Supplementary Information

Invigorating the Catalytic Activity of Cobalt Selenide via Structural

Phase Transition Engineering for Lithium-Oxygen Battery

Minglu Lia, Chaozhu Shu*a, Anjun Hub, Jiabao Lia, Ranxi Lianga, Jianping Long*a

^aCollege of Materials and Chemistry & Chemical Engineering, Chengdu University of

Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China

^bState Key Laboratory of Electronic Thin Films and Integrated Devices, University of

Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China

*Corresponding author:

Email: czshu@imr.ac.cn (Chaozhu Shu); longjianping@cdut.cn (Jianping Long)

The number of pages: 14 (S1-S14)

The number of Figures: 15 (Figures S1-S15)

The number of Tables: 4 (Tables S1-S4)

S1

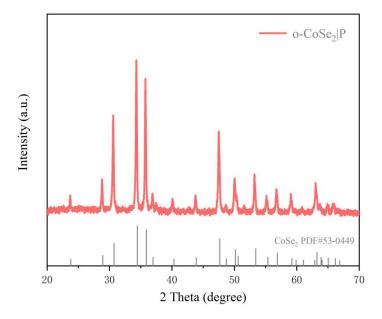


Figure S1 XRD patterns of the o-CoSe $_2|P$.

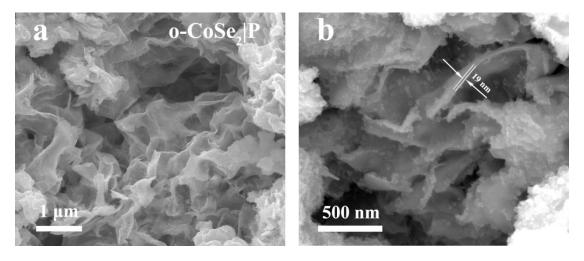


Figure S2 a) and b) SEM image of $o\text{-}CoSe_2|P$ nanobelts. $o\text{-}CoSe_2|P$ maintains an excellent nanobelt structure with a thickness of about 19 nm.

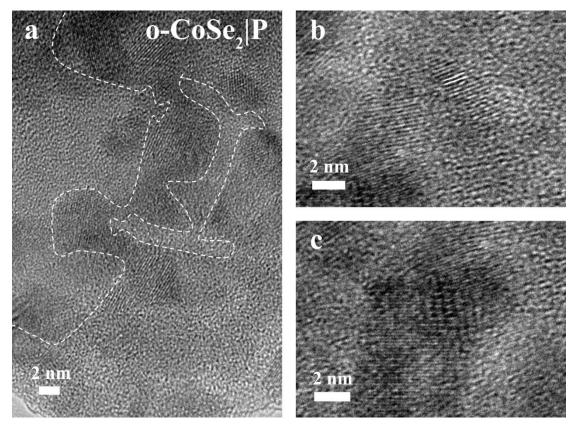


Figure S3 a)-c) High-resolution TEM (HRTEM) images of $o\text{-}CoSe_2|P$. HRTEM image of $o\text{-}CoSe_2|P$ shows defects around the edge of the hole. These defects are caused by heat treatment and bond rotation during the phase change, which creates more active sites and is beneficial for OER catalysis.

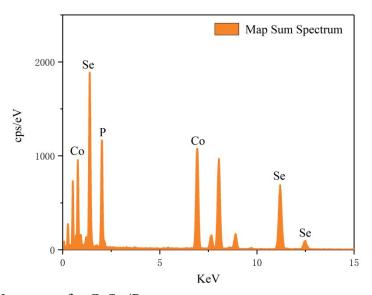


Figure S4 EDX pattern of o-CoSe₂|P.

