Supporting Information

Total Syntheses of Fimsbactin A and B and Their Stereoisomers to Probe the Stereoselectivity of the Fimsbactin Uptake Machinery in Acinetobacter

 baumanniiSoojeung Kim, ${ }^{\dagger}$ Haeun Lee, ${ }^{\dagger}$ Woon Young Song, ${ }^{\dagger}$ Hak Joong Kim* ${ }^{\dagger}, \delta$
${ }^{\dagger}$ Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
${ }^{\text {§ }}$ Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea

Supplemental Figures 2
Supplemental Table 4
Supplemental Methods 5
A. Procedures for Chemical Synthesis 5
B. Procedures for Biological/biochemical Experiment 17
Supplemental References 19
Spectral data 20

SUPPLEMENTAL FIGURES

Figure S1. Fluorescence titration of each $500 \mu \mathrm{M}$ fimsbactin in ethanol with $\mathrm{FeCl}_{3}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}, \lambda_{\mathrm{em}}=400 \mathrm{~nm}\right)$. The plot of fluorescence versus $\mathrm{Fe}($ III) equivalent for each fimsbactin was very close to the one previously presented by Bohac et al. ${ }^{\mathrm{S5}}$, which shows that all fimsbactin isomers are likely bind with $\mathrm{Fe}(\mathrm{III})$ at the $1: 1$ stoichiometry. Since epi-fimsbactin B (epi-1b) and ent-fimsbactin B (ent-1b) were enantiomers of dia-1b and $\mathbf{1 b}$, respectively, they were not included in this experiment.

Figure S2. Fluorescence titration of each $500 \mu \mathrm{M} \mathrm{Fe}(\mathrm{III})$-fimsbactin complex in ethanol with EDTA ($\lambda_{\mathrm{ex}}=320 \mathrm{~nm}$, $\lambda_{\mathrm{em}}=400 \mathrm{~nm}$). Upon a series of additions of EDTA, gradual recovery of the fluorescence corresponding to the release of apo-fimsbactin caused by competition of EDTA was observed. In all cases, discernible fluorescence recovery became visible right after addition of 1 equivalent of EDTA to the similar extent, which indicates that the Fe(III) affinities of all tested fimsbactin isomers would be comparable to each other. Since epi-fimsbactin B (epi$\mathbf{1 b}$) and ent-fimsbactin B ($\boldsymbol{e n t} \mathbf{t} \mathbf{1 b}$) were enantiomers of $\boldsymbol{d i a} \mathbf{- 1 b}$ and $\mathbf{1 b}$, respectively, they were not included in this experiment.

SUPPLEMENTAL TABLE

	${ }^{15} \mathrm{~N}$-labeled Fimsbactin A (reported) ${ }^{\mathbf{5 3}}$			Fimsbactin A (1a)					
Position	${ }^{13} \mathrm{C}, \mathrm{ppm}$	${ }^{1} \mathrm{H}, \mathrm{ppm}$	$J(\mathrm{~Hz})$	${ }^{13} \mathrm{C}, \mathrm{ppm}$	${ }^{1} \mathrm{H}, \mathrm{ppm}$	$J(\mathrm{~Hz})$	${ }^{13} \mathrm{C}, \mathrm{ppm}$	${ }^{1} \mathrm{H}, \mathrm{ppm}$	$J(\mathrm{~Hz})$
1	148.2			148.3			146.8		
2	145.7			145.8			145.8		
3	119.3	6.968	dd, 1H (8.0, 1.5)	119.5	6.96	app $\mathrm{t}, 1 \mathrm{H}(8.0)$	119.4	6.97	$b r \mathrm{~d}, 1 \mathrm{H}$ (7.4)
4	118.6	6.74	t, 1H (8.0)	118.7	6.74	app t, 1H (7.6)	118.7	6.74	app t, 1H (7.8)
5	117.7	7.08	dd, $1 \mathrm{H}(8.0,1.5)$	117.9	7.09	d, 1H (7.7)	117.9	7.08	d, 1H (7.8)
6	110.1			110.1			110.1		
7	166.3			166.5			166.6		
9	69.1	4.52	dd, $1 \mathrm{H}(8.0,7.5)$	69.3	4.52	$a p p \mathrm{t}, 1 \mathrm{H}$ (7.7)	69.4	4.46	m, 1H
		4.61	dd, $1 \mathrm{H}(10.0,8.5)$		4.61	$b r \mathrm{~m}, 1 \mathrm{H}$		4.60	$b r \mathrm{~m}, 1 \mathrm{H}$
10	66.9	5.06	dd, 1H (10.0, 7.5)	67.2	5.07	dd, 1H (10.0, 7.5)	67.1	5.07	dd, $1 \mathrm{H}(10.0,7.5)$
11									
12	169.9			170.1			170.0		
13		8.72	dd, 1H (93.0, 8.0)		8.80	$b r \mathrm{~s}, 1 \mathrm{H}$		8.74	$b r \mathrm{~s}, 1 \mathrm{H}$
14	51.5	4.72	m, 1H	51.7	4.71	m, 1H	51.6	4.73	m, 1H
15	64.3	4.39	m, 1H	64.4	4.39	m, 1H	64.2	4.46	m, 1H
		4.61	m, 1H		4.57	dd, 1H (11, 4.7)		4.46	m, 1H
17	168.7			168.9			168.8		
18	112.8			112.7			112.6		
19	149.5			148.3			148.3		
20	146.0			146.2			146.4		
21	120.7	6.97	dd, 1H (8.0, 1.5)	120.4	6.96	app $\mathrm{t}, 1 \mathrm{H}$ (8.0)	119.9	6.97	$b r$ d, 1H (7.4)
22	118.6	6.59	t, 1H (8.0)	118.7	6.55	app $\mathrm{t}, 1 \mathrm{H}$ (7.6)	118.7	6.64	app t, 1H, (7.8)
23	119.6	7.15	dd, 1H (8.0, 1.5)	119.8	7.14	d, 1H (7.7)	118.8	7.18	d,1H (7.9)
24	167.7			167.9			168.0		
25		8.23	dt, 1H (92.0, 5.5)		8.31	$b r \mathrm{~s}, 1 \mathrm{H}$		8.39	$b r$ s, 1H
26	38.3	3.10	m, 2H	38.5	3.12	m, 2H	38.5	3.11	m, 2H
27	25.9	1.38	m, 2H	26.1	1.38	m, 2H	26.0	1.37	m, 2H
28	23.5	1.49	m, 2H	23.7	1.49	m, 2H	23.7	1.48	m, 2H
29	46.3	3.45	t, 2H (7.0)	46.5	3.45	m, 2H	46.4	3.44	t, 2H (6.5)
30									
31	170.1			170.2			170.2		
32	20.1	1.96	s, 3H	20.4	1.96	s, 3H	20.4	1.95	s, 3H

Table S1. Comparison of the NMR spectral data of fimsbactin A (1a) and epi-fimsbactinA (epi-1a).

