Supporting Information

Asymmetric Catalytic Diverse Ring Opening/Cycloadditions of Cyclobutenones with (*E*)-Alkenyloxindoles and (*E*)-Dioxopyrrolidines

Yao Luo, Hang Zhang, Siyuan Wang, Yuqiao Zhou, Shunxi Dong,* and Xiaoming Feng*

Abstract: Highly enantioselective ring-opening/cycloaddition reactions of cyclobutenones were achieved by employing chiral *N*,*N*-dioxide/metal complexes as the catalysts. The Diels–Alder type cycloaddition with (*E*)-alkenyloxindoles yielded spirocyclohexaneoxindoles with excellent results. Meanwhile, a hetero-Diels–Alder process occurred with (*E*)-dioxopyrrolidines to afford spiropyrrolidinone-dihydropyranone derivatives.

Table of Contents

Table of Contents	2
1 General remarks	
2 General procedures for the preparation of (E)-alkenyloxindoles	
3 General procedures for the preparation of products	
4 General procedures for the catalytic reactions	4
5 Optimization of the reaction conditions	5
6 General procedures for the scale-up versions	10
7 General procedure for the synthesis of compound 11	11
8 General procedure for the synthesis of compound 12	11
9 Analysis results of 2D NMR spectra of the product 3ja	11
10 Determination of absolute configurations of compound 3fa , 5da and 12	
11 The X-ray structure of catalyst Dy(OTf) ₃ /L-RaEt ₂ and working modes	15
12 Reference	16
13 Characterization of the products	17
14 Copies of NMR spectra for products	54
15 Copies of CD spectra for products	105

1 General remarks

¹H NMR (400M) spectra were recorded on bruker ASCENDTM 400M. Chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, m = multiplet), coupling constants (Hz), integration. ¹³C{¹H} NMR data were collected on bruker ASCENDTM 400M (101M) with complete proton decoupling. Chemical shifts were reported in ppm relative to tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.16). ¹⁹F{¹H} NMR spectra were collected on bruker ASCENDTM 400M (376 MHz) with complete proton decoupling. Enantiomeric excesses were determined by chiral HPLC analysis on Daicel Chiralcel IA, IB, ID at 23 °C with UV detector at 254 nm in comparison with the authentic racemates. Optical rotations were reported as follows: [α]_D²⁵ (λ = 589 nm, *c*: g/100 mL, in CH₂Cl₂). HRMS was recorded on Thermo Q-Exactive Focus (FTMS+c ESI). IR was detected by Bruker Tensor II spectrometer with Plantium ATR accessory. All the solvents were purified by usual methods before use. Silica gel for thin-layer chromatography (HG/T2354-92) made in Qingdao Haiyang Chemical Co., Ltd. Chiral *N*,*N*-dioxide ligands were prepared according to previously reported method.¹ (*E*)-Alkenyloxindoles and cyclobutenones were synthesized according to known procedures and purified by recrystallization prior to use.²

2 General procedures for the preparation of (E)-alkenyloxindoles

Procedure for the preparation of 1c:

To a solution of isatin **S1** (2.94 g, 20 mmol) in CH_2CI_2 (50 mL) was added Et_3N (4.05 g, 40 mmol) at 0 °C, after stirring for 30 min at room temperature, benzoyl chloride **S2** (3.37 g, 24 mmol) was added, then stirred overnight. The CH_2CI_2 was removed under reduced pressure, the crude product of **S3** was directly subjected into the next step without further purification.

To a solution of triphenylphosphine (26.23 g, 100 mmol) in ethyl acetate (100 mL) was added ethyl bromoacetate **S4** (16.70 g, 100 mmol) at room temperature, and the mixture was stirred overnight. The resulting mixture was filtered (solvent: ethyl acetate), the crude product **S5** (white solid) was directly subjected to the next reaction without further purification. To a solution of **S5** in CH₂Cl₂ (50 mL) was added the NaOH (2 N) solution at room temperature until the PH value was 12. And the reaction mixture was stirred for another 30 minutes. Then, washed with saturated NaHCO₃ solution, the aqueous layer was extracted with CH₂Cl₂, the combined organic mixtures were washed with brine, dried over anhydrous Na₂SO₄, filtered (solvent: CH₂Cl₂), and concentrated under reduced pressure. The obtained product **S6** (white solid, 31.67 g, 91 mmol, two steps 91% yield) was used directly for the next step.

To a solution of crude product **S3** in CHCl₃ (50 mL) was added **S6** (3.76 g, 10 mmol) at room temperature. After stirring for 30 minutes, the solvent was removed under reduced pressure, the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 9/1, v/v), the following recrystallization (CH₂Cl₂/PE = 5/1, v/v) was carried out to afford the product **1c** (ca. 2.20 g, 30% yield) as a yellow solid.

Other (E)-alkenyloxindoles 1d–1p and 1a–1b were prepared according to the procedure described for 1c.

3 General procedures for the preparation of products

3.1 General procedure for the preparation of racemic products 3

An oven-dried test tube was charged with metal salt $Dy(OTf)_3$ (10 mol %), **1c** (0.10 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg), DCE (0.5 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 48 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1 and 9/1, v/v) to afford the corresponding racemic product **3ca**.

Other racemic products 3 were prepared according to the procedure described for 3ca.

3.2 General procedure for the preparation of racemic products 5

An oven-dried test tube was charged with metal salt $Sc(OTf)_3$ (10 mol %), **4a** (0.10 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg), DCE (0.5 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 72 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (4/1 and 2/1, v/v) to afford the desired racemic product **5aa**.

Other racemic products 5 were prepared according to the procedure described for 5aa.

