, \mathrm{c}=$ 28.107(4) $\AA, \alpha=\beta=\gamma=90^{\circ}, V=2593.9(6) \AA^{3}, T=100 \mathrm{~K}, Z=4$, $Z^{\prime}=1, \mu\left(\operatorname{MoK}_{\alpha}\right)=0.291,34844$ reflections measured, 8789 unique ($R_{\text {int }}=0.0333$) which were used in all calculations. The final $w R_{2}$ was 0.1312 (all data) and R_{1} was 0.0496 (I > 2(I)).

Compound	32
CCDC	1886536
Formula	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.443
μ / mm^{-1}	0.291
Formula Weight	563.40
Colour	colourless
Shape	block
Size/mm ${ }^{3}$	$0.25 \times 0.14 \times 0.08$
T/K	100
Crystal System	orthorhombic
Flack Parameter	0.025(17)
Hooft Parameter	0.008(17)
Space Group	$P 2{ }_{1} 1_{1} 2_{1}$
$a / \AA{ }^{\text {a }}$	5.3479(8)
b / \AA	17.257(3)
c / \AA	28.107(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V/Å ${ }^{3}$	2593.9(6)
Z	4
Z'	1
Wavelength/Å	0.710730
Radiation type	MoK ${ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	1.385
$\Theta_{\max } /{ }^{\circ}$	33.185
Measured Refl.	34844
Independent Refl.	8789
Reflections with I 2(I)	>7572
$R_{\text {int }}$	0.0333
Parameters	361
Restraints	0
Largest Peak	0.412
Deepest Hole	-0.715
GooF	1.039
$w R_{2}$ (all data)	0.1312
$w R_{2}$	0.1251
R_{1} (all data)	0.0612
R_{1}	0.0496

A colourless block-shaped crystal with dimensions $0.25 \times 0.14 \times 0.08 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using an Bruker SMART APEX2 area detector diffractometer equipped with an Oxford Cryosystems 800 low-temperature device operating at $T=$ 100 K.

Data were measured using ω and ϕ scans using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) The maximum resolution that was achieved was $\Theta=33.185^{\circ}(0.65 \AA)$.
The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9869 reflections, 28% of the observed reflections.
Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 100.00% out to 33.185° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1407 before and 0.0485 after correction. The Ratio of minimum to maximum transmission is 0.9321 . The $\lambda / 2$ correction factor is Not present.. The absorption coefficient μ of this material is $0.291 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.711 \AA$) and the minimum and maximum transmissions are 0.696 and 0.747 .
The structure was solved and the space group $P 2_{1} 2_{1} 2_{1}$ (\# 19) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1407 before and 0.0485 after correction. The Ratio of minimum to maximum transmission is 0.9321 . The $\lambda / 2$ correction factor is Not present.
There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .
The Flack parameter was refined to $0.025(17)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.008(17). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Figure S8: Packing model of 32.

2. Cyclic Voltammograms

Figure S9: Cyclic voltammograms of $\mathbf{8}$ in acetonitrile at $100 \mathrm{mV} / \mathrm{s}$ scan rate using a glassy carbon electrode.

Figure S10: Cyclic voltammogram of $\mathbf{2 3}$ in acetonitrile at $100 \mathrm{mV} / \mathrm{s}$ scan rate using a glassy carbon electrode.

3. Optical Properties

a)

b)

Figure S11: a) Solutions of spiro compounds $\mathbf{8}$ (left) and $\mathbf{7}$ (right) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) Solution of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S12: Absorption spectra of $\mathbf{7}$ in solvents of different polarity.

4. Thermal Measurements

4.1 Thermogravimetric Analyses

Figure S13: TGA measurements under inert N_{2} atmosphere at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

Figure S14: TGA measurements under inert N_{2} atmosphere at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

4.2 Differential Scanning Calorimetry

Figure S15: DSC of 7 at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

Figure S16: DSC of 32 at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

Figure S17: DSC of $\mathbf{3 0}$ at a heating rate of $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$.

5. DFT Calculations

DFT calculations were performed with either the TURBOMOLE v7.3 program package. ${ }^{[4]}$ The resolution-of-identity ${ }^{[5]}$ (RI, RIJDX for SP) approximation for the Coulomb integrals was used in all DFT calculations employing matching auxiliary basis set def2-XVP/J. ${ }^{[6]}$ Furthermore, the D3 dispersion correction scheme ${ }^{[7]}$ with the Becke-Johnson damping function was applied. ${ }^{[8]}$ Using the TURBOMOLE v7.3 program package, the geometries of all molecules were optimized without symmetry restrictions with the PBEh-3c ${ }^{[9]}$-D3/def2-mSVP composite scheme followed by harmonic vibrational frequency analysis to confirm minima as stationary points. Vertical excitation energies were calculated using TDDFT applying the B3LYP ${ }^{[9]}$ functional with the def2-TZVP basis set. ${ }^{[10]}$

5.1 Frontier Molecular Orbitals

Table S1: Frontier molecular orbitals of $\mathbf{7}$ (top) and 8 (bottom) (B3LYP-D3/def2-TZVP).

Table S2: Frontier molecular orbitals of 4 (top) and $\mathbf{2 1}$ (bottom) (B3LYP-D3/def2-TZVP).