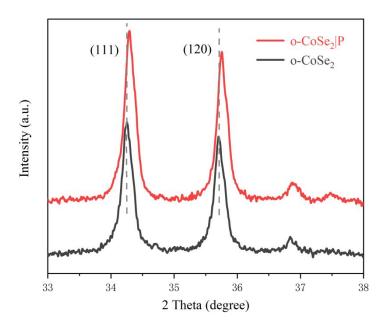


Figure S5 XRD pattern of orthogonal phase $o\text{-}CoSe_2$ without P doping and $o\text{-}CoSe_2|P$ (JCPDS: 53-0449).

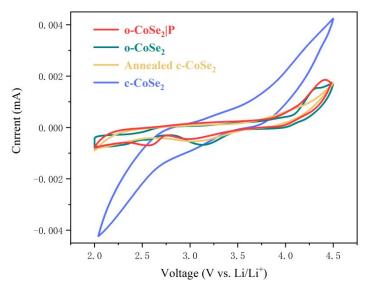


Figure S6 CV curves of the Li-O $_2$ batteries based on o-CoSe $_2$ |P, o-CoSe $_2$, annealed c-CoSe $_2$ and c-CoSe $_2$ electrodes.

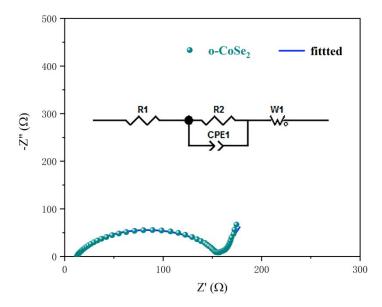


Figure S7 Nyquist plots of Li-O₂ batteries based on o-CoSe₂ electrodes.

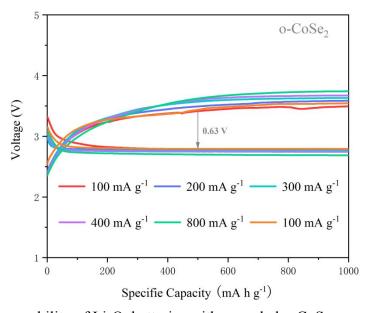


Figure S8 Rate capability of Li-O₂ batteries with annealed o-CoSe₂.

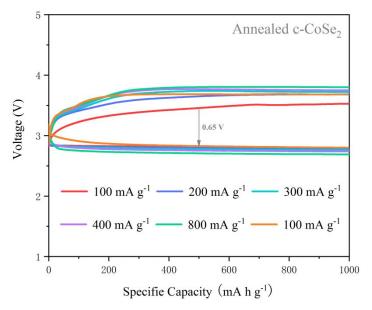


Figure S9 Rate capability of Li-O₂ battery with annealed c-CoSe₂.

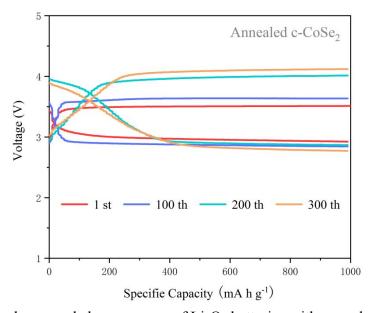


Figure S10 Discharge and charge curves of Li-O₂ batteries with annealed c-CoSe₂.

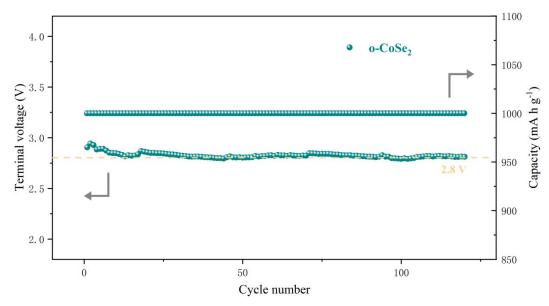


Figure S11 Cycling performance of Li-O₂ batteries with o-CoSe₂ with a limited capacity of 1000 mA h $\rm g^{-1}$ at a current density of 50 mA $\rm g^{-1}$.