SUPPLEMENTAL METHODS

A. Procedures for Chemical Synthesis

All reactions were conducted in oven-dried glassware under nitrogen atmosphere with anhydrous solvents, unless otherwise noted. All reactions were monitored by analytical thin-layer chromatography (TLC) using pre-coated silica aluminum plate with F254 indicators, and the product profiles were visualized by UV irradiation (254 nm , 365 nm) and/or staining with a phosphomolybdic acid, ninhydrin, or potassium permanganate solution. The solvents, dichloromethane, toluene, tetrahydrofuran (THF), and N, N-dimethylformate (DMF) were dried by being passed through activated alumina column. Other anhydrous solvents were purchased from Sigma-Aldrich (Missouri, USA) or Acros Organics (Belgium). All chemical reagents used in the reactions were purchased from Sigma-Aldrich, Acros Organics, TCI Chemicals (Japan), Alfa-Aesar (Massachusettes, USA), AK Scientific (California, USA), or Daejung Chemicals \& Metals (Republic of Korea), and they were used as received unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$-NMR data were recorded using Varian Unity $400(400 / 100 \mathrm{MHz})$ or Bruker Advance $500(500 / 125$ MHz). Chemical shifts were reported in parts per million (ppm) relative to chloroform (${ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: 77.0$ ppm), methanol ($\left.{ }^{1} \mathrm{H}: 3.31 \mathrm{ppm},{ }^{13} \mathrm{C}: 49.05 \mathrm{ppm}\right), \mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}: 4.65 \mathrm{ppm}\right)$, or tetramethylsilane (TMS, 0.00 ppm), and the coupling constants were reported in Herz (Hz). High-resolution mass spectra were collected using Bruker Compact QTOF, where the electrospray ionization method was employed for ionization.

Compound 3a. To a solution of acid $\mathbf{2}^{\text {S1 }}(2.170 \mathrm{~g}, 8.468 \mathrm{mmol})$, $\mathrm{L}-\mathrm{Ser}-\mathrm{OMe} \cdot \mathrm{HCl}(1.970 \mathrm{~g}, 12.70 \mathrm{mmol})$, and $N, N-$ diisopropylethylamine (DIPEA, $4.4 \mathrm{ml}, 25.40 \mathrm{mmol}$) in N, N-dimethylformamide (DMF, 42 mL) was added N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide (EDC, $3.25 \mathrm{~g}, 16.93 \mathrm{mmol}$) and 1-hydroxybenzotriazole hydrate (HOBt, $2.59 \mathrm{~g}, 16.93 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the temperature was elevated to room temperature, the stirring continued for 3 hr . Upon confirmation of complete consumption of 2, the solvent was removed under reduced pressure, and the resulting residue was diluted with ethyl acetate $(250 \mathrm{~mL})$. The organic phase was sequentially washed with 1 M HCl solution, saturated sodium bicarbonate solution, and brine. The solution was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to afford the crude product in a solid form. After washed with petroleum ether, the solid was resuspended in dichloromethane, and the resulting solution was washed with 1 M HCl solution and saturated sodium bicarbonate solution in sequence. After concentration under reduced pressure, the desired amide $\mathbf{3 a}(2.768 \mathrm{~g}, 7.282 \mathrm{mmol})$ was obtained in 86% yield with no further purification. ${ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(a p p \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dt}, J=7.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ $-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,165.4,150.2,149.6,136.5,133.9,130.3,129.3$, 128.8, 128.0, 126.7, 126.3, 124.7, 123.1, 76.5, 75.2, 63.8, 55.6, 55.9. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{6}\right]^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: calculated 380.1110, found 380.1107.

Compound 3b. Amide 3b was prepared by following the previously established synthetic method ${ }^{51}$ from acid $\mathbf{2}$ using L-Thr-OMe in 89% yield. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-NMR and HR-MS spectra of compound $\mathbf{3 b}$ were reported in Ref. S1.

Compound 3c. Amide $\mathbf{3 c}$ was prepared following the method used for synthesis of amide $\mathbf{3} \mathbf{b}^{51}$ except for the use of D-Thr-OMe instead of L-Thr-OMe, and the yield was 86%. The ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound $\mathbf{3 c}$ were identical to those of its enantiomer, compound $\mathbf{3 b}$.

Compound 4a-i. The reaction was carried out in a flask fitted with a pressure-equalized addition funnel (containing a cotton plug and molecular sieves to function as a Soxhlet extractor) surmounted with a reflux condenser. A solution of amide 3a $(0.512 \mathrm{~g}, 1.491 \mathrm{mmol})$ and bis(acetylacetonato)dioxomolybdenum(VI) $\left(\mathrm{MoO}_{2}(\mathrm{acac})_{2}, 48.6 \mathrm{mg}, 10\right.$ $\mathrm{mol} \%$) in toluene (150 mL) was heated with an oil bath under azeotropic reflux. After 8 h , the reaction mixture was cooled to the ambient temperature and concentrated under reduced pressure. The crude product was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:etheyl acetate $\left.=9: 1\right)$ to yield the desired ester $\mathbf{4 a - i}(0.242 \mathrm{~g}, 0.710$ mmol) in 48% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .7 .26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.19$
$(\mathrm{m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $10.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,165.2,151.5,149.6,136.0,135.4,129.3$, $128.7,128.6,128.5,125.2,124.9,123.5,121.5,76.0,74.9,69.5,68.8,52.7$. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{5}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 340.1185, found 340.1192

Compound 4a. Ester 4a-i ($0.242 \mathrm{~g}, 0.710 \mathrm{mmol}$) was dissolved in ethyl ether (20 mL) and treated with potassium trimethylsilanolate $(0.288 \mathrm{~g}, 0.852 \mathrm{mmol})$ at room temperature. After stirred for 3 hr , the resulting solid was collected by filtration and washed with hexane/ethyl ether (1:1). The crude product was dried under reduced pressure to afford the desired potassium carboxylate $\mathbf{4 a}(0.199 \mathrm{~g}, 0.61 \mathrm{mmol})$ in 85% yield. The product was used in the next step without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}\right.$, methanol- $\left.d^{4}\right) \delta 7.38(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(a p p \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=10.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=10.6,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d^{4}) $\delta 180.4,178.8,165.2,152.3$, $150.3,137.2,136.9,130.4,130.0,129.8,129.7,126.2,125.8,124.4,123.4,76.2,75.7,72.4,72.2$. HR-MS (ESITOF) m / z for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{5}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 326.1028, found 326.1023

Compound $\mathbf{4 b}$. The synthesis of compound $\mathbf{4 b}$ from $\mathbf{3 b}$ was previously reported in Ref S 1 .

Compound $4 \mathbf{c}$. Potassium carboxylate $\mathbf{4 c}$ was prepared from $\mathbf{3 c}$ following the method used for synthesis of amide 4a, and the two-step yield was 56%. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound $\mathbf{4 c}$ were identical to those of its enantiomer, compound $\mathbf{4 b}$ reported in Ref S1.