HOMO

Table S3: Frontier molecular orbitals of $\mathbf{2 2}$ (top) and $\mathbf{2 5}$ (bottom) (B3LYP-D3/def2-TZVP).
HOMO \quad LUMO

Table S4: Frontier molecular orbitals of $\mathbf{2 3}$ (top) and $\mathbf{3 0}$ (bottom) (B3LYP-D3/def2-TZVP).
HOMO

Table S5: Frontier molecular orbitals of 32 (top) and 31 (bottom) (B3LYP-D3/def2-TZVP).

Table S6: Frontier molecular orbitals of $\mathbf{2 6}$ (top) and $\mathbf{2 7}$ (bottom) (B3LYP-D3/def2-TZVP).
HOMO LUMO

Table S7: Frontier molecular orbitals of 29 (B3LYP-D3/def2-TZVP).

HOMO
LUMO

5.2 TDDFT Calculations

5.2.1 Charge Transfer Transitions

Figure S18: Calculated intramolecular charge transfer transition of 7 (B3LYP-D3/def2-TZVP).

Figure S19: Calculated intramolecular charge transfer transition of 8 (B3LYP-D3/def2-TZVP).

5.2.2 Calculated Bandgaps

Figure S20: Calculated HOMO energy levels (red), LUMO energy levels (blue) and band gaps (green) in eV (B3LYP-D3/def2-TZVP).

Figure S21: Calculated HOMO energy levels (red), LUMO energy levels (blue) and band gaps (green) in eV (B3LYP-D3/def2-TZVP).

Table S8: Calculated Photophysical Properties.

Compound	$E_{\text {Hoмо }}$ $[\mathrm{eV}]$	$E_{\text {Lumo }}$ $[\mathrm{eV}]$	$\boldsymbol{E}_{\mathrm{g}}[\mathrm{eV}]$	$\mathbf{S}_{\mathbf{1}}[\mathrm{eV}]$	$\mathrm{T}_{\mathbf{1}}[\mathrm{eV}]$	$\mathbf{\Delta} \boldsymbol{E s t}[\mathrm{eV}]$	Oscillator strength $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}_{1}$
$\mathbf{4}$	-5.13	-2.70	2.43	1.75	1.64	0.11	$4.93 \cdot 10^{-03}$
$\mathbf{7}$	-5.84	-3.12	2.73	1.80	1.49	0.31	$3.38 \cdot 10^{-05}$
$\mathbf{8}$	-5.72	-2.59	3.13	2.36	2.22	0.14	$4.67 \cdot 10^{-04}$
$\mathbf{2 1}$	-5.71	-2.67	3.03	2.21	2.05	0.17	$1.30 \cdot 10^{-05}$
$\mathbf{2 2}$	-5.84	-2.73	3.10	2.33	2.15	0.18	$2.82 \cdot 10^{-06}$
$\mathbf{2 5}$	-6.04	-2.49	3.55	2.82	2.58	0.24	$5.38 \cdot 10^{-03}$
$\mathbf{2 3}$	-5.74	-2.56	3.19	2.40	2.22	0.18	$5.59 \cdot 10^{-03}$
$\mathbf{3 0}$	-5.86	-2.69	3.17	2.61	2.42	0.19	$8.79 \cdot 10^{-03}$
$\mathbf{3 2}$	-5.71	-2.49	3.22	2.76	2.47	0.28	$2.23 \cdot 10^{-03}$
$\mathbf{3 1}$	-6.00	-2.50	3.50	2.88	2.47	0.41	$6.10 \cdot 10^{-04}$
$\mathbf{2 6}$	-5.76	-2.99	2.76	2.07	1.94	0.13	$4.69 \cdot 10^{-07}$
$\mathbf{2 7}$	-6.16	-2.75	3.41	2.74	2.36	0.38	$2.12 \cdot 10^{-02}$

5.2.3 Calculated Absorption Spectra

Figure S22: Calculated absorption spectra of 7, 8, and 21 (B3LYP-D3/def2-TZVP).

Figure S23: Calculated absorption spectra of 7, 8, and 21 (B3LYP-D3/def2-TZVP).

Figure S24: Calculated absorption spectra of 22, 25, and $\mathbf{2 3}$ (B3LYP-D3/def2-TZVP).

Figure S25: Calculated absorption spectra of 22, 25, and $\mathbf{2 3}$ (B3LYP-D3/def2-TZVP).

Figure S26: Calculated absorption spectra of 30, 32, and 31 (B3LYP-D3/def2-TZVP).

Figure S27: Calculated absorption spectra of 30, 32, and 31 (B3LYP-D3/def2-TZVP).

Figure S28: Calculated absorption spectra of 27, 26, 4 and 29 (B3LYP-D3/def2-TZVP).

Figure S29: Calculated absorption spectra of 27, 26, 4 and $\mathbf{2 9}$ (B3LYP-D3/def2-TZVP).

5.2.4 Calculated Circular Dichroism Spectra

Figure S30: Calculated circular dichroism spectrum of 29 (B3LYP-D3/def2-TZVP).

Figure S31: Calculated absorption spectrum of 29 (B3LYP-D3/def2-TZVP).

Figure S32: Calculated circular dichroism spectrum of 29 (B3LYP-D3/def2-TZVP).

Figure S33: Calculated absorption spectrum of 29 (B3LYP-D3/def2-TZVP).

5.3 Total Energies and Zero-Point Vibrational Energies

Table S9: Total Energies and Zero-Point Vibrational Energies (B3LYP-D3/def2-TZVP).

