Identification of Compounds that Negatively Impact Coffee Quality Using Untargeted LC/MS Analysis

Sichaya SITTIPOD, Eric SCHWARTZ, Laurianne PARAVISINI, Edisson TELLO, and Devin G. PETERSON*

Department of Food Science and Technology, 110 Parker Food Science and Technology

Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210

* Corresponding author: peterson.892@osu.edu

Supplementary Data

	Compound		
position	$\delta_{\rm c}$, type	$\delta_{ m H} (J ext{ in Hz})$	HMBC
1a	41.9, CH ₂	1.82, m	10, 5
1b		0.79, td (13.3, 4.2)	20, 10, 2
2a	20.2, CH ₂	1.87, m	
2b		1.37, m	
3a	39.2, CH ₂	2.08, m	
3b		0.97, m	
4	44.6, C		
5	58.1, CH	1.02, dd (8.8, 5.7)	4, 6, 10, 19, 20
6	23.3, CH ₂	1.80, m	5, 8, 10,
7a	43.3, CH ₂	1.59, m	
7b		1.42, m	5, 6, 8, 14, 15
8	45.7, C		
9	57.3, CH	0.97, m	
10	40.8, C		
11	19.5, CH ₂	1.56, m	13
12a	27.2, CH ₂	1.64, m	9, 13,
12b		1.44, m	
13	46.2, CH	1.98, m	
14a	38.2, CH ₂	1.93, m	12, 13, 9
14b		1.59, m	15, 16, 12
15a	53.7, CH ₂	1.49, dd (14.5, 1.8)	9, 13, 14, 17
15b		1.35, d (14.5)	7, 9, 16
16	82.9, C		
17a	66.8, CH ₂	3.66, d (11.3)	13, 15
17b		3.55, d (11.3)	13, 15, 16
18	29.5, CH ₃	1.14, s	3, 4, 5, 19
19	181.7, C		
20	16.2, CH ₃	0.94, s	10

 Table S1: ¹H and ¹³C NMR Data (MeOD) data of Compound 1.

16α,17-dihydroxy-*ent*-kauran-19-oic acid

Figure S1. Chemical correlations by COSY and HMBC and Structure of compound 1.

	Compound		
position	$\delta_{\rm c}$, type	$\delta_{\rm H}$ (J in Hz)	HMBC
1a	41.8, CH ₂	1.86, m	
1b		0.83, td (13.0, 3.7)	20
2a	20.1, CH ₂	1.92, m	
2b		1.42, m	
3a	39.0, CH ₂	2.19, m	
3b		1.05, td (13.4, 4.3)	2
4	45.1, C		
5	58.5, CH	1.10, dd (12.3, 1.9)	4, 6, 10, 18, 19, 20
6a	23.2, CH ₂	2.00, m	
6b		1.83, m	
7a	43.3, CH ₂	1.61, m	
7b	, ,	1.44, m	
8	45.8, C		
9	57.3, CH	1.01, d (7.3)	8, 10, 11, 20
10	40.9, C		
11	19.6, CH ₂	1.60, m	
12	27.2, CH ₂	1.62, m	
13	46.2. CH	2.0. m	
14a	38.1. CH ₂	1.64. m	
14b		1.97, m	12, 15, 16,
15a	53.7, CH ₂	1.52, d (14.4)	8, 9, 14, 17
15b	, _	1.38, d (14.4)	7,9
16	82.9. C		
17a	66.8. CH ₂	3.70, d (11.3)	15
17b		3.60, d (11.3)	13
18	29.0, CH ₃	1.21, s	3, 4, 5
19	178.2, C		
20	16.4, CH ₃	0.97, s	
1'	95.6. CH	5.39. d (8.1)	18
2'	74.0, CH	3.36, m	
3'	77.8, CH	3.40, m	1'
4'	71.0, CH	3.44, m	
5'	*77.9. CH	3.53. ddd (9.5. 5.1. 2.0)	
6'a	69.6, CH ₂	4.12, dd (11.7, 2.0)	4'
6'b		3.80, dd (11.7, 5.2)	1". 5'
1"	104.7. CH	4.36. d (7.8)	6'
2"	75.1. CH	3.21. m	1". 3"
	78.5. CH	3.36 m	- , •
4"	71.5 CH	3.29 m	
5''	*78.0 CH	3.24. ddd. (9.5. 5.6. 2.4)	
6''a	62.7 CH ₂	3.85. dd (11 9 2 3)	4"
6''b		3.67, dd (11.9, 5.6)	5"

