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Appendix
Tauc-Lorentz model 

This model is from Jellison and Modine, APL 69,371-373 (1996). In this original paper, there is an 
error of calculation of the real part of the dielectric function.

In the Tauc-Lorentz model, the Ԑ2 is expressed as a product of the Tauc gap and the Lorentz 
model:

ε = 𝜀1 + 𝑖𝜀2

𝑖ε2 = {1
𝐸 ∙

A ∙ E0 ∙ C ∙ (E ― E𝑔)2

2𝑎     (𝐸 > 𝐸𝑔)
                  0             (𝐸 ≤ 𝐸𝑔)

                    

𝜀1 =
𝜋
2 ∙ 𝑃 ∙

∞

∫
𝐸𝑔

𝜉 ∙ 𝜀2(𝜉)

𝜉2 ― 𝐸2

where A is the amplitude parameter, C is the broadening parameter, and E0 represents the peak 
transition energy. The corresponding  is obtained from  by the Kramers–Kronig relations.ε1 ε2

Solving the integral:

𝜀1 =
𝐴 ∙ 𝐶 ∙ 𝑎ln

2 ∙ 𝜋 ∙ 𝜉4 ∙ 𝛼 ∙ 𝐸0
∙ ln [𝐸2

0 + 𝐸2
𝑔 + 𝛼 ∙ 𝐸𝑔

𝐸2
0 + 𝐸2

𝑔 ― 𝛼 ∙ 𝐸𝑔
] ―

𝐴 ∙ 𝑎𝑎 ∙ tan

𝜋 ∙ 𝜉4 ∙ 𝐸0

∙ [𝜋 ― 𝑎 ∙ tan (2 ∙ 𝐸𝑔 + 𝛼
𝐶 ) + 𝑎 ∙ tan (𝛼 ― 2 ∙ 𝐸𝑔

𝐶 )] +
2 ∙ 𝐴 ∙ 𝐸0

𝜋 ∙ 𝜉4 ∙ 𝛼{𝐸𝑔 ∙ (𝐸2 ― 𝛾2) ∙ [𝜋 + 2 ∙ 𝑎

∙ tan(𝛾2 ― 𝐸2
𝑔

𝛼 ∙ 𝐶 )]} ―
𝐴 ∙ 𝐸0 ∙ 𝐶 ∙ (𝐸2 + 𝐸2

𝑔)
𝜋 ∙ 𝜉4 ∙ 𝐸

∙ ln (|𝐸 ― 𝐸𝑔|
𝐸 + 𝐸𝑔 ) +

2 ∙ 𝐴 ∙ 𝐸0 ∙ 𝐶 ∙ 𝐸𝑔

𝜋 ∙ 𝜉4 ∙ ln [ |𝐸 ― 𝐸𝑔| ∙ (𝐸 + 𝐸𝑔)

(𝐸2
0 ― 𝐸2

𝑔)2 + 𝐸2
𝑔 ∙ 𝐶2]

where:

𝑎ln = (𝐸2
𝑔 ― 𝐸2

0)𝐸2 + 𝐸2
𝑔𝐶2 ― 𝐸2

0(𝐸2
0 + 3𝐸2

𝑔)

𝑎𝑎 ∙ tan = (𝐸2 ― 𝐸2
0)(𝐸2

0 + 𝐸2
𝑔) + 𝐸2

𝑔𝐶2

𝜉4 = (𝐸2 ― 𝛾2)2 +
𝛼2 ∙ 𝐶2

4

α = 4 ∙ 𝐸2
0 ― 𝐶2
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γ = 4 ∙ 𝐸2
0 ―

𝐶2

2

In the actual calculation, the values of  were chosen to not become zero. Therefore, the |𝐸 ― 𝐸𝑔|
Tau–Lorentz model is determined by five parameters [ , A, C,  and .] 𝜀1 E𝑔 E0

E(𝑒𝑉) = ℎ𝜐 =
1240

𝜆(𝑛𝑚)

α(𝜆) =
4𝜋𝑘(𝜆)

𝜆

The relationship between complex optical constant and complex dielectric constant:

Ñ = n ― ik

ε = 𝜀1 ― 𝑖𝜀2

ε = Ñ2

𝑛2 ― 𝑘2 = 𝜀1

2nk = 𝜀2

Theoretical spectrum is adjusted to experimental one. Goodness of fit is given by value χ 2 . It 
should be as small as possible:

𝜒2 = 𝑚𝑖𝑛
𝑛

∑
𝑖 = 1

[(Ψ𝑡ℎ ― Ψ𝑒𝑥𝑝)2
𝑖

ΓΨ,𝑖
+

(Δ𝑡ℎ ― Δ𝑒𝑥𝑝)2
𝑖

ΓΔ,𝑖 ]