Compound	Total Energy [hartrees]	Zero-Point Vibrational Energy [hartrees]
$\mathbf{4}$	-1373.1946904400	0.2882897
$\mathbf{8}$	-1523.0868647840	0.1949222
$\mathbf{7}$	-1523.0953571740	0.1952106
$\mathbf{2 1}$	-877.1899304018	0.2013141
$\mathbf{2 2}$	-1030.8096112940	0.2496693
$\mathbf{2 5}$	-1108.2093358380	0.2852229
$\mathbf{2 3}$	-1200.1428123670	0.1983521
$\mathbf{3 0}$	-1184.4326368030	0.2985921
$\mathbf{3 2}$	-1569.0673952810	0.4309591
$\mathbf{3 1}$	-1261.8347526790	0.3341390
$\mathbf{2 6}$	-1261.8314975000	0.2979319
$\mathbf{2 7}$	-1184.4272581100	0.3335377
$\mathbf{2 9}$	-1569.0617225000	0.4303727

5.4 Cartesian Coordinates of the Calculated Structures

The Cartesian coordinates are listed in angstrom.
Table S10: Coordinates of the calculated structure of 4 (PBEh-3c/def2-mSVP).

	x	y	z	C	-0.0317173	0.8873608	-1.3057125
N	-2.2473462	1.0950535	-0.1267133	C	-1.0879732	0.3029143	-0.3550185
C	-3.4011485	0.3505741	0.0184787	C	-0.2820923	-0.1244361	0.8809792
C	-3.2941471	-0.9532957	-0.4713270	O	-0.2421853	1.6107178	-2.2367381
S	-1.6903676	-1.2583873	-1.1277521	O	-0.7258149	-0.3179938	1.9780756
C	-2.1008289	2.3707494	0.5262083	H	-2.9098392	3.0350259	0.2228354
C	-4.6033828	0.7751430	0.5594244	H	-1.1746436	2.8455115	0.2083452
C	-5.6843679	-0.1034797	0.5781027	H	-2.0990732	2.2939454	1.6177741
C	-5.5726037	-1.3882009	0.0789104	H	-4.7093719	1.7699014	0.9704333
C	-4.3586908	-1.8243884	-0.4506647	H	-6.6226448	0.2291863	1.0014605
C	3.6244764	-0.0403064	-0.7688969	H	-6.4184117	-2.0609535	0.1058300
C	3.4779699	-0.6467929	0.5148868	H	-4.2553401	-2.8317855	-0.8315790
C	4.6257037	-1.1622942	1.1599887	H	4.5151473	-1.6228595	2.1336162
C	5.8541132	-1.0840146	0.5689434	H	6.7240979	-1.4825980	1.0732260
C	5.9987377	-0.4853218	-0.6997541	H	6.9780635	-0.4305610	-1.1557212
C	4.9116672	0.0228510	-1.3510105	H	5.0225154	0.4822538	-2.3251703
C	2.4940416	0.4876010	-1.4282867	H	2.5970588	0.9583359	-2.3984625
C	1.2731928	0.3924340	-0.8228621	H	2.0839477	-1.1664868	2.0951537
C	1.1281876	-0.2089312	0.4459254				
C	2.2030699	-0.7164718	1.1170716				

Table S11: Coordinates of the calculated structure of 8 (PBEh-3c/def2-mSVP).

	x	y	z	C	1.1494852	2.6740160	0.0007740
S	-0.0214690	-0.6486699	1.4689882	C	-2.4676503	3.7830217	0.0004462
O	2.5551120	0.6884422	-0.0020562	H	-3.1020005	4.6590959	0.0011284
C	0.6808920	-2.0620724	0.6965145	C	-3.0485869	2.5130774	0.0001340
C	1.1703353	-3.1505841	1.3948759	H	-4.1269244	2.4243944	0.0005515
H	1.1897566	-3.1427436	2.4766333	C	-2.2711737	1.3662856	-0.0004536
O	1.9666578	3.5494965	0.0033480	H	-2.7232448	0.3833612	-0.0005691
C	1.6468319	-4.2514164	0.6928061	C	-0.8935018	1.5088961	-0.0006414
H	2.0327023	-5.1030579	1.2361836	S	-0.0218909	-0.6495307	-1.4704955
C	0.1296129	0.4119012	-0.0011163	C	0.6809478	-2.0624525	-0.6974108
C	1.4650558	1.1644876	-0.0011277	C	1.1703517	-3.1515611	-1.3949128
C	-1.0932287	3.9235703	-0.0000269	H	1.1897846	-3.1444709	-2.4766832
H	-0.6244033	4.8987261	-0.0000823	C	1.6466340	-4.2519183	-0.6919628
C	-0.3132672	2.7733678	-0.0001805	H	2.0331816	-5.1036621	-1.2346646

Table S12: Coordinates of the calculated structure of 7 (PBEh-3c/def2-mSVP).

	x	y	z	C	-1.2897180	-1.2865065	2.9697346
S	-0.1689884	1.8982281	-0.8563658	H	-2.1213318	-1.8839818	2.6213850
S	1.5551044	-0.4815977	-0.9255561	C	-0.5365316	-0.5351612	2.0810845
O	2.0669284	1.7253451	1.4362917	C	-0.7136852	-0.3975231	0.6198118
O	-1.5813570	-0.8835180	-0.0454744	C	0.7328445	-0.0789592	-2.4247156
C	0.4256032	0.4938392	0.1133090	C	0.9021941	-0.7857946	-3.6013660
C	1.1603091	0.9473119	1.3874958	H	1.5216763	-1.6725805	-3.6229612
C	0.5298898	0.2385648	2.5177483	C	0.2613631	-0.3495107	-4.7546839
C	0.8817829	0.2881482	3.8584845	H	0.3892159	-0.9011133	-5.6759687
H	1.7128467	0.8955916	4.1906780	C	-0.5490613	0.7732134	-4.7224340
C	0.1340275	-0.4637342	4.7486385	H	-1.0570347	1.1020897	-5.6186747
H	0.3805103	-0.4503931	5.8019289	C	-0.7304419	1.4753880	-3.5370674
C	-0.9400406	-1.2423188	4.3089700	H	-1.3780806	2.3416108	-3.5092504
H	-1.5056384	-1.8166420	5.0305982	C	-0.0823865	1.0500042	-2.3916407