Compound 7a-i. To a solution of the amine $\mathbf{5}^{\mathrm{S} 2}(3.00 \mathrm{~g}, 10.2 \mathrm{mmol})$ and Fmoc-L-Ser(TBS)-OH 6a ($4.60 \mathrm{~g}, 12.2$ $\mathrm{mmol})$ in dichloromethane $(60 \mathrm{~mL})$ was added $\operatorname{EDC}(2.33 \mathrm{~g}, 12.2 \mathrm{mmol})$ and $\mathrm{HOBt}(1.65 \mathrm{~g}, 12.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirred for 3 hr at room temperature, the reaction mixture was diluted with ethyl acetate (50 mL) and poured into 1 N HCl solution $(100 \mathrm{~mL})$. After collecting the organic layer, the aqueous layer was further extracted with ethyl acetate $(100 \mathrm{~mL} \times 2)$. The combined organic layers were washed with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ methanol in dichloromethane) to afford the desired Fmocamine intermediate $7 \mathrm{a}-\mathrm{i}(5.12 \mathrm{~g}, 7.75 \mathrm{mmol})$ in 76% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(b r \mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.31(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(b r \mathrm{~s}, 1 \mathrm{H}), 5.77(b r \mathrm{~s}, 1 \mathrm{H}), 4.79$ (s, 2H), $4.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(b r \mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.60$ (m, 3H), $3.35-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,170.1,156.1,143.9,143.8,141.37,141.36,134.4,129.3,129.1$, $128.8,127.8,127.1,125.18,125.16,120.1,76.4,67.2,63.3,55.8,47.2,44.8,39.3,26.6,25.9,24.4,20.5,18.2$, 5.4, -5.5. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)\right.$: calculated 682.3288, found 682.3286.

Compound 7a. A solution of $7 \mathbf{a - i}(5.12 \mathrm{~g}, 7.75 \mathrm{mmol})$ in dichloromethane $(40 \mathrm{~mL})$ was treated with diethylamine $(20 \mathrm{~mL})$ at room temperature. After stirred for 6 hr , the crude product was dried under reduced pressure. The crude product was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ methanol in dichloromethane) to afford the desired amine $7 \mathrm{a}(2.50 \mathrm{~g}, 5.71 \mathrm{mmol})$ in 74% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(b r \mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $-7.34(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=9.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(b r \mathrm{~m}, 2 \mathrm{H})$, $3.46(\mathrm{dd}, J=5.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,172.2,134.3,129.1,128.9,128.6,76.2$, $65.3,56.5,50.1,44.7,38.5,26.7,25.7,24.2,20.4,18.1,-5.5,-5.6$. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}^{+}\right]^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 438.2788, found 438.2788.

Compound 7b. Compound 7b was synthesized analogously to preparation of compound 7a from amine $\mathbf{5}$ using Fmoc-D-Ser(TBS)-OH. The two-step yield was 43%, and the ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound $7 \mathbf{7 b}$ were identical to those of its enantiomer, compound $\mathbf{7 a}$.

Compound 8a/8b (the condition in which epimerization was observed). To a solution of amine $7 \mathbf{a}(0.310 \mathrm{~g}, 0.711$ $\mathrm{mmol})$ and potassium carboxylate $\mathbf{4 a}(0.387 \mathrm{~g}, 1.07 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added EDC $(0.204 \mathrm{~g}$, 1.07 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 5 hr , and then it was diluted with dichloromethane $(25 \mathrm{~mL})$ and 1 N HCl solution $(25 \mathrm{~mL})$. After collection of the organic layer, the aqueous layer was extracted with dichloromethane ($20 \mathrm{~mL} \times 2$). The combined organic layers were then washed with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. In the crude residue, two discernible spots suspected to be diastereomers were detected at $\mathrm{R}_{\mathrm{f}}=0.28$ and 0.31 based on the thin layer chromatography analysis (5% methanol in dichloromethane). This mixture was separated by flash column chromatography $\left(\mathrm{SiO}_{2}, 3 \%\right.$ methanol in dichloromethane) to give the desired amide $\mathbf{8 a}$ $(0.258 \mathrm{~g}, 0.320 \mathrm{mmol})$ and its diastereomer $\mathbf{8 b}(0.0 .63 \mathrm{~g}, 0.085 \mathrm{mmol})$ in 45% and 12% yields, respectively. $\mathbf{8 a}$: ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d^{4}) $\delta 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{dd}, J=10.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.64(a p p \mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(a p p \mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(b r \mathrm{t}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.25(b r \mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}) 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, methanol-d ${ }^{4}$) $\delta 173.8,171.7,171.6,166.6,152.5,151.2,137.1,136.9,136.0,130.7,130.3,130.0$, $129.9,129.8,129.7,129.7,126.7,126.3,124.2,122.0,77.1,76.33,76.25,71.1,70.3,64.4,56.3,40.1,27.6,26.2$, 25.2, 20.4, 19.0, -5.39, -5.44. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right.$: calculated 745.3633, found 745.3630. 8b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d^{4}) $\delta 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{dd}, J=8.1,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.41(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=10.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{app} \mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(a p p \mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=10.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d^{4}) $\delta 173.7,171.62,171.58,166.6,152.5,150.9,137.07,137.02,136.1,130.7,130.3$, $130.1,130.00,129.81,129.79,129.7,126.6,126.3,124.3,122.3,77.1,76.4,76.1,70.8,70.3,64.4,56.5,40.1,27.5$, 26.3, 25.3, 20.4, 19.1, -5.33, -5.35. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 745.3633, found 745.3630 .

Compound 9. To a solution of $\mathbf{3 a}(2.27 \mathrm{~g}, 6.36 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ and methanol $(15 \mathrm{~mL})$ was added an aqueous solution of sodium hydroxide $(1.0 \mathrm{M}, 15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. After stirred for 1 hr at room temperature, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and acidified to pH 2 with concentrated hydrochloric acid. Then, acetone and methanol were removed under reduced pressure, and the resulting aqueous layer was diluted with water followed by extraction with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The resulting acid 9-i (crude $249 \mathrm{mg}, 0.686 \mathrm{mmol}$) was used in the next step without further purification. Acid 9-i was mixed with amine $7 \mathbf{a}(250 \mathrm{mg}, 0.572 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$, and this mixture was treated with diisopropylcarbodiimide (DIC, $144 \mathrm{mg}, 1.14 \mathrm{mmol}$), and Oxyma ${ }^{\circledR}(163 \mathrm{mg}, 1.14 \mathrm{mmol})$ at room temperature. After stirred for 3 hr , the reaction mixture was diluted with dichloromethane $(30 \mathrm{~mL})$. The organic layer was washed with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ methanol in dichloromethane) to afford the desired product $9(567 \mathrm{mg}, 1.06 \mathrm{mmol})$ in two steps 48% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(b r \mathrm{~s}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(b r \mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}$, $2 \mathrm{H}), 4.79-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=10.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $J=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=9.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}$, $1 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 172.9,170.4,170.0,165.2,150.2,149.7,136.5,134.3,133.8,130.5,129.3$, $129.3,129.2,128.9,128.8,127.8,126.8,126.4,124.6,123.0,76.6,76.6,75.1,63.0,62.9,55.3,55.1,38.9,26.1$, $25.8,24.1,20.5,18.2,14.3,-5.4,-5.5 . \mathrm{HR}-\mathrm{MS}(\mathrm{ESI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}$ for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{NaO}_{9} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):\right.$calculated

