Supporting Information

Contact Time of a Bouncing Nanodroplet

Fang-Fang Xie^{1,2†}, Shu-Hang Lv^{1,2†}, Yan-Ru Yang^{1,2}, Xiao-Dong Wang^{1,2*}

1. Research Center of Engineering Thermophysics, North China Electric Power University, Beijing

102206, China;

2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,

North China Electric Power University, Beijing 102206, China.

*Corresponding Author: Xiao-Dong Wang, Tel. and Fax: +86-10-62321277, E-mail: wangxd99@gmail.com

[†]Co-author: The authors contributed equally to this work.

Ref.	$R_0 (mm)$	We range	Impact regime	Conclusion
1	0.1-4.0	0.3-37	Independent	$\tau \sim (\rho R_0^{3/\gamma})^{1/2} = (R_0/v_0) W e^{1/2}$
13	0.4, 0.6	0.01-1.0	Declined and Independent	
14	1.25	24	Independent	
16	1.0	1.5-9.3	Independent	
17	1.0	0.5-1.5	Independent	
20	1.35	5.47	Independent	
21	2.76	0.16-37	Declined and Independent	
22	0.6-2.1	1.0-100	Independent	
23	1.245, 1.495	0.91-69.0	Independent	
24	1.0-1.8	0.56-4.0	Independent	

Table S1. Studies of contact time for a droplet impacting flat superhydrophobic surfaces.

FIG. S1. The static contact angle of an argon nanodroplet on a Pt substrate.

FIG S2. Contact time of bouncing argon nanodroplets as a function of impact velocity in a low velocity impact regime. Solid lines indicate slopes of -0.202 for a 7.5 nm droplet and -0.204 for the 10.2 nm droplet.

FIG. S3. Temporal evolution of the contact radius for a 5.0 nm water nanodroplet (*Oh*=1.01) impacting a 125° hydrophobic surface at various impact velocities: (a) contact radius vs. time, and (b) contact radius normalized by the maximum spreading radius vs. time. The contraction rate is independent of the impact velocity for millimeter-sized impact droplets. However, $R(t)/R_{max}$ curves for various impact velocities do not coincide with each other, and thus the retraction dynamics for the water nanodroplet is significantly different from millimeter-sized droplets.

FIG. S4. Velocity contours within a water nanodroplet with $R_0=3.6$ nm and We=23. In each subfigure, the left part denotes the radial component velocity and the right part denotes vertical component velocity.

FIG S5. Data of $\tau/R_0^{3/2}$ vs R_0 for argon nanodroplets.