Table S13: Coordinates of the calculated structure of 21 (PBEh-3c/def2-mSVP).

	x	y	z	C	-2.2688739	-0.0273646	-4.0204723
O	1.4687752	0.0887844	0.2507781	H	-2.7343126	0.3302846	-4.9292428
C	0.0736003	0.0808684	0.1104362	C	-1.6654637	0.8710801	-3.1581164
O	-0.5031050	0.3467756	1.3607135	H	-1.6465435	1.9314588	-3.3708661
C	-0.4172210	-1.2743374	-0.4467129	C	-1.0804788	0.3700443	-2.0039650
O	-0.2561968	-2.3353408	0.0833805	C	-0.3832789	1.1160250	-0.9411671
C	-1.0998369	-0.9933828	-1.7221620	C	0.5262140	0.4433755	2.2471393
C	-1.7046009	-1.8950377	-2.5860900	C	0.4730593	0.6630054	3.5982058
H	-1.7157034	-2.9528312	-2.3603234	H	-0.4664580	0.7850413	4.1181361
O	-0.1909209	2.2952184	-0.8749098	C	1.6993122	0.7199631	4.2698162
C	-2.2882319	-1.3963414	-3.7374192	H	1.7053066	0.8900968	5.3375132
H	-2.7682967	-2.0722907	-4.4324288	C	2.8974256	0.5622840	3.5955180

H	3.8288578	0.6104039	4.1424075	H	3.8634364	0.2160037	1.6811797
C	2.9316697	0.3397796	2.2144634	C	1.7218656	0.2864336	1.5741884

Table S14: Coordinates of the calculated structure of $\mathbf{2 2}$ (PBEh-3c/def2-mSVP).

	x	y	z	C	0.4733256	-0.9724442	-2.2933601
C	-3.1404240	3.9796940	2.9994322	O	-0.7629058	0.4728591	-0.7595080
C	-3.9139088	2.8545307	3.3000119	O	0.5205366	0.0799199	1.0761790
C	-3.5742204	1.6044680	2.8133308	C	3.4878946	-2.9777453	-1.3402962
C	-2.4418093	1.5037030	2.0180609	C	3.7840005	-3.5894164	-2.5292511
C	-1.6709077	2.6242452	1.7191467	C	2.9918608	-3.3465838	-3.6628684
C	-2.0106919	3.8780438	2.2067454	C	1.9201034	-2.4977894	-3.5831916
C	-1.8780816	0.2968451	1.3885706	H	-3.4334896	4.9427291	3.3957075
C	-0.6210930	0.7417823	0.6082820	H	-4.7903380	2.9679394	3.9239968
C	-0.5266705	2.2619843	0.8643476	H	-4.1678689	0.7295508	3.0415352
O	-2.2875271	-0.8261012	1.4488635	H	-1.4072149	4.7441571	1.9708762
O	0.3285638	2.9794629	0.4339912	H	2.6897009	-1.6468629	0.8900401
C	0.2239489	-0.3974558	-1.0963176	H	-0.1424609	-0.7798429	-3.1613484
C	1.0158520	-0.6398442	0.0364063	H	4.0994113	-3.1651794	-0.4660833
C	2.0848930	-1.4657665	0.0119242	H	4.6292759	-4.2612087	-2.5965937
C	2.3918984	-2.0991858	-1.2265024	H	3.2297756	-3.8315007	-4.6002080
C	1.5896807	-1.8536309	-2.3741003	H	1.3088905	-2.3113569	-4.4578191

Table S15: Coordinates of the calculated structure of $\mathbf{2 5}$ (PBEh-3c/def2-mSVP).

C	-4.6598836	0.3285467	1.2384193	C	2.9669941	-1.9123611	-2.6963495
C	-3.4013536	0.5391913	1.7579989	C	4.0672769	-1.1414727	-3.0321493
C	-2.2227304	0.2438991	1.0568493	C	4.1077048	0.2238222	-2.7371854
C	-2.3772848	-0.3320827	-0.2115825	C	3.0481034	0.8480368	-2.1009638
C	-3.6490336	-0.5427722	-0.7427124	0	0.1998783	-2.9600635	-1.8507943
C	-4.7828514	-0.2111582	-0.0344105	0	0.3174701	1.6173477	-0.9265813
C	-0.8326126	1.6033274	2.6292570	H	-5.5352883	0.5695613	1.8253728
C	0.3358372	1.8437957	3.3295262	H	-3.3167362	0.9253346	2.7646243
C	1.4455665	1.0361989	3.1305596	H	-3.7229297	-0.9839990	-1.7277197
C	1.3841943	0.0154941	2.1979761	H	-5.7577089	-0.3893188	-0.4679118
C	0.2069216	-0.2077837	1.5053088	H	-1.6756268	2.2644014	2.7772856
C	-0.9399792	0.5497204	1.7180979	H	0.3803202	2.6685372	4.0277652
0	0.1969868	-1.2056034	0.5674521	H	2.3603498	1.2132354	3.6797615
0	-1.3959113	-0.7380606	-1.0590161	H	2.2408651	-0.6151702	1.9988410
C	-0.0655304	-0.7982377	-0.7398252	H	2.9252431	-2.9677276	-2.9298270
C	0.6292632	-1.8711071	-1.6119084	H	4.9089753	-1.5979432	-3.5357634
C	0.6995505	0.4963471	-1.1039029	H	4.9803108	0.7989275	-3.0169824
C	1.9126223	-1.2875067	-2.0482572	H	3.0675841	1.9060025	-1.8764677
C	1.9534423	0.0706414	-1.7547849				