Compound 8a (stereoselective condition). The reaction was carried out in a flask fitted with a pressure-equalized addition funnel (containing a cotton plug and molecular sieves to function as a Soxhlet extractor) surmounted with a reflux condenser. A solution of $9(0.882 \mathrm{~g}, 1.16 \mathrm{mmol})$ and $\mathrm{MoO}_{2}(\mathrm{acac})_{2}(75 \mathrm{mg}, 20 \mathrm{~mol} \%)$ in toluene (230 mL) was heated with an oil bath under azeotropic reflux. After stirred for 8 h , the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The crude residue was then subjected to flash column chromatography ($\mathrm{SiO}_{2}, 2 \%$ methanol in dichloromethane) to afford the desired amide $8 \mathbf{8}(0.545 \mathrm{~g}, 0.730 \mathrm{mmol})$ in 63% yield without formation of its diastereomer $\mathbf{8 b}$.

Compound 10a. The synthesis of compound 10a from $\mathbf{4 b}$ and 7 a was previously reported in Ref. S2.

Compound 10b. To a solution of amine $7 \mathbf{a}(0.220 \mathrm{~g}, 0.502 \mathrm{mmol})$ and potassium carboxylate $\mathbf{4 c}(0.236 \mathrm{~g}, 0.625$ $\mathrm{mmol})$ in dichloromethane (3 mL) was added EDC $(0.120 \mathrm{~g}, 0.781 \mathrm{mmol})$ and $\mathrm{HOBt}(0.140 \mathrm{~g}, 0.781 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 5 hr , and then it was diluted with dichloromethane (25 mL) and 1 N HCl solution (25 mL). After collection of the organic layer, the aqueous layer was extracted with dichloromethane ($20 \mathrm{~mL} \times 2$). The combined organic layers were then washed with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography ($\mathrm{SiO}_{2}, 3 \%$ methanol in dichloromethane) to afford the desired amide 10b ($244 \mathrm{mg}, 0.322 \mathrm{mmol}$) in 64% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H})$, $7.13(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(b r \mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), ~, 4.38$
$-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.68-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,171.8,169.8,163.9,151.5,149.9,136.0,135.4,134.4,129.2,129.01,128.97,128.9,128.8$, $128.6,128.4,125.0,123.3,121.6,78.9,76.3,76.0,75.9,75.1,62.7,53.9,44.8,39.2,26.7,25.8,24.4,22.0,20.5$, 18.1, -5.41, -5.49. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right.$: calculated 759.3789, found 759.3787.

Compound 10c. Compound 10c was synthesized analogously to preparation of compound 10b, in which the reaction between amine $\mathbf{7 b}(0.476 \mathrm{~g}, 0.721 \mathrm{mmol})$ and potassium carboxylate $\mathbf{4 b}(0.326 \mathrm{~g}, 1.87 \mathrm{mmol})$ led to formation of the desired product $10 \mathrm{c}(0.360 \mathrm{~g}, 0.483 \mathrm{mmol})$ in 67% yield. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound $\mathbf{1 0 c}$ were were identical to those of its enantiomer, compound $\mathbf{1 0 b}$.

Compound 10d. Compound 10 d was synthesized analogously to preparation of compound $\mathbf{1 0 b}$, in which the reaction between amine $7 \mathbf{b}(1.07 \mathrm{~g}, 2.45 \mathrm{mmol})$ and potassium carboxylate $\mathbf{4 c}(1.01 \mathrm{~g}, 2.70 \mathrm{mmol})$ led to formation of the desired product $10 \mathrm{~d}(1.30 \mathrm{~g}, 1.72 \mathrm{mmol})$ in 70% yield. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound 10d were identical to those of its enantiomer, compound $10 \mathbf{a}$.

Compound 1a-ii. To a solution of $\mathbf{8 a}(0.248 \mathrm{~g}, 0.323 \mathrm{mmol}$) in tetrahydrofuran (THF, 2 mL) was added tetrabutylammonium fluoride (TBAF, 1 M in $\mathrm{THF}, 0.485 \mathrm{~mL}, 0.485 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 5 hr . After the substrate was completely consumed, the solvent was removed under reduced pressure. The resulting crude product 1a-i was used in the next step without further purification. To a
solution of crude $\mathbf{1 a - i}$ and acid $2(0.165 \mathrm{~g}, 0.646 \mathrm{mmol})$ in dichloromethane (2 mL) was added dicyclohexylcarbodiimide ($\mathrm{DCC}, 0.199 \mathrm{~g}, 0.969 \mathrm{mmol}$) and 4-(dimethylamino)pyridine (DMAP, $11.8 \mathrm{mg}, 0.0969$ $\mathrm{mmol})$ at room temperature. After stirred for 3 hr , the reaction mixture was diluted with dichloromethane (10 mL) and 1 N hydrochloric acid solution $(10 \mathrm{~mL})$. After collecting the organic layer, the aqueous layer was extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and concentrated under the reduced pressure. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 3 \%\right.$ methanol in dichloromethane) to afford the ester intermediate 1a-ii ($0.129 \mathrm{~g}, 0.149 \mathrm{mmol}$) in a two-step 46% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d^{4}) $\delta 7.38$ (dd, J = 7.8, 1.7 Hz, 1H), 7.37-7.33 (m, 6H), 7.26-7.19 (m, 8H), 7.16-7.11 (app t, J=1.5 Hz, 1H), 7.12 (app t, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J$ $=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.7,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=4.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.29-$ $3.24(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d^{4}) $\delta 173.9,170.3,166.9,166.6,152.5,152.4,151.1,150.9,137.0,137.0,136.92,136.89,136.0,130.7$, $130.3,130.2,130.1,130.0,129.9,129.8,129.73,129.71,129.69,127.1,126.5,126.5,126.2,125.7,124.2,124.2$, 122.1, 77.1, 76.6, 76.3, 76.1, 75.8, 70.8, 70.4, 65.1, 54.8, 53.9, 40.1, 29.5, 27.5, 20.4. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{49} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 869.3398, found 869.3395.

