Supporting Information for

Effect of the hole transporting / active layer interface on the perovskite solar cell stability

Manon SPALLA ^{a,b}, Lara PERRIN ^{a,*}, Emilie PLANES ^{a,*}, Muriel MATHERON ^b, Solenn BERSON ^b, Lionel FLANDIN ^a

^aUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France

^bUniv. Grenoble Alpes, CEA, LITEN, INES, 73375 Le Bourget du Lac, France

*lara.perrin@univ-smb.fr; emilie.planes@univ-smb.fr

Figure S1. Typical J-V curves for a) the P_3HT cell (glass / ITO / SnO_2 / MAPbI_{3-x}Cl_x / P_3HT / Au) and the PTAA cell (glass / ITO / SnO_2 / MAPbI_{3-x}Cl_x / PTAA / Au) at initial stage and after 500 h and 1000 h of aging.

Figure S2. PV parameters : a) V_{oc} , b) J_{sc} , c)FF and d) R_s during aging for PTAA and P₃HT cells.

Figure S3. J-V curves of PTAA cells at initial stage and after 500 h of aging (for cells 2 and 3 top layers were added after aging step, respectively gold electrode or gold electrode and PTAA layer).

Figure S4. DSC thermograms of PTAA powder (heating and cooling rate = 50° C/min).

Figure S5. Transmission FTIR spectra of P3HT powder exposed to HI (presented absorbance have been normalized according to the 1450 cm⁻¹ band, corresponding to symmetric C=C ring stretching vibration).