Table S16: Coordinates of the calculated structure of $\mathbf{2 3}$ (PBEh-3c/def2-mSVP).

	x	y	z	C	-0.5313938	2.5837293	2.7624178
C	-2.9257750	2.5078548	2.4088049	C	-0.3868986	1.7550126	1.6603556
C	-1.8148226	2.9510056	3.1307474	C	-1.4937291	1.3140723	0.9411809

C	-2.7783106	1.6878865	1.3022889	C	1.3796970	-1.0154995	-1.6506295
C	0.8606700	1.2405012	1.0592486	C	1.0830416	-2.0698000	-0.7970018
C	0.4264181	0.2031300	0.0173264	O	1.1885240	0.2255853	-1.1360256
C	-1.0614887	0.4921989	-0.2096963	H	-3.9148747	2.8170069	2.7195691
O	1.9857213	1.5516533	1.3170870	H	-1.9639867	3.5941210	3.9877903
O	-1.7180745	0.1298829	-1.1423570	H	0.3340093	2.9284510	3.3122355
S	0.5451969	-1.4828864	0.7679239	H	-3.6331770	1.3480343	0.7333638
C	1.2701643	-3.3760429	-1.2014857	H	1.0394306	-4.1996898	-0.5398259
C	1.7615399	-3.6115543	-2.4821933	H	1.9102619	-4.6291525	-2.8159093
C	2.0552261	-2.5539815	-3.3276843	H	2.4316936	-2.7486731	-4.3225483
C	1.8647967	-1.2368613	-2.9197264	H	2.0861401	-0.4059845	-3.5752567

Table S17: Coordinates of the calculated structure of $\mathbf{3 0}$ (PBEh-3c/def2-mSVP).

	X	y	z	C	1.5501563	3.7222713	-0.8836752
C	-3.5350200	-2.1664371	0.0509325	C	0.7071835	3.3674862	0.2076143
C	-3.7949691	-3.5429806	0.0012315	C	2.7284406	3.1406607	-2.9361997
C	-2.8880612	-4.4279019	0.5164728	C	3.2168062	4.4166113	-3.0276999
C	-1.6866943	-3.9775682	1.1049453	C	2.8828946	5.3701808	-2.0522655
C	-1.4108576	-2.5875308	1.1417331	C	2.0682703	5.0274185	-1.0064012
C	-2.3673441	-1.6907414	0.5968739	0	-0.5567851	1.5153971	1.1724784
C	-0.7585354	-4.8809292	1.6663742	0	-0.0154673	-0.0352149	-0.4114105
C	0.3887107	-4.4331879	2.2616317	H	-4.2537133	-1.4641704	-0.3501674
C	0.6562301	-3.0583091	2.3187582	H	-4.7139023	-3.8996966	-0.4430689
C	-0.2128007	-2.1499813	1.7648110	H	-3.0860824	-5.4922625	0.4842383
C	-2.1269184	-0.2350770	0.6269170	H	-0.9724502	-5.9418628	1.6241133
C	0.1013413	-0.7105239	1.8405185	H	1.0900672	-5.1346534	2.6919120
C	-0.6644737	0.1734485	0.8443437	H	1.5587998	-2.7004462	2.7961823
0	-2.9738204	0.5928546	0.4365085	H	1.6357919	0.6873174	-2.5223918
0	0.9405369	-0.2389685	2.5572261	H	0.4462667	4.0948216	0.9642259
C	0.2553804	2.0946235	0.2551894	H	2.9860404	2.4053170	-3.6887706
C	0.5886647	1.1417840	-0.7211643	H	3.8609752	4.6920654	-3.8520612
C	1.3847801	1.4286165	-1.7757508	H	3.2708949	6.3771675	-2.1285544
C	1.8882164	2.7571396	-1.8714669	H	1.8114476	5.7632622	-0.2541836

Table S18: Coordinates of the calculated structure of 32 (PBEh-3c/def2-mSVP).

	x	y	z	C	-2.8032861	-0.5898382	-0.2314966
C	-4.3069730	-0.1608903	-2.1396481	C	-1.0329934	-2.3903678	-0.4843439
C	-4.7336859	-0.3958969	-3.4555593	C	-1.3474260	-0.9865553	0.0665634
C	-4.1014097	-1.3346081	-4.2235868	O	-3.5004038	-0.0885377	0.6069525
C	-3.0176791	-2.0814528	-3.7120140	O	-0.4029025	-3.1970798	0.1382975
C	-2.5695542	-1.8302052	-2.3923076	C	-1.6417458	0.6676194	3.0119667
C	-3.2392389	-0.8479826	-1.6188734	C	-0.7707370	0.2225936	2.0029315
C	-2.3746531	-3.0778368	-4.4783812	C	0.3701167	0.9105065	1.6646822
C	-1.3475705	-3.8139824	-3.9545436	C	0.5967015	2.1880250	2.2593253
C	-0.9189902	-3.5851882	-2.6380467	C	-0.2748826	2.6385236	3.2843050
C	-1.5039569	-2.60810355	-1.8714462	C	-1.3765632	1.8369531	3.6583488