Detected electric field is deduced through Jones matrix product and incident electric field Jones 
vector：

𝐸𝑑 = [𝐴𝑅𝐴𝑆𝑅𝑀𝑀𝑅𝑃 ― 𝑀𝑃]𝐸𝑖

Only intensity is measurable, proportional to square of field.
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I = |𝐸𝑑|2
= 𝐼𝑂 + 𝐼𝑆sin 𝛿(𝑡) + 𝐼𝐶cos 𝛿(𝑡)

In the general case for P, M, and A:

𝐼𝑂
= 1 ― cos 2Ψcos 𝐴 + cos 2(𝑃 ― 𝑀)cos 2𝑀(cos 2𝐴 ― cos 2Ψ) + cos 2(𝑃 ― 𝑀)sin 2𝐴sin 2𝑀sin 2Ψ

cos Δ

𝐼𝑆 = sin 2(𝑃 ― 𝑀)sin 2𝐴sin 2Ψsin Δ

𝐼𝐶 = sin 2(𝑃 ― 𝑀)[sin 2𝑀(cos 2Ψ ― cos 2𝐴) + sin 2𝐴cos 2𝑀sin 2Ψcos Δ]

By construction P-M = 45o , then IS IC relation to Ψ and Δ becomes simple:
 and , thenM = 0𝑜 ± 90𝑜 A =± 45𝑂

 and 𝐼𝑆 = ± 𝐴sin 2Ψsin Δ 𝐼𝐶 = ± 𝑀 ± 𝐴sin 2Ψcos Δ
In this work, we use that Configuration Ⅱ: P – M = 45o[90o]; M=0o[90o]; A=45o[90o]

 and I𝑆 = sin 2Ψsin Δ 𝐼𝐶 = cos 2Ψ
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Figure S1 (a) SEM image of the δ-CsPbI3 after once or twice (b) conversion between high and low temperature phase. 
(c) EDS of the δ-CsPbI3 and the inset table is the percentage of element content in five different points.
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Figure S2 Atomic force micrographs of the δ-CsPbI3 thin films.

Table S1 Roughness and average value of the above six δ-CsPbI3 samples.
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Figure S3 The α-CsPbI3 thin films photography of in situ confocal low frequency Raman spectra at (a) 53 cm-1 and (b) 
106 cm-1. (c) is spectrums of in situ confocal Raman, and the characteristic peak position is marked by arrow. (d) is a 

microscopic photograph of the test point.
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Figure S4 The in situ confocal Raman spectra of the δ-CsPbI3 thin films at each point (resolution: 0.1*0.1 μm2).
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Figure S5 Comparison of the XRD difference of β- and γ-CsPbI3 film.
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Figure S6  (a) Temperature dependent XRD of CsPbI3 film measured in vacuum and enlarged view of the diffraction 
results in the 2-theta range of 9-11 oC.
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Figure S7 Schematics of the optical model of (a) the FTO substrate and (b) the CsPbI3 thin films.
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Figure S8 Measurement and analysis for the FTO substrate: (a) Ellipsometric experimental spectra (point lines) and 
simulate spectra (dotted lines) of the FTO substrate at a 70 o angle of incidence. (b) Photo energy-dependent optical 

constants of the FTO layer.
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Figure S9 XRD patterns of the δ-CsPbI3 thin film on silicon substrate. Inset shows a HRTEM image of δ-CsPbI3 with a 
lattice fringe of 2.5 Å.
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Figure S10 Measurement and analysis for the Si substrate: (a) Ellipsometric experimental spectra (point lines) and 
simulate spectra (dotted lines) of the Si substrate at a 70 o angle of incidence. (b) Photon energy-dependent optical 
constants of the SiO2 layer. (c) Schematic of the optical model. Results of the fitting parameters are marked in red in 

the model.
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Figure S11 Measurement and analysis for the α-CsPbI3 and the δ-CsPbI3 thin film on the Si substrate: (a) and (c) 
Ellipsometric experimental spectra (point lines) and simulate spectra (dotted lines) of the α-CsPbI3 and the δ-CsPbI3 

thin film at a 70 o angle of incidence. (b) and (d) Photo Energy-dependent  optical constants of the α-CsPbI3 and the δ-
CsPbI3 thin film layer.(e) Schematic of the optical model.
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Figure S12 In-situ dynamic ellipsometry spectra of FTO substrate in (a) heating and (b) cooling processes from 100 to 
360 oC.
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Figure S13 In-situ dynamic ellipsometry spectra of as-prepared CsPbI3 film in (a) heating and (b) cooling processes 
from 100 to 360 oC.
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Figure S14 Second derivatives of the pseudodielectric function numerically calculated spectra for four phases of 
CsPbI3 thin films: (a) δ (b) α, (c) β and (d) γ, respectively.