Fimsbactin A (1a). For the hydrogenolytic global deprotection, a catalytic amount of palladium on activated carbon $(10 \mathrm{wt} \%, 15.9 \mathrm{mg}, 0.015 \mathrm{mmol})$ was suspended in a solution of ester $\mathbf{1 a - i i}(26.3 \mathrm{mg}, 0.0303 \mathrm{mmol})$ in methanol (1 mL) at room temperature, and the reaction was initiated by charging the reaction flask with hydrogen gas in a balloon (1 atm). After 3 hr , the reaction mixture was filtered through a pad of celite to remove the palladium catalyst, and the filtrate was concentrated under reduced pressure to afford the desired product $\mathbf{1 a}$ (Fimsbactin A, 17.7 mg , $0.0297 \mathrm{mmol})$ in 98% yield without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d^{6}) $\delta 8.80(b r \mathrm{~s}, 1 \mathrm{H}), 8.31(b r$ $\mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(a p p \mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(a p p \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(a p p \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.58(b r \mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J$ $=11,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52($ app $\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}$, $3 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d^{6}) $\delta 170.2,170.1,168.9,167.9,166.5$,
$148.3,146.2,145.8,120.4,119.8,119.5,118.7,117.9,112.7,110.1,69.3,67.2,64.4,51.7,46.5,38.5,26.1,23.7$, 20.4. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: calculated 597.1809, found 597.1807.

Compound epi-1a-ii. Compound epi-1a-ii was synthesized analogously to preparation of compound 1a-ii, in which a two-reaction sequence from $\mathbf{8 b}(30 \mathrm{mg}, 0.035 \mathrm{mmol})$ led to formation of the desired product $\boldsymbol{e p i} \mathbf{- 1} \mathbf{1} \mathbf{a}-\mathbf{i i}(15.3 \mathrm{mg}$, 0.0175 mmol) in two step 50% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d^{4}) $\delta 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.12(\mathrm{~m}$, $10 \mathrm{H}), 7.07$ (dd, $J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (s, 2H), 5.32 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (s 1H), 5.26 (s, 1H), 5.23 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dd, $J=10.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (s, 2H), 4.72 (dd, $J=11.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ - 4.49 (m, 3H), 3.67-3.60 (́ㅏ m, 2H), $3.35-3.29$ (m, 2H), $3.24-3.19$ (m, 2H), 1.98 (s, 3H), $1.85-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d^{4}) $\delta 173.8,170.3,167.0,166.5,152.6,152.5,151.3,150.9$, $137.1,136.99,136.95,130.7,130.30,130.28,130.1,129.98,129.97,129.82,129.79,129.76,129.7,127.3,126.6$, $126.5,126.2,125.8,124.4,124.3,122.3,77.10,77.05,76.5,76.3,76.0,70.7,70.4,65.4,54.8,53.8,40.1,34.6,27.5$, 20.3. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{49} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 869.3398, found 869.3396.

$\boldsymbol{e p i}$-Fimsbactin A (epi-1a). epi-Fimsbactin A (epi-1a) was synthesized analogously to preparation of fimsbactin A (1a), in which epi-1a-ii ($15.3 \mathrm{mg}, 0.0175 \mathrm{mmol}$) was subjected to hydrogenolysis to afford epi-fimsbactin A (epi1a, $9.3 \mathrm{mg}, 0.016 \mathrm{mmol}$) in 96% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d^{6}\right) \delta 8.74(b r \mathrm{~s}, 1 \mathrm{H}), 8.39(b r \mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(b r \mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(a p p \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(a p p \mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.57(b r \mathrm{~m}, 1 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, DMSO- d^{6}) $\delta 170.2,170.0,168.8,168.0,166.6,148.3,146.8,146.4,145.8,119.9,119.4,118.8,118.7,117.9,112.6$, $110.1,69.4,67.1,64.2,51.6,46.4,38.5,26.0,23.7,20.4$. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: calculated 597.1809, found 597.1806.

Fimsbactin B (1b). Compound 1b was synthesized analogously to preparation of compound 1a, in which a threereaction sequence from $\mathbf{1 0 a}(0.291 \mathrm{~g}, 0.391 \mathrm{mmol})$ led to formation of the desired product $\mathbf{1 b}(0.133 \mathrm{~g}, 0.227 \mathrm{mmol})$ in three step 58% yield. The ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound $\mathbf{1 b}$ were previously reported in Ref. S2.

Compound dia-1b-ii. Compound dia-1b-ii was synthesized analogously to preparation of compound $\mathbf{1 a} \mathbf{a}-\mathbf{i i}$, in which a two-reaction sequence from $\mathbf{1 0 b}(0.092 \mathrm{~g}, 0.140 \mathrm{mmol})$ led to formation of the desired product dia-1b-ii $(63.3 \mathrm{mg}, 0.094 \mathrm{mmol})$ in two step 67% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J$ $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 9 \mathrm{H})$, $7.11(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(b r \mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}$, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.42(\mathrm{~m}, 4 \mathrm{H}), 5.37-5.29(\mathrm{~m}, 3 \mathrm{H}), 4.90-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.71$ $(\mathrm{m}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.51(b r \mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,168.5,165.5,163.9$, $151.6,151.5,150.3,150.0,136.0,135.6,135.5,135.4,129.3,129.13,129.06,129.0,128.9,128.9,128.8,128.7$, $128.5,126.3,125.9,125.1,125.1,124.4,123.4,121.6,78.8,76.4,76.0,75.9,75.4,75.2,64.1,52.0,39.5,26.2,24.5$, 22.0, 20.5. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calculated 883.3554 , found 883.3552 .

$\boldsymbol{d i a}$-Fimsbactin B (dia-1b). dia-Fimsbactin B (dia-1b, $50.9 \mathrm{mg}, 0.086 \mathrm{mmol})$ was synthesized from dia-1b-ii (63.3 $\mathrm{mg}, 0.094 \mathrm{mmol}$) by hydrogenolytic global deprotection, analogously to preparation of fimsbactin $\mathrm{A}(\mathbf{1 a})$, and the yield was $91 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$) $\delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}), 9.45(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~s}$, $1 \mathrm{H}), 8.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(a p p \mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 2 \mathrm{H})$, $4.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.13(\mathrm{dq}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dq}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$) $\delta 170.2,169.8,168.9,167.8,166.0,149.5,148.3$, $146.1,145.8,120.9,119.8,119.5,118.9,118.7,117.9,112.9,110.2,79.0,73.2,64.4,51.5,46.4,38.5,26.1,23.7$, 20.5, 20.3. HR-MS (ESI-TOF) m / z for $\left[\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{11}\right]^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: calculated 611.1965, found 611.1963.