C	1.6370198	3.0516309	1.8425731	H	-5.5655430	0.1662226	-3.8571486
C	1.8269529	4.2663262	2.4410174	H	-4.4323190	-1.5216982	-5.2377797
C	0.9892411	4.6890914	3.4894051	H	-2.7132971	-3.2577930	-5.4913296
C	-0.0427232	3.8914083	3.8942275	H	-0.8665810	-4.5784555	-4.5491982
O	-1.0458307	-0.9779085	1.4062782	H	-0.1154661	-4.1755947	-2.2175704
C	0.7455225	-0.1195158	-0.5202507	H	-2.5078558	0.0708527	3.2586822
C	1.5322176	-0.6134371	-1.5727330	H	-2.0350335	2.1821489	4.4456907
C	2.8841466	-0.6952003	-1.4115509	H	2.2818358	2.7560851	1.0270799
C	3.4871281	-0.3417973	-0.1844754	H	2.6252214	4.9116334	2.0989627
C	2.6809951	0.1503620	0.8758858	H	1.1550320	5.6491632	3.9596748
C	1.2815736	0.3208335	0.6639336	H	-0.7091820	4.2163231	4.6840018
C	4.8782720	-0.4935552	0.0138676	H	1.0553214	-0.9098035	-2.4978812
C	5.4502120	-0.2046026	1.2192675	H	3.5069437	-1.0606819	-2.2184731
C	4.6460588	0.2381635	2.2864223	H	5.4843045	-0.8574974	-0.8069033
C	3.3004693	0.4110349	2.1208601	H	6.5151816	-0.3299005	1.3623958
O	-0.6141117	-0.0561225	-0.6971793	H	5.0960752	0.4362520	3.2501191
H	-4.8119226	0.5755140	-1.5286058	H	2.6979745	0.7348228	2.9576086

Table S19: Coordinates of the calculated structure of 31 (PBEh-3c/def2-mSVP).

	x	y	z	0	-0.3388418	1.8007709	1.6040656
C	-4.0665419	-0.1720002	-0.7039156	C	0.9182153	0.6045783	-0.9415233
C	-4.6199035	-1.2415866	-1.4254225	C	0.9878282	-0.2871847	-2.0000827
C	-3.9315500	-2.4171017	-1.5463108	C	2.2049321	-0.8417142	-2.3500383
C	-2.6624276	-2.5787610	-0.9480869	C	3.3341134	-0.5258163	-1.6076183
C	-2.0941187	-1.4948332	-0.2358645	C	3.2473323	0.3704837	-0.5585839
C	-2.8243908	-0.2830111	-0.1317697	C	2.0416547	0.9924083	-0.2159085
C	-1.9487299	-3.7943483	-1.0312531	0	-0.3149181	1.0886341	-0.5999371
C	-0.7374384	-3.9441628	-0.4125105	H	-4.6144989	0.7555837	-0.6040282
C	-0.1857026	-2.8822294	0.3194022	H	-5.5936956	-1.1312440	-1.8823784
C	-0.8385862	-1.6780589	0.3963617	H	-4.3588271	-3.2450351	-2.0986726
C	-2.2565623	0.8612643	0.6156027	H	-2.3805840	-4.6161339	-1.5892761
C	-0.2458834	-0.5652490	1.1649444	H	-0.2035311	-4.8820073	-0.4809206
C	-0.7164544	0.8338836	0.7204045	H	0.7693150	-2.9992002	0.8140379
0	-2.9062907	1.7676362	1.0501620	H	0.1342634	3.5401522	3.2316558
0	0.5380835	-0.7084354	2.0616516	H	4.0022939	2.6334424	0.3686411
C	1.0039975	3.3385192	2.6207687	H	4.1783804	4.3493694	2.0831450
C	0.9008901	2.3494826	1.6432580	H	2.2218858	4.8132163	3.5623086
C	1.9988854	2.0355802	0.8293156	H	0.0802167	-0.5424910	-2.5312655
C	3.1585159	2.8021138	1.0234070	H	2.2656299	-1.5363263	-3.1767807
C	3.2617141	3.7848787	1.9830432	H	4.2862403	-0.9821755	-1.8424626
C	2.1703819	4.0480872	2.7994464	H	4.1347072	0.5790208	0.0229882

Table S20: Coordinates of the calculated structure of $\mathbf{2 6}$ (PBEh-3c/def2-mSVP).

	x	y	z	C	3.3318636	-0.5012778	-1.4114530
C	2.2488719	-0.0585736	0.7014713	C	4.5634853	-0.5948900	-0.7018308
C	2.2200403	-0.2379286	-0.6900973	C	4.5927065	-0.4130431	0.7077616

