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i. Formal definition of the Observed Effusivity in this paper

The process of heat transfer, in the case of PCM present within the matrix material, is modelled by the 

reaction-heat equation 

(S1)∂𝑇
∂𝑡 = 𝛼

∂2𝑇
∂𝑥2 ―𝑆(𝑡)

where α = k/(ρcp) denotes the thermal diffusivity of the medium and S(t) is the volumetric 

heat sink associated with the integrated effect of the PCM.

In 2000, Kulish and Lage proposed an elegant method, which allows one to obtain analytical (closed-

form) solutions to various energy transport problems.1 The method is based on employing generalised 

differentiation, which in many cases leads to the use of fractional order derivatives (fractional calculus). 

The solutions thus obtained are in the form of the Volterra-type integral equations, which relate the local 

values of an intensive property (e.g., temperature, mass concentration, velocity) and the corresponding 

energy flux (e.g., heat flux, mass flux, shear stress). Those solutions are valid everywhere within the domain 

of interest and, which is of extreme importance, remain valid on the domain boundaries. Therefore, the 

method does not require one to solve for the entire domain and, hence, is a non-field analytical method. 

This method was shown to be extremely effective when applied to solving transient diffusion problems2 

and then, it was generalised by Frankel for finite domains.3 In papers4,5 it was extended to solve analytically 

ultra-fast heat transfer problems described by the hyperbolic heat conduction equation without source term 

as well as the dual-phase-lag model proposed by Tzou.6 The same method was then extended to problems 

of ultra-fast heat transfer in domains with moving boundaries.7 The case of solutions containing the heat 

source term was considered in.8 A generalisation of the method was proposed in.9 

In the case, when the heat transfer process is modelled by Equation S1, the integral relation between 

the local values of temperature, T, and the corresponding heat flux, q'', is given by 

(S2),𝑇(𝑥,𝑡) = 𝑇0 +
1

𝜋𝑘𝜌𝐶𝑝
∫𝑡

0
𝑞′′(𝑥,𝜁)𝑑𝜁

1 ― 𝜁 ― 𝛽(𝑡)

where β(t) is a contribution from the volumetric heat sink (see 2 for details). 

As can be seen from the first term in the right side of Equation S2, the effusivity of 

the matrix material given by 

(S3)𝑒 = 𝑘𝜌𝐶𝑝 
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is the main control parameter of the heat transfer process in question. 

As was pointed out in10,11, an analytical description of the effect, produced by 

randomly distributed sources/sinks, is an extremely challenging task, because such a 

description requires defining surface integrals over the entire boundary, which separates 

the matrix material from the PCM. To overcome this difficulty, instead of dealing with 

Equation S2, one can consider the following equation:

(S4)𝑇(𝑥,𝑡) = 𝑇0 +
1

𝜋𝑒𝑜𝑏𝑠(𝑡)
∫𝑡

0
𝑞′′(𝑥,𝜁)𝑑𝜁

1 ― 𝜁

In the latter equations, the effect from the heat sinks is incorporated into the so-

called effective (observed) effusivity. From comparing Equation S2 and S4, it becomes 

obvious that . 𝑒𝑜𝑏𝑠 ≥ 𝑘𝜌𝐶𝑝

The surface temperature (at x=0) is given by 

(S5).𝑇(0,𝑡) = 𝑇0 +
1

𝜋𝑒𝑜𝑏𝑠(0,𝑡)
∫𝑡

0
𝑞′′(0,𝜁)𝑑𝜁

1 ― 𝜁

Physically, this means that when phase transition does not take place, the presence of the 

PCM will have no effect on the overall thermal performance of the bulk material. Note also that 

the observed value of the effusivity does not remain constant, but must vary with temperature. 

Now, although no exact mathematical expression for the sink term is available, it is still possible 

to make some assumptions about the heat sink behavior from the physics of the problem. For 

instance, it is obvious that the effect of PCM becomes fully pronounced only when the value of 

temperature reaches the phase-change temperature. The effect disappears, if the temperature 

continues to increase afterwards. Hence, it is reasonable to assume that the transient behaviour of 

the heat sink, associated with the presence of PCM, can be modelled as a narrow pulse, which 

mathematically is equivalent to the Gaussian (bell-shaped curve or normal distribution), that is
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(S6),𝑆(𝑡)~𝑒𝑥𝑝[ ― (
𝑡 ― 𝑡𝑝ℎ𝑐

𝜎 )
2]

where tphc is the moment of time, at which the phase change occurs and the variance σ 

equals the average duration of the phase change process. 

The C-therm thermal analyzer determine the effusivity of a sample matrix by the so 

called transient plane source method (TPSM). The principle of the method is based on 

local generation of heat at the interface between two phases that can be approximated to 

semi-infinite with unidimensional heat flow and no surface resistance. The change of 

temperature of the surface, T(0,t) following a step change in the supply of heat at the 

interface starting at time 0 depends on the effusivities of sensor (e1) and sample 

phases(e2): 

(S7)𝑇(0,𝑡) = 𝑇0 +
𝐾 𝑡

𝑒1 + 𝑒2

Where K is a constant (which depends on the heat rate). Thus, if T(0,t) can measured 

accurately as a function of time, and K and e2 are known based on pre-calibration, then 

the dependence of the surface temperature on time allows calculation of the effusivity of 

the sample matrix, e2. 