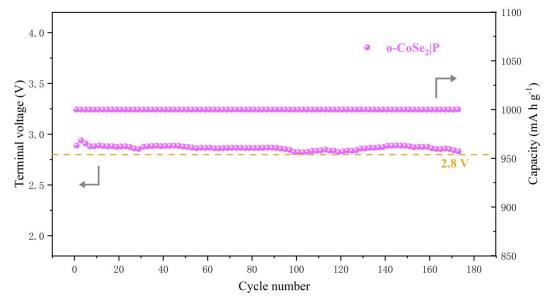


Figure S12 Cycling performance of Li-O₂ battery based on o-CoSe₂|P electrode at a current density of 200 mA $\rm g^{-1}$ with a limited specific capacity of 1000 mA h $\rm g^{-1}$.

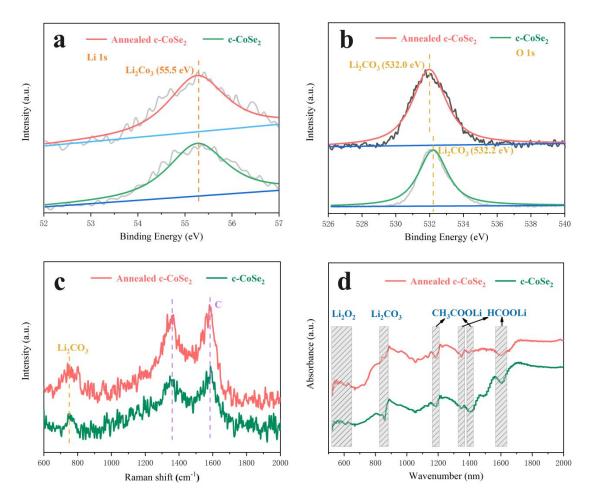


Figure S13 a) Li 1s XPS spectra, b) O 1s XPS spectra, c) Raman spectra and d) FTIR spectra of annealed c-CoSe₂ and c-CoSe₂ after 100 cycles.

As shown in Fig S13a, the Li 1S XPS spectra of the c-CoSe₂ and annealed c-CoSe₂ oxygen electrodes show peaks at about 55.5eV and 56.3eV after 100 cycles, which can be assigned to the discharged by-product Li₂CO₃ after cycling. In the O 1S XPS (Fig S13b), the characteristic peaks of c-CoSe₂ and annealed c-CoSe₂ oxygen electrode after 100 cycles at about 532.0 eV can be attributed to discharge by-product Li₂CO₃. For the Raman spectra shown in Fig S11c, the c-CoSe₂ and annealed c-CoSe₂ oxygen electrodes show the characterization peak at about 749 cm⁻¹ after 100 cycles, corresponding to the harmful by-products Li₂CO₃ generated after cycling. The peaks at 1352 cm⁻¹ and 1580 cm⁻¹ can be attributed to the carbon cloth substrate.

In order to better understand the discharged by-products on the electrode surface after cycling, Fourier transform infrared spectrum (FTIR) characterization on c-CoSe₂ and annealed c-CoSe₂ oxygen electrodes after 100 cycles was further carried out. The

different peaks around 400~600 cm⁻¹ in the FTIR spectra shown in Fig S13d are due to the reversible formation and decomposition of Li₂O₂ on the surface of the c-CoSe₂ and annealed c-CoSe₂ oxygen electrodes. However, a characteristic absorption peak at 870 cm⁻¹ was found in both electrodes and could be assigned to Li₂CO₃S10. The main reason for the formation of Li₂CO₃ is the oxidation of carbon substrate during the charging process. Moreover, Li₂CO₃ and other organic lithium salts (CH₃COOLi, HCOOLi) (1190 cm⁻¹ and 1400 cm⁻¹, 1350 cm⁻¹ and 1600 cm⁻¹) will cover the effective surface area for the formation and decomposition of Li₂O₂S1. In addition, as the cycle progresses, Li₂CO₃ and organolithium salts will gradually deposit on the oxygen electrode because these lithium salts are difficult to decomposition during charging. Finally, the active surface area will be totally covered and the passivation of the electrode surface will take place, leading to the death of the of c-CoSe₂ and annealed c-CoSe₂ electrodes^{S2}