$\boldsymbol{e p i}$-Fimsbactin B (epi-1b). Compound epi-1b was synthesized analogously to preparation of compound 1a, in which a three-reaction sequence from $\mathbf{1 0 c}(74.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ led to formation of the desired product epi-1b $(45.3$ $\mathrm{mg}, 0.077 \mathrm{mmol}$) in three step 77% yield. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound epi-1b were identical to those of its enantiomer, dia-fimsbactin B (dia-1b).

ent-Fimsbactin B (ent-1b). Compound ent-1b was synthesized analogously to preparation of compound 1a, in which a three-reaction sequence from $10 d(0.446 \mathrm{~g}, 0.599 \mathrm{mmol})$ led to formation of the desired product ent-1b $(0.218 \mathrm{~g}, 0.371 \mathrm{mmol})$ in three step 62% yield. The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HR-MS spectra of compound ent-1b were identical to those of its enantiomer, fimsbactin $\mathrm{B}(\mathbf{1 b})$.

B. Proceddres for Biological/biochemical Experiments

Growth promotion activity assay

A single colony was picked from a fresh Luria-Bertani (LB) agar-plate overlaid with the A. baumannii strain of interest and was then used to inoculate 5 mL of LB media. After incubation at $37^{\circ} \mathrm{C}$ overnight in a shaking incubator (200 rpm), the culture solution was diluted with LB broth for an $\mathrm{OD}_{600} \approx 1$. This solution was further diluted 1:100 with LB media containing the designated concentration of $2,2^{\prime}$-bipyridyl (DP) $(275 \mu \mathrm{M}$ for A. baumannii ATCC 17978, $175 \mu \mathrm{M}$ for A. baumannii ATCC 19606 wild-type or Δ bauA mutant). An aliquot ($198 \mu \mathrm{~L}$) of the diluted culture was mixed with a $2-\mu \mathrm{L}$ aliquot of fimsbactin or fimsbactin stereoisomer DMSO stock solution whose concentrations were adjusted to make the intended final concentrations indicated in Figure 2 in a sterile Greiner Bio-One 96-well microplate (Kremsmünster, Austria). The microplate was then covered with a Breathe-Easy ${ }^{\circledR}$ sealing tape (Sigma-Aldrich) for efficient aeration, and it was incubated at $37^{\circ} \mathrm{C}$ with shaking at 200 rpm . The OD600 values were recorded every hour using Epoch 2 microplate reader (Biotek, Vermont, USA). All measurements were made using duplicate or quadruplicate biological samples, and the mean values were used for plotting the results, in which the error bars indicate the standard deviation (Figure 2A and 2B) or the standard error (Figure 2C). A. baumannii ATCC 19606 and 17978 were obtained from ATCC (Virginia, USA) or KCTC (Korean Collection for Type Cultures, Jeollabuk-do, Republic of Korea), and the preparation of A. baumannii ATCC 19606 $\Delta b a u A$ was reported previously. ${ }^{\text {S4 }}$

Determination of the $\mathbf{F e}$ (III) binding stoichiometry of a fimsbactin

The fluorescence titration-based determination of the Fe (III) binding stoichiometry of a fimsbactin was conducted by following the procedure described in Ref S5. Briefly, to a $600 \mu \mathrm{~L}$ solution of $500 \mu \mathrm{M}$ fimsbactin in ethanol was added $3 \mu \mathrm{~L}$ aliquots of $10 \mathrm{mM} \mathrm{FeCl}_{3}$ in ethanol, and emission at $400 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}\right.$) was recorded after each addition. The emission signal was plotted against the equivalents of Fe (III) as shown in Figure S 1 . This set of experiments was conducted using a Hitachi F-7000 fluorescence spectrophotometer, in which the slit sizes for excitation and emission were 5 nm and 10 nm , respectively.

EDTA competition assay

To qualitatively compare the Fe(III) binding affinity of various fimsbactin isomers, the fluorescence recovery of the corresponding Fe (III) complexes upon addition of a competing Fe (III) chelator, ethylenediaminetetraacetic acid (EDTA), was monitored. The Fe(III)-fimsbactin complex was prepared by dissolving $30 \mu \mathrm{~L}$ of 10 mM fimsbactin and $30 \mu \mathrm{~L}$ of $10 \mathrm{mM} \mathrm{FeCl}_{3}$ in $540 \mu \mathrm{~L}$ ethanol, in which the final concentration of the resulting Fe (III)-fimsbactin complex was $500 \mu \mathrm{M}$. To this solution, aliquots of $10 \mathrm{mM} \mathrm{Na} \mathrm{Na}_{4}$ EDTA in water were added one after the other to adjust the equivalents of EDTA with respect to Fe(III)-fimsbactin complex to be $0.5,0.75,1,1.25,1.5,1.75$, and 2 .

The fluorescence emission at $400 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}\right)$ was recorded after each addition. The emission signal versus the equivalent of EDTA was plotted in Figure S2. The experimental setup was identical to the binding stoichiometry determination experiment.

Parallel artificial membrane permeability assay (PAMPA)

A parallel artificial membrane permeability assay was conducted by following the instruction provided in a Corning Gentest Pre-coated PAMPA Plate System (Cat. No. 353015, Corning, New York, USA). Initially, Fe(III)-preloaded fimsbactin A and B (holo-1a and holo-1b) were prepared by mixing each of these compounds with 1.1 eq. iron(III) acetylacetonate, $\mathrm{Fe}(\mathrm{acac})_{3}$, in methanol, and the mixture was incubated at room temperature overnight for complete complexation. Then, methanol was completely removed by using a spinvac, and the resulting residue was triturated and washed with cold ether several times to afford pure holo-fimsbactins. To the wells of a Receiver plate ("donor wells"), $300 \mu \mathrm{~L}$ of a solution of holo-fimsbactin A or B $(200 \mu \mathrm{M})$ in 100 mM Tris $\cdot \mathrm{HCl}$ buffer (pH 7) was added, and the wells of a Filter plate ("acceptor wells") were filled with the buffer alone ($200 \mu \mathrm{~L}$). Then, these two plates were coupled, and the resulting assembly was incubated at room temperature for 4 hr without agitation. At the end of the incubation, the plates were separated, and $150 \mu \mathrm{~L}$ solutions from each well of both plates were aliquoted and transferred to a Greiner UV-star® ${ }^{\circledR} 96$-well microplate. The final concentrations of compounds in both donor and acceptor wells were analyzed by measuring the absorption with Epoch 2 microplate reader (the standard concentration plot for each holo-fimsbactin was created beforehand). Finally, the permeability of each holofimsbactin was calculated using the following formula:

```
Permeability \((\mathrm{cm} / \mathrm{s}): P_{\mathrm{e}}=\left\{-\ln \left[1-\mathrm{C}_{\mathrm{A}}(t) / \mathrm{C}_{\mathrm{eq}}\right]\right\} /\left[\mathrm{A} \times\left(1 / \mathrm{V}_{\mathrm{D}}+1 / \mathrm{V}_{\mathrm{A}}\right) \times t\right]\)
\(\mathrm{A}=\) Filter area \(\left(0.3 \mathrm{~cm}^{2}\right)\)
\(\mathrm{V}_{\mathrm{D}}=\) Donor well volume ( 0.3 mL )
\(\mathrm{V}_{\mathrm{A}}=\) Acceptor well volume ( 0.2 mL )
\(\mathrm{C}_{\mathrm{A}}(t)=\) compound concentration in acceptor well at time \(t\)
\(\mathrm{C}_{\mathrm{D}}(t)=\) compound concentration in donor well at time \(t\)
\(\mathrm{C}_{\mathrm{eq}}=\left[\mathrm{C}_{\mathrm{D}}(t) \times \mathrm{V}_{\mathrm{D}}+\mathrm{C}_{\mathrm{A}}(t) \times \mathrm{V}_{\mathrm{A}}\right] /\left(\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{A}}\right)\)
```