Note that since Eqs. 2, 4 and 5 exhibit the same dependence on the effusivity and 

on the observed effusivity, then eobs can be determined by the same way that the 

effusivity, e2 is determined. 
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Observe from Figure 2, 3, 4, and 7, that the changes in the heat flow and physical 

properties follow a nearly Gaussian pattern with the maximal changes occurring at the 

phase-change (melting) temperature. 

ii. Supplementary experimental details

GC-MS analysis of microcapsule extracts

GC-MS experiments were performed on 6890N gas chromatograph coupled to 5973 

mass spectrometry detector (Agilent Technologies, USA). Chromatographic separation 

was achieved on DB-5MS capillary column (Agilent Technologies, USA; 25 m x 0.25 mm, 

0.25 µm thickness) at He flow of 1 ml·min-1. Sample in dichloromethane (1 µl) was injected 

in splitless mode (inlet temperature 280 °C); oven initial temperature was set up to 35 °C 

(hold time 4 min), then the constant gradient of 20 °·min-1 was applied till 280 °C (hold 

time 8 min). Data acquisition and analysis was performed using Mass Hunter software 

(Agilent Technologies, USA). Reference materials mix, containing 10 mg·L-1 of toluene 

and 2 mg·L-1 of n-octadecane (both used in the CNT-PCM synthesis), was prepared by 

dissolution in dichloromethane. 

Total ion chromatogram (TIC) of the reference materials is demonstrated in frame 

(a) of Figure S1, and the extracted ion chromatograms (EIC) for m/z 91 (a toluene 

fragment) and m/z 85 (octadecane fragment) are presented in frames (d) and (g) 

correspondingly.
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In order to check whether there is residual toluene entrapped in the microcapsules 

during the synthetic steps, the CNT-PCMs samples containing 0.006 and 0.05 wt% CNT 

(5 mg each) were soaked in 1 ml of dichloromethane for 3 h and then filtered through 0.22 

µm PTFE filter. The filtrate was injected to GC-MS using the same method as for 

reference substances solution. The TIC and EIC chromatograms (for m/z 91 and 85) for 

the extract of CNT-PCMs with 0.006 wt% and 0.05 wt% are shown correspondingly in 

frames (d-f) and (g-i) of Figure S1.
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iii. Supporting tables and figures

Table S1. Effect of sub per mille CNT introduction on the effusivity and thermal 

conductivity.

Inter microcapsule 
introduction of CNTs

Intra microcapsule 
introduction of CNTs 

Far from phase transition 
e.g. at 12 and 40 °C 

DECREASE 
Figure 4 and 7c 

NO EFFECT 
Figure 2a 

During phase transition DECREASE 
Figure 4 and 7c

INCREASE 
Figure 2b and 7a

Table S2. Thermophysical properties of CNT-PCM powders with different CNT loadings. 

CNT 

loading

Heat of 

fusion 

Thermal 

conductivity at 12 

°C

Thermal 

conductivity at 40 

°C

Observed thermal 

conductivity at 28 

°C

Observed 

effusivity

Thermal 

efficiency

wt % J·g-1 W·m-1·K-1 W·m-1·K-1 W·m-1·K-1
W·s0.5·K-1·m-

2
%

0 216 0.125 0.1 1.9 2687 90.6

0.001 223 0.118 0.097 3.0 3048 93.5

0.002 212 0.117 0.105 6.4 3470 88.9

0.006 218 0.12 0.1 11.9 3657 91.4

0.05 217 0.122 0.103 170.9 3690 91.0
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0.05 208 0.11 0.098 >200.0 4164 87.2



S-10

0

0.2

0.4

4 9 14 19

C
ou

nt
s,

 ·1
06

0

5

10

4 9 14 19

C
ou

nt
s,

 ·1
06

0

5

10

4 14

C
ou

nt
s,

 ·1
06

Time (min)

C18
toluene

a

b

c

-0.5

3.5

7.5

4 5 6

C
ou

nt
s,

 ·1
04

-0.5

1.5

3.5

4 5 6

C
ou

nt
s,

 ·1
04

-0.5

1.5

3.5

4 5 6

C
ou

nt
s,

 ·1
04

Time (min)

-0.5

0.5

1.5

2.5

13.1 13.6 14.1

C
ou

nt
s,

 ·1
04

0

1

2

13.1 13.6 14.1

C
ou

nt
s,

 ·1
06

0

1

2

13.1 13.6 14.1

C
ou

nt
s,

 ·1
06

Time (min)

d

e

f

g

h

i

Figure S1. GC-MS analysis of CNT-PCM extracts. Frames (a-c) represent the total ion 

current (TIC) chromatograms, frames (d-f) represent the extracted ion chromatograms 

(EIC) for m/z 91 (characteristic fragment of toluene), frames (g-h) represent extracted ion 

chromatograms (EIC) for m/z 85 (characteristic fragment of octadecane). Upper row: 

reference materials in dichloromethane; middle row: dichloromethane extract of CNT-

PCMs containing 0.006 wt%; lower row: dichloromethane extract of CNT-PCMs 

containing 0.05 wt% CNT.
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Figure S2. DSC thermograms of CNT-PCM powders. CNT loadings are 0, 0.05 and 0.1 

wt%, temperature ramping rate 2 °C·min-1.
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Figure S3. TGA thermogram of melamine-formaldehyde microencapsulated PCMs with 

0.05 wt% CNTs (dashed black curve) and without CNTs (10 K·min-1 scan rate).
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Figure S4. SEM micrograph of PCM loaded plasters showing that the PCM microcapsules 

are much larger than the gypsum whiskers. The inset zooms-in on a microcapsule. The 

sample was broken from a plaster board.
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Figure S5. Scheme of the experimental setup for thermal buffering tests  
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