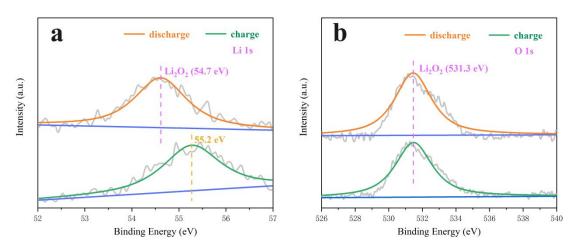


Figure S14 a) Li 1s XPS spectra and b) Li 1s XPS spectra of o-CoSe₂|P after discharge and after charge.

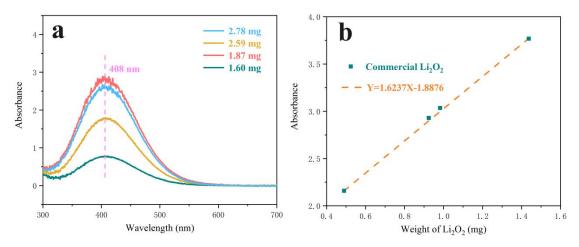


Figure S15 a) UV-Vis spectra of $TiOSO_4$ titration solution with different amount of commercial Li_2O_2 . b) The fitted line and the corresponding linear equation.

Table S1. Corresponding element ratio of o-CoSe $_2|P$.

Element	Wt%
P	18.34
Co	35.67
Se	45.99

Table S2. Impedance parameters of the Li-O₂ battery after fitting raw data to an equivalent circuit.

Catalyst	R1	R2
o-CoSe ₂ P	13.3	118.3
o-CoSe ₂	13.5	136.5
Annealed c-CoSe ₂	12	138
c-CoSe ₂	60.62	178.9

Table S3. The amount of Li_2O_2 on the oxygen electrode at different discharge capacity.

Discharge capacity	Calculated Li ₂ O ₂	Titrated weight of	Yield (%)
(mA h)	weight (mg)	Li_2O_2 (mg)	
2.5	2.14	1.60	74.77
3	3.57	1.87	72.83
3.5	3.00	2.59	86.45
4	3.42	2.78	81.20

Table S4. Performance comparison of Li-O₂ batteries based on different oxygen electrodes.

Sample	Current density	Cut-off	Limited	Number	Ref.
r	· · · · · · · · · · · · · · · · · · ·	voltage	capacity	of cycles	
		(V)	(mA h g ⁻¹)	3	
o-CoSe ₂ P	50	2	1000	500	This
	mA g ⁻¹				work
δ -MnO ₂	0.08	2	1000	113	S3
nanoboxes	mA cm ⁻²				
δ -MnO ₂ /G	0.333	2.0	492	132	S4
	mA cm ⁻²				
ε-MnO ₂	500	2.2	800	190	S5
	mA g ⁻¹				
3D hollow	200	2.2	1000	170	S6
α -MnO ₂	mA g ⁻¹				
Co-Mn-O	0.16	>2.0	500	100	S7
nanocube	mA cm ⁻²				
Co@PNCS	250	2.3	600	120	S8
	mA g ⁻¹				

Co ₃ O ₄ /GN	300	≈2.7	1500	42	S9
	mA g ⁻¹				
CuCr2O4@r	200	2	1000	100	S10
GO	mA g ⁻¹				
Co ₃ O ₄ -TiO ₂ (100	≈2.6	1000	200	S11
B)	mA g ⁻¹				
Co@N-C	0.1	2.2	500	40	S12
microspheres	mA cm ⁻²				
nitrogen-dop	250	2.6	500	50	S13
ed LaNiO ₃	mA g ⁻¹				
NiO	0.1	2.3	800	50	S14
	mA cm ⁻²				
$CoSe_2$	0.3	2	<1000	30	S15
$@G-C_3N_4$	mA cm ⁻²				
3D	50	2.4	<1000	30	S16
M-MoSSe	mA g ⁻¹				
5%Pt+5%Cu	100	2.2	500	50	S17
	mA g ⁻¹				

Note: G=graphene, PNCS=N-porous doped carbon nanosheets, GN=graphene nanosheets.