SUPPLEMENTAL REFERENCES

S1. Kim, J.; Lee, J. E.; Ree, H.; Kim, H. J. Bull. Kor. Chem. Soc. 2015, 36, 439.
S2. Ree, H.; Kim, J.; Song, W. Y.; Lee, J. E.; Kim, H. J. Bull. Kor. Chem. Soc. 2015, 36, 1520.
S3. Proschak, A.; Lubuta, P.; Grün, P.; Löhr, F.; Wilharm, G.; De Berardinis, V.; Bode, H. B. Chembiochem 2013, 14, 633.

S4. Oh, M. H.; Lee, J. C.; Kim, J.; Choi, C. H.; Han, K. Appl. Environ. Microbiol. 2015, 81, 3357.
S5. Bohac, T. J.; Fang, L.; Giblin, D. E.; Wencewicz, T. A. ACS Chem. Biol. 2019, 14, 674.

SPECTRAL DATA

${ }^{1} \mathrm{H}$-NMR of Compound $\mathbf{3 a}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$$
<_{9: 13}^{9,14}
$$

${ }^{13} \mathrm{C}$-NMR of Compound 3a ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& -171.3 \\
& \text { - } 165.4 \\
& >_{199.6}^{150.2}
\end{aligned}
$$

HR-MS of Compound 3a

Compound Spectrum SmartFormula Report

+MS, 0.1-0.4min \#3-23

226.9510									+MS	0.1-0.4m	3-23
100	200	300	400	500	60		700			900	m/z
Meas. m/z	\#	Ion Formula	m / z	err [ppm]	mSigma	\# Sigma	Score	rdb	e^{-}Conf	N -Rule	
380.1107	1	C17H14N7O4	380.1102	-1.4	2.3	1	100.00	14.5	even	ok	
	2	C16H18N3O8	380.1088	4.9	10.0	2	51.62	9.5	even	ok	
	3	C13H10N13O2	380.1075	8.5	12.5	3	11.35	15.5	even	ok	
	4	C21H18NO6	380.1129	5.7	13.5	4	38.91	13.5	even	ok	
	5	C18H10N11	380.1115	-2.1	15.9	5	67.94	19.5	even	ok	
	6	C22H14N5O2	380.1142	-9.2	24.9	6	8.79	18.5	even	ok	
	7	C28H14NO	380.1070	9.8	50.4	7	3.46	22.5	even	ok	
	1	C19H19NNaO6	380.1105	0.7	2.6	1	100.00	10.5	even	ok	
	2	C16H11N11Na	380.1091	-4.2	6.5	2	33.03	16.5	even	ok	
	3	C15H15N7NaO4	380.1078	7.7	11.0	3	10.18	11.5	even	ok	
	4	C20H15N5NaO2	380.1118	-2.9	16.2	4	38.14	15.5	even	ok	

KSJ001.d
$\begin{array}{cccc}\text { Bruker Compass DataAnalysis } 4.1 \quad \text { printed: } 7 / 11 / 2019 \text { 3:28:57 PM } & \text { by: lee }\end{array}$

${ }^{1} \mathrm{H}$-NMR of Compound $\mathbf{4 a - i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C－NMR of Compound 4 a － $\mathbf{(1 2 5 ~ M H z}, \mathrm{CDCl}_{3}$ ）
$\stackrel{\text { Or }}{1}, \stackrel{0}{\circ}$

-171.9
-165.2
${ }_{-199.6}^{151.5}$
$={ }_{=136.4}^{1360}$

HR-MS of Compound 4a-i

Compound Spectrum SmartFormula Report

+MS, 0.3-0.7min \#17-42

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound $4 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound $4 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

HR-MS of Compound 4a

Compound Spectrum SmartFormula Report

+MS, 0.1-0.5min \#4-27

${ }^{1} \mathrm{H}$-NMR of Compound 7a-i $\mathbf{(5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$-NMR of Compound 7a-i ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l} 3$)

HR-MS of Compound 7a-i

Compound Spectrum SmartFormula Report

+MS, 0.1-0.7min \#6-39

KSJ004.d

| Bruker Compass DataAnalysis 4.1 printed: 7/11/2019 3:38:06 PM | by: lee |
| :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound 7a(500 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$-NMR of Compound $7 \mathrm{a}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

HR-MS of Compound 7a

Compound Spectrum SmartFormula Report

+MS, 0.1-0.4min \#5-26

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound $8 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound 8a ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

HR-MS of Compound 8a

Compound Spectrum SmartFormula Report

+MS, 0.1-0.4min \#3-21

KSJ016.d

| Bruker Compass DataAnalysis 4.1 printed: 9/3/2019 3:37:49 PM | by: lee |
| :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound $\mathbf{8 b}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound $\left.\mathbf{8 b} \mathbf{(1 2 5} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$

HR-MS of Compound $\mathbf{8 b}$

Compound Spectrum SmartFormula Report

+MS, 0.2-0.7min \#9-43

									+MS, 0.2	0.7min \#9-43
100	200	300	400	500	600	700		800	900	m / z
Meas. m/z	\#	Ion Formula	m/z	err [ppm]	mSigma	\# Sigma	Score	rdb	e^{-}Conf	N-Rule
745.3630	1	C36H49N10O6Si	745.3600	-4.0	7.4	1	16.06	18.5	even	ok
	2	C40H53N4O8Si	745.3627	-0.4	10.4	2	100.00	17.5	even	ok
	3	C37H45N14O2Si	745.3614	-2.2	12.4	3	44.61	23.5	even	ok
	4	C41H49N8O4Si	745.3641	-1.4	20.9	4	56.96	22.5	even	ok
	5	C36H57N4O9Si2	745.3659	-3.8	24.0	5	13.83	12.5	even	ok
	6	C45H53N2O6Si	745.3667	5.0	32.3	6	4.60	21.5	even	ok
	7	C43H53N4O4Si2	745.3600	-4.1	57.6	7	4.33	21.5	even	ok
	8	C39H57N4O5Si3	745.3631	0.1	67.4	8	28.39	16.5	even	ok
	9	C52H49N2OSi	745.3609	-2.9	68.3	9	6.54	30.5	even	ok
	10	C48H53N2O2Si2	745.3640	1.3	74.0	10	14.46	25.5	even	ok
	11	C40H53N8OSi3	745.3645	-1.9	75.9	11	10.17	21.5	even	ok
	12	$\mathrm{C} 42 \mathrm{H} 57 \mathrm{~N} 4 \mathrm{OSi} 4$	745.3604	3.6	116.1	12	0.62	20.5	even	ok
	13	$\mathrm{C} 38 \mathrm{H} 61 \mathrm{~N} 4 \mathrm{O} 2 \mathrm{Si} 5$	745.3635	0.7	133.3	13	1.02	15.5	even	ok
	1	C38H54N4NaO8Si	745.3603	3.7	5.3	1	39.93	14.5	even	ok
	2	C39H50N8NaO4Si	745.3616	1.9	11.9	2	100.00	19.5	even	ok
	3	C43H54N2NaO6Si	745.3643	1.7	21.7	3	87.27	18.5	even	ok
	4	C36H50N12NaOSi2	745.3661	-4.1	30.8	4	16.74	19.5	even	ok
	5	C44H50N6NaO2Si	745.3657	3.5	32.4	5	24.75	23.5	even	ok
	6	C37H58N4NaO5Si3	745.3607	-3.1	57.3	6	18.83	13.5	even	ok
KSJ009.d										
Bruker Compass DataAnalysis 4.1 prir			printed: 7/11/2019 3:57:13 PM			by:	ee		P	ge 1 of 2