C	3.3905251	-0.1361027	1.4200501	C
C	5.7703213	-0.8702914	-1.3753806	C
C	6.9552467	-0.9635204	-0.6950702	C
C	6.9841464	-0.7838006	0.6971560	O
C	5.8274705	-0.5148071	1.3793084	O
O	0.9871206	0.1956367	1.1337307	H
O	0.9406207	-0.0948475	-1.1210958	H
C	-7.0145017	-0.0317870	0.0647444	H
C	-6.9055429	1.3631419	-0.1166361	H
C	-5.6785642	1.9558114	-0.1968005	H
C	-4.4960061	1.1859443	-0.0998602	H
C	-4.6063680	-0.2260610	0.0837607	H
C	-5.8942140	-0.8054543	0.1622295	H
C	-3.2223508	1.7850718	-0.1805790	H
C	-2.1116390	0.9940897	-0.0808665	H
C	-2.2209762	-0.4020430	0.1008438	H
C	-3.4410460	-1.0131940	0.1834694	H

-0.6986457	1.4016049	-0.1371643
0.1477918	0.1168682	0.0155610
-0.8879292	-1.0201519	0.1784549
-0.6144083	-2.1753799	0.3353727
-0.2496789	2.5027549	-0.2743939
3.3003363	-0.6380205	-2.4838470
3.4034617	0.0037296	2.4924113
5.7484588	-1.0092925	-2.4494114
7.8712418	-1.1761920	-1.2299760
7.9223423	-0.8584212	1.2306256
5.8501910	-0.3766452	2.4534410
-7.9938774	-0.4866442	0.1266613
-7.8025871	1.9627739	-0.1919447
-5.5953815	3.0262676	-0.3359325
-5.9780907	-1.8758644	0.3014077
-3.1293587	2.8553140	-0.3194262
-3.5150763	-2.0847751	0.3233045

Table S21: Coordinates of the calculated structure of $\mathbf{2 7}$ (PBEh-3c/def2-mSVP).

	X	y	z	C	0.6798448	0.7312470	1.6968342
C	-0.6918049	1.1430734	-3.4457136	C	1.7097769	0.6462269	0.7387042
C	-1.2196667	0.3042270	-2.4806240	C	2.9917573	1.0122744	1.0394703
C	-1.9582610	-0.8267689	-2.8236178	C	-0.6021495	0.2913560	1.1184363
C	-2.1441934	-1.0995655	-4.1765732	C	-0.3228988	-0.1442269	-0.3393442
C	-1.6204331	-0.2679742	-5.1516903	C	1.1889838	0.1187697	-0.5347691
C	-0.8972584	0.8576645	-4.7854016	0	1.7954421	-0.0539379	-1.5536974
0	-1.1008965	0.6552265	-1.1590499	0	-1.6677606	0.2408119	1.6639851
C	-1.8051667	-1.9650251	-0.6224689	H	-0.1304217	2.0166828	-3.1432185
C	-2.3083256	-2.7906178	0.3669556	H	-2.6923793	-1.9875844	-4.4647275
C	-3.5677030	-3.3475300	0.2170631	H	-1.7730720	-0.5006250	-6.1968569
C	-4.3186946	-3.0688520	-0.9153911	H	-0.4832351	1.5101318	-5.5422719
C	-3.8038868	-2.2416288	-1.8990766	H	-1.7095306	-2.9982350	1.2434529
C	-2.5364185	-1.6784263	-1.7738087	H	-3.9650014	-3.9911167	0.9903197
0	-0.5164686	-1.5058764	-0.5121654	H	-5.3071116	-3.4925197	-1.0308764
C	4.8517210	2.3296734	3.9652988	H	-4.3990806	-2.0108276	-2.7734504
C	3.8199298	2.4186836	4.9232396	H	5.8568295	2.6249699	4.2346646
C	2.5453836	2.0504219	4.6017311	H	4.0445452	2.7813883	5.9172150
C	2.2346746	1.5732704	3.3070171	H	1.7537027	2.1188487	5.3371538
C	3.2788461	1.4840414	2.3371690	H	5.3793842	1.8062920	1.9707518
C	4.5873335	1.8744731	2.7058017	H	0.1235967	1.2535164	3.6904051
C	0.9227649	1.1872835	2.9621229	H	3.7773022	0.9407840	0.2970015

Table S22: Coordinates of the calculated structure of $\mathbf{2 9}$ (PBEh-3c/def2-mSVP).

	x	y	z	C	0.2041357	-0.6751785	8.0454748
0	-1.1369089	-0.2640379	0.1570443	H	0.3590217	-1.1857163	8.9864136
0	0.6604843	-2.2746472	1.5109301	C	0.4031263	-1.3365425	6.8680436