 Table S2: ¹H and ¹³C NMR Data (MeOD) data of Compound 2.

16α,17-dihydroxy-*ent*-kauran-19-diglycoside

Figure S2. ¹H and ¹³C Spectroscopic Data of Compound 2 (MeOD, 700 MHz).

Figure S2b. ¹H and ¹³C Spectra of Compound **2**.

	Compound		
position	$\delta_{\rm c}$, type	$\delta_{\rm H} (J \text{ in Hz})$	HMBC
1a	41.8, CH ₂	1.85, m	
1b		0.79, m	
2a	19.9, CH ₂	2.01, m	
2b		1.45, m	
3a	33.3, CH ₂	2.16, s	
3b		1.13, m	2, 4
4	51.1, C		
5	52.4, CH	1.26, d (11.4)	1, 4, 20
6	23.2, CH ₂	1.78, m	
7a	43.0, CH ₂	1.58, m	
7b		1.45, m	
8	45.6, C		
9	57.4, CH	1.01, m	8, 11, 12, 14, 20
10	40.6, C		
11	19.6, CH ₂	1.63, m	
12a	27.2, CH ₂	1.61, m	
12b		1.48, m	
13	46.2, CH	2.01, m	
14a	38.2, CH ₂	1.93, m	12, 15, 16
14b		1.58, m	9
15a	53.8, CH ₂	1.52, d (14.7)	9, 14, 17
15b		1.38, d (14.3)	7, 9, 16
16	82.9, C		
17a	66.8, CH ₂	3.70, d (11.2)	
17b		3.60, d (11.2)	13, 16
18a	70.9, CH ₂	3.68, d (10.6)	3, 5
18b		3.50, d (10.6)	3, 5, 19
19	180.7, C		
20	16.5, CH ₃	1.03, s	1, 5, 9

 Table S3: ¹H and ¹³C NMR Data (MeOD) data of Compound 5.

16 ,17,18-trihydroxy-ent-kauran-19-oic acid

Figure S3. Chemical correlations by COSY and HMBC and Structure of compound 5.

position	$\delta_{\rm c}$, type	$\delta_{ m H} \left(J { m in} { m Hz} ight)$
1a	42.4 CH ₂	1.96, m
1b		1.22, m
2a	21.4, CH ₂	1.90, m
2b		1.46, m
3a	39.7, CH ₂	2.12, m
3b		0.99, m
4	45.6, C	
5	47,7, CH	1.62, t (9.9)
6a	19.6, CH ₂	2.58, q (11.3)
6b		1.83, m
7a*	31.3, CH ₂	2.20, m
7b*		1.48, m
8	44.0, C	
9	158.9, C	
10	39.9 C	
11	115.0, CH	5.20, d (3.6)
12a*	31.4, CH ₂	2.20, m
12b*		1.96, m
13	45.0, CH	2.15, m
14a	44.2, CH ₂	2.04, dd (10.7, 5.1)
14b		1.46, t (9.7)
15a	55.7, CH ₂	1.96, m
15b		1.53, d (13.2)
16	85.6, C	
17a	68.9, CH ₂	3.54, d (11.3)
17b		3.48, d (11.1)
18	28.8, CH ₃	1.18, s
19	181.6, C	
20	24.1 CH ₃	1.02, s

 Table S4:
 ¹³C NMR Data comparation data of Compound 6.

16α,17-dihydroxy-*ent*-9(11)-kauren-19-oic acid

Figure S4. Chemical structure of compound 6.