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound 9 ($\mathbf{1 2 5} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

HR-MS of Compound 9

Compound Spectrum SmartFormula Report

+MS, 0.1-0.6min \#5-32

${ }^{1} \mathrm{H}$-NMR of Compound $10 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound 10b ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HR-MS of Compound 10b

Compound Spectrum SmartFormula Report

+MS, 0.1-0.4min \#4-24

		300			600	$\begin{array}{r} 685.4340 \\ +\quad .1 \\ \hline \quad 700 \end{array}$			+MS, 0.1	.4min \#4-24
100	200	300	400	500	600	700		800	90	m/z
Meas. m/z	\#	Ion Formula	m/z	err [ppm]	mSigma	\# Sigma	Score	rdb	e^{-}Conf	N-Rule
759.3787	1	C37H51N1006Si	759.3757	-4.0	8.0	1	15.20	18.5	even	ok
	2	C41H55N4O8Si	759.3784	-0.4	8.5	2	100.00	17.5	even	ok
	3	C38H47N14O2Si	759.3770	2.2	11.0	3	44.03	23.5	even	ok
	4	C42H51N8O4Si	759.3797	1.3	19.0	4	58.20	22.5	even	ok
	5	C37H59N4O9Si2	759.3815	3.7	22.6	5	14.09	12.5	even	ok
	6	C46H55N2O6Si	759.3824	4.8	30.5	6	4.76	21.5	even	ok
	7	C44H55N4O4Si2	759.3756	-4.0	56.2	7	4.35	21.5	even	ok
	8	C40H59N4O5Si3	759.3788	-0.1	66.4	8	23.94	16.5	even	ok
	9	C53H51N2OSi	759.3765	2.9	66.6	9	6.67	30.5	even	ok
	10	C49H55N2O2Si2	759.3797	1.3	72.8	10	12.37	25.5	even	ok
	11	C41H55N8OSi3	759.3801	-1.9	75.0	11	8.64	21.5	even	ok
	12	C43H59N4OSi4	759.3760	3.5	115.6	12	0.51	20.5	even	ok
	13	C39H63N4O2Si5	759.3792	0.6	123.3	13	1.48	15.5	even	ok
	1	C39H56N4NaO8Si	759.3760	3.6	5.7	1	38.27	14.5	even	ok
	2	C40H52N8NaO4Si	759.3773	-1.9	10.3	2	100.00	19.5	even	ok
	3	C44H56N2NaO6Si	759.3800	-1.7	19.8	3	89.97	18.5	even	ok
	4	C37H52N12NaOSi2	759.3818	-4.0	29.1	4	17.36	19.5	even	ok
	5	C45H52N6NaO2Si	759.3813	-3.4	30.5	5	25.76	23.5	even	ok
	6	C38H60N4NaO5Si3	759.3764	-3.1	56.3	6	15.66	13.5	even	ok
KSJ013.d										
Bruker Compass DataAnalysis 4.1			printed: 7/11/2019 4:02:59 PM			by: lee			Page 1 of 2	

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound 1a-ii $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound 1a-ii ($\mathrm{CD}_{3} \mathrm{OD}$)

HR-MS of Compound 1a-ii

Compound Spectrum SmartFormula Report

+MS, 0.2-0.6min \#11-37

KSJ007.d
Bruker Compass DataAnalysis 4.1 printed: 7/11/2019 4:06:48 PM \quad by: lee \quad Page 1 of 1
${ }^{1} \mathrm{H}$-NMR of Compound 1a (Fimsbactin A, 500 MHz, DMSO-d ${ }^{6}$)

${ }^{13}$ C-NMR of Compound 1a (Fimsbactin A, 125 MHz , DMSO-d ${ }^{6}$)

HR-MS of Compound 1a (Fimsbactin A)

Compound Spectrum SmartFormula Report

+MS, 0.3-0.7min \#16-42

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Compound epi-1a-ii ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR of Compound epi-1a-ii

HR-MS of Compound epi-1a-ii

Compound Spectrum SmartFormula Report

+MS, 0.1-0.5min \#7-31

${ }^{1} \mathrm{H}$-NMR of Compound epi-1a (epi-Fimsbactin A, 500 MHz, DMSO-d ${ }^{6}$)

${ }^{13}$ C-NMR of Compound epi-1a (epi-Fimsbactin A, 125 MHz, DMSO-d ${ }^{6}$)

HR-MS of Compound epi-1a (epi-Fimsbactin A)

Compound Spectrum SmartFormula Report

+MS, 0.1-0.5min \#4-29

KSJ011.d
Bruker Compass DataAnalysis 4.1 printed: 7/11/2019 4:00:00 PM \quad by: lee \quad Page 1 of 1
${ }^{1} \mathrm{H}$-NMR of Compound dia-1b-ii $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of Compound dia-1b-ii ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

HR-MS of Compound dia-1b-ii

Compound Spectrum SmartFormula Report

+MS, 0.3-0.9min \#17-54

${ }^{1} \mathrm{H}$-NMR of Compound dia-1b (dia-Fimsbactin B, 500 MHz, DMSO-d ${ }^{6}$)

${ }^{13}$ C-NMR of Compound dia-1b (dia-Fimsbactin B, 125 MHz, DMSO-d ${ }^{6}$)

HR-MS of Compound dia-1b (dia-Fimsbactin B)

Compound Spectrum SmartFormula Report

+MS, 0.2-0.6min \#11-35

KSJ015.d

Bruker Compass DataAnalysis 4.1	printed: $7 / 11 / 2019$ 4:06:04 PM	by: lee	Page 1 of 1