By comparing the performance of $Li-O_2$ batteries based on different oxygen electrodes, it can be found that the $o-CoSe_2|P$ based $Li-O_2$ battery proposed in this work demonstrates much better cycle stability as compared to previous reported metal oxides such as MnO_2 , Co_3O_4 , NiO and metal selenides such as $CoSe_2$, $MoSe_2$. Thus,

comparing with previous reported oxygen electrodes, the o-CoSe₂|P oxygen electrode demonstrates much obvious competitiveness, thus providing a new strategy for developing efficient oxygen electrode for Li-O₂ battery. We have added the above discussion to the supporting information (Table S4).

Reference

- (S1) Zhang, P.; Zhang, S.; He, M.; Lang, J.; Ren, A.; Xu, S.; Yan, X. Realizing the Embedded Growth of Large Li₂O₂ Aggregations by Matching Different Metal Oxides for High–Capacity and High–Rate Lithium Oxygen Batteries. *Adv. Sci.* **2017**, *4*, 1700172, DOI 10.1002/advs.201700172.
- (S2) Wang, P.; Li, C.; Dong, S.; Ge, X.; Zhang, P.; Miao, X.; Wang, R.; Zhang, Z.; Yin, L. Hierarchical NiCo₂S₄@NiO Core–Shell Heterostructures as Catalytic Cathode for Long–Life Li–O₂ Batteries. *Adv. Energy Mater.* **2019**, *9*, 1900788, DOI 10.1002/aenm.201900788.
- (S3) Zhang, J.; Luan, Y.; Lyu, Z.; Wang, L.; Xu, L.; Yuan, K.; Pan, F.; Lai, M.; Liu, Z.; Chen, W. Synthesis of Hierarchical porous δ–MnO₂ Nanoboxes as an Efficient Catalyst for Rechargeable Li-O₂ Batteries. *Nanoscale* **2015**, *7*, 14881–14888, DOI 10.1039/C5NR02983J.
- (S4) Liu, S.; Zhu, Y.; Xie, J.; Huo, Y.; Yang, H. Y.; Zhu, T.; Cao, G.; Zhao, X.; Zhang, S. Direct Growth of Flower–Like δ–MnO₂ on Three–Dimensional Graphene for High-Performance Rechargeable Li-O₂ Batteries. *Adv. Energy Mater.* **2014**, *4*, 1301960, DOI 10.1002/aenm.201301960.
- (S5) Hu, X.; Cheng, F.; Han, X.; Zhang, T.; Chen, J. Oxygen Bubble-Templated Hierarchical Porous ε-MnO₂ as a Superior Catalyst for Rechargeable Li–O₂ Batteries. *Small* **2015**, 11, 809–813, DOI 10.1002/smll.201401790.
- (S6) Bi, R.; Liu, G.; Zeng, C.; Wang, X.; Zhang, L.; Qiao, S. Z. 3D Hollow α–MnO2 Framework as an Efficient Electrocatalyst for Lithium–Oxygen Batteries. *Small* **2019**, *15*, 1804958, DOI 10.1002/smll.201804958.
- (S7) Zhang, J.; Wang, L.; Xu, L.; Ge, X.; Zhao, X.; Lai, M.; Liu, Z.; Chen, W. Porous Cobalt–Manganese Oxide Nanocubes Derived from Metal Organic Frameworks as a Cathode Catalyst for Rechargeable Li–O₂ Batteries. *Nanoscale* **2015**, *7*, 720–726, DOI 10.1039/C4NR05865H.
- (S8) Zhai, Y.; Wang, J.; Gao, Q.; Fan, Y.; Hou, C.; Hou, Y.; Liu, H.; Shao, Q.; Wu, S.; Zhao, L. Highly Efficient Cobalt Nanoparticles Anchored Porous N-doped Carbon Nanosheets Electrocatalysts for Li–O₂ Batteries. *J. Catal.* **2019**, *377*, 534–542, DOI 10.1016/j.jcat.2019.07.055.
- (S9) Yuan, M.; Yang, Y.; Nan, C.; Sun, G.; Li, H.; Ma, S. Porous Co₃O₄ Nanorods Anchored on Graphene Nanosheets as an Effective Electrocatalysts for Aprotic Li–O₂ Batteries. *Appl. Surf. Sci.* **2018**, *444*, 312–319, DOI 10.1016/j.apsusc.2018.02.267.
- (S10) Liu, J.; Zhao, Y.; Li, X.; Wang, C.; Zeng, Y.; Yue, G.; Chen, Q. CuCr₂O₄@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries. *Nano–Micro Lett.* **2018**, *10*, 22, DOI 10.1007/s40820-017-0175-z.