C
C
H
C
C
C

$\begin{array}{llll}0.7159631 & -2.3730861 & 6.8683106 & H\end{array}$
$0.2051091-0.6838602 \quad 5.6289824 \quad$ C
$0.4033808-1.35623924 .4052593 \quad \mathrm{H}$
$\begin{array}{llll}0.7137311 & -2.3940383 & 4.3950672\end{array}$
0.1987407 -
$-0.6759815 \quad 3.2376141$
$0.3523533-1.17008851 .8581243$
$0.0000000 \quad 0.0000000 \quad 0.9092583$
$-0.9792589-1.1111721-0.9109018$
$-0.2697470-0.6874428-2.0074865$
$-0.0541772-1.6112443-3.0724572$
$-0.6958512-2.8767860-3.0319173$
$-0.5069857-3.7863127-4.0966735$
$-1.0135153-4.7431160-4.0591544$
$0.3102582-3.4782389-5.1461425$
$0.4523584-4.1841761-5.9535291$
$-1.6091297-2.3644232-0.8589573$
$-2.1827707-2.63247700 .0177688$
$-1.4919239-3.2165028-1.9159112$
$-1.9828884-4.1813345-1.8931805$
$0.9869083-2.2443979-5.1648919$
$1.6598173-2.0143601-5.9802944$
$0.8105062-1.3366253-4.1582167$
$1.3538111-0.4026872-4.1839479$
$\begin{array}{lll}1.1369089 & 0.2640379 & 0.1570443\end{array}$
$\begin{array}{llll}-0.6604843 & 2.2746472 & 1.5109301\end{array}$
$-0.2041357 \quad 0.67517858 .0454748$
$-0.35902171 .18571638 .9864136$
$-0.40312631 .3365425 \quad 6.8680436$
$\begin{array}{llll}-0.7159631 & 2.3730861 & 6.8683106\end{array}$
$-0.2051091 \quad 0.68386025 .6289824$
$-0.4033808 \quad 1.3562392 \quad 4.4052593$
$\begin{array}{llll}-0.7137311 & 2.3940383 & 4.3950672\end{array}$
$\begin{array}{llll}-0.1987407 & 0.6759815 & 3.2376141\end{array}$
$-0.35235331 .17008851 .8581243$
$0.9792589 \quad 1.1111721 \quad-0.9109018$
$0.2697470 \quad 0.6874428-2.0074865$
$0.0541772 \quad 1.6112443-3.0724572$
$0.6958512 \quad 2.8767860 \quad-3.0319173$
$0.5069857 \quad 3.7863127-4.0966735$
$1.0135153-4.7431160-4.0591544$
$-0.3102582 \quad 3.4782389-5.1461425$
$-0.4523584 \quad 4.1841761-5.9535291$
$\begin{array}{llll}1.6091297 & 2.3644232 & -0.8589573\end{array}$
$2.1827707 \quad 2.63247700 .0177688$
$\begin{array}{llll}1.4919239 & 3.2165028 & -1.9159112\end{array}$
$\begin{array}{llll}1.9828884 & 4.1813345 & -1.8931805\end{array}$

-1.6598173	2.0143601	-5.9802944
-0.8105062	1.3366253	-4.1582167
-1.3538111	0.4026872	-4.1839479

6. NMR-Spectra

Figure S34: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

F	\cdots	セn¢ m®
-1	-	$\stackrel{\infty}{7}{ }_{7}^{\circ}$
1	$\stackrel{\square}{1}$	7 T

g
$\stackrel{9}{\circ}$
$\stackrel{1}{2}$

Figure S35: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S36: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S37: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S38: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{7}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S39: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{7}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S40: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz})$.

Figure S41: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(101 \mathrm{MHz})$.


```
\infty
```


Figure S42: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{1 0}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S43: ${ }^{13} \mathrm{C}$ NMR-spectrum of 10 in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S44: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	

Figure S45: ${ }^{13} \mathrm{C}$ NMR-spectrum of 13 in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.


```
\infty
```


Figure S46: ${ }^{1} \mathrm{H}$ NMR-spectrum of $14 \mathrm{in} \mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S47: ${ }^{13} \mathrm{C}$ NMR-spectrum of $14 \mathrm{in} \mathrm{CDCl}_{3}(101 \mathrm{MHz}$).

 ∞

Figure S48: ${ }^{1} \mathrm{H}$ NMR-spectrum of 15 in DMSO- $d_{6}(400 \mathrm{MHz})$.

Figure S50: ${ }^{1} \mathrm{H}$ NMR-spectrum of 21 in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S51: ${ }^{13} \mathrm{C}$ NMR-spectrum of 21 in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S52: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2 2}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

$200 \quad 190 \quad 180$
Figure S53: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{2 2}$ in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$.

Figure S54: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2 3}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S55: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{2 3}$ in $\mathrm{CDCl}_{3}(101 \mathrm{MHz}$).

Figure S56: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2 5}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

8	N	
9	\bigcirc	
\|		\rightarrow

Figure S57: ${ }^{13} \mathrm{C}$ NMR-spectrum of 25 in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$.

 が

Figure S58: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2 6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S59: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{2 6}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz}$).


```
\infty
```

```
\infty
```


Figure S60: ${ }^{1} \mathrm{H}$ NMR-spectrum of 27 in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}$).

Figure S61: ${ }^{13} \mathrm{C}$ NMR-spectrum of 27 in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S62: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{2 8}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S63: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{2 8}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S64: ${ }^{1} \mathrm{H}$ NMR-spectrum of 29 in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S65: ${ }^{13} \mathrm{C}$ NMR-spectrum of 29 in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$.

Figure S66: HMBC-spectrum of 29 in $\mathrm{CDCl}_{3}(500 / 125 \mathrm{MHz})$.

Figure S67: DQF-COSY-spectrum of 29 in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S68: HSQC-spectrum of 29 in $\mathrm{CDCl}_{3}(500 / 125 \mathrm{MHz})$.

Figure S69: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{3 0}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S70: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{3 0}$ in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$.

Figure S71: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{3 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz})$.

Figure S72: ${ }^{13} \mathrm{C}$ NMR-spectrum of $\mathbf{3 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(101 \mathrm{MHz})$.

Figure S73: ${ }^{1} \mathrm{H}$ NMR-spectrum of $\mathbf{3 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz})$.

Figure S74: ${ }^{13} \mathrm{C}$ NMR-spectrum of 32 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(101 \mathrm{MHz})$.

7. References

[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
[2] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3-8.
[3] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[4] TURBOMOLE V7.3 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
[5] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283-290.
[6] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
[7] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[8] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
[9] S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 2015, 143, 054107.
[10] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835.