- (S11) Wang, G.; Zhang, S.; Qian, R.; Wen, Z. Atomic–Thick TiO₂ (B) Nanosheets Decorated with Ultrafine Co₃O₄ Nanocrystals As a Highly Efficient Catalyst for Lithium–Oxygen Battery. *ACS Appl. Mater. Interfaces* **2018**, *10*, 41398–41406, DOI 10.1021/acsami.8b15774.
- (S12) Song, J.; Lv, X.; Jiao, Y.; Wang, P.; Xu, M.; Li, T.; Chen, X.; Li, J.; Zhang, Z. Catalyst Nanoarchitecturing via Functionally Implanted Cobalt Nanoparticles in Nitrogen Doped Carbon Host for Aprotic Lithium–Oxygen Batteries. *J. Power Sources* **2018**, *394*, 122–130, DOI 10.1016/j.jpowsour.2018.05.058.
- (S13) Zhang, J.; Zhang, C.; Li, W.; Guo, Q.; Gao, H.; You, Y.; Li, Y.; Cui, Z.; Jiang, K.-C.; Long, H. Nitrogen–Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10*, 5543–5550, DOI 10.1021/acsami.7b17289.
- (S14) Dong, H.; Tang, P.; Zhang, S.; Xiao, X.; Jin, C.; Gao, Y.; Yin, Y.; Li, B.; Yang, S. Excellent oxygen evolution reaction of NiO with a layered nanosphere structure as the cathode of lithium–oxygen batteries. *RSC Adv.* **2018**, *8*, 3357–3363, DOI 10.1039/C7RA12630A.
- (S15) Kumar, S.; Jena, A.; Hu, Y. C.; Liang, C.; Zhou, W.; Hung, T. F.; Chang, W. S.; Chang, H.; Liu, R. S. Cobalt Diselenide Nanorods Grafted on Graphitic Carbon Nitride: A Synergistic Catalyst for Oxygen Reactions in Rechargeable Li–O₂ Batteries. *ChemElectroChem* **2018**, *5*, 29–35, DOI 10.1002/celc.201700909.
- (S16) Zhang, S.; Huang, Z.; Wen, Z.; Zhang, L.; Jin, J.; Shahbazian-Yassar, R.; Yang, J. Local lattice distortion activate metastable metal sulfide as catalyst with stable full discharge—charge capability for Li–O₂ batteries. *Nano Lett.* **2017**, *17*, 3518–3526, DOI 10.1021/acs.nanolett.7b00603.
- (S17) Luo, X.; Ge, L.; Ma, L.; Kropf, A. J.; Wen, J.; Zuo, X.; Ren, Y.; Wu, T.; Lu, J.; Amine, K. Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithium–Oxygen Battery Performance. *Adv. Energy Mater.* **2018**, *8*, 1703230, DOI 10.1002/aenm.201703230.