3.3 General procedure for the preparation of racemic products 8 and 9

An oven-dried test tube was charged with metal salt $Zn(OTf)_2$ (10 mol %), 7 (0.10 mmol), 2a (0.20 mmol), 4 Å MS (30 mg), DCE (1.0 mL) under N₂ atmosphere. The resulted solution was stirred at 60 °C in an oil bath for 24 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1 and 2/1, v/v) to afford the expected racemic products 8 and 9.

4 General procedures for the catalytic reactions

4.1 General procedure for the preparation of products 3

An oven-dried test tube was charged with catalyst **L-RaMe**₂/Dy(OTf)₃ (1:1, 10 mol %), **1c** (0.10 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg), DCE (0.5 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 48 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1 and 9/1, v/v) to afford the corresponding product **3ca**.

Other products 3 were prepared according to the procedure described for 3ca.

4.2 General procedure for the preparation of products 5

An oven-dried test tube was charged with catalyst L-PrPr₂/Sc(OTf)₃ (1:1, 10 mol %), LiNTf₂ (30 mol %), 4a (0.10 mmol), 2a (0.15 mmol), 4 Å MS (80 mg), DCE (0.5 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 72 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (4/1 and 2/1, v/v) to afford the desired product 5aa.

Other products 5 were prepared according to the procedure described for 5aa.

4.3 General procedure for the preparation of products 8 and 9

An oven-dried test tube was charged with catalyst L_2 -**PrPr₃**/Zn(OTf)₂ (1:1, 10 mol %), **7** (0.10 mmol), **2a** (0.20 mmol), 4 Å MS (30 mg), DCE (1.0 mL) under N₂ atmosphere. The resulted solution was stirred at 60 °C in an oil bath for 24 h and 36 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1 and 2/1, v/v) to afford the expected products **8** and **9**.

5 Optimization of the reaction conditions

5.1 Optimization of the reaction conditions of [4+2] cycloaddition between cyclobutenones with (*E*)-alkenyloxindoles

Table S1. Screening of metal salts.

	EtO ₂ C N COPh 1a	+ Ph 2a	metal salt/ L-PrPr (1:1, 10 mol %) 4 Å MS DCE, 60 °C	Ph CO2E CO2E COPh Saa	t
entry ^a	metal salts	ligand	yield ^b (%)	ee ^c (%)	dr ^{<i>d</i>}
1	Mg(OTf) ₂	L-PrPr ₂	35	race	>19:1
2	Sc(OTf) ₃	L-PrPr ₂	32	race	84:16
3	Cu(OTf) ₂	L-PrPr ₂	32	race	19:1
4	Y(OTf) ₃	L-PrPr ₂	48	-31	84:16
5	In(OTf) ₃	L-PrPr ₂	32	race	>19:1
6	Nd(OTf)₃	L-PrPr ₂	55	-30	84:16
7	Eu(OTf) ₃	L-PrPr ₂	56	-33	89:11

Supporting Information

8	Gd(OTf) ₃	L-PrPr ₂	47	-33	84:16
9	Tb(OTf) ₃	L-PrPr ₂	68	-25	87:13
10	Dy(OTf) ₃	L-PrPr ₂	55	-39	85:15
11	Ho(OTf) ₃	L-PrPr ₂	73	-17	91:9
12	Er(OTf) ₃	L-PrPr ₂	51	-25	87:13
13	Tm(OTf) ₃	L-PrPr ₂	63	-21	85:15
14	Yb(OTf)₃	L-PrPr ₂	62	-28	83:17
15	Lu(OTf) ₃	L-PrPr ₂	26	-17	92:8

^aThe reactions were performed with **1a** (0.10 mmol), **2a** (0.10 mmol), 4 Å MS (50 mg) and metal salt/**L-PrPr**₂ (1:1, 10 mol %) in DCE (0.1 M) at 60 °C for 16 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dDetermined by ¹H NMR analysis.

Table S2. Screening of the ligands.

	EtO ₂ C N COPh 1a	Ph Dy(OTf) ₃ / (1:1, 10 m 4 Å M DCE, 60 2a	ligand hol %) IS D°C COF 3aa	°CO₂Et O Ph
entry ^a	ligand	yield ^b (%)	ee ^c (%)	dr ^d
1	L-PrPr ₂	55	-39	85:15
2	L-PiPr ₂	50	-34	>19:1
3	L-RaPr₂	32	-48	92:8
4	L-RaEt₂	56	61	>19:1
5	L-RaMe ₂	59	72	94:6
6	L-RaPh	76	race	92:8
7	L-RaMe₃	56	62	91:9
8	L ₂ -RaMe ₂	50	43	>19:1
9	L-RaPr₃	30	-34	84:16
10	L-Ra'Bu	45	6	88:12
11	L-RaAd	60	-16	94:6

^aThe reactions were performed with **1a** (0.10 mmol), **2a** (0.10 mmol), 4 Å MS (50 mg) and Dy(OTf)₃/ligand (1:1, 10 mol %) in DCE (0.1 M) at 60 °C for 16 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^aDetermined by ¹H NMR analysis.

Table S3. Screening of the solvents.

	EtO ₂ C N COPh	+ Dy(OTf) ₃ /L- + (1:1, 10 m) - 4 Å M solvent, 6 2a	$\begin{array}{c} \text{-RaMe}_2 \\ \xrightarrow{\text{ol } \%)} \\ \text{S} \\ 0 \ ^\circ \text{C} \\ \end{array}$	CO_2Et	
entry ^a	solvent	yield ^b (%)	ee ^c (%)	dr ^d	
1	DCE	59	72	94:6	
2	EtOAc	n.d. ^e	11	19:1	
3	Toluene	n.d. ^e	17	92:8	

Supporting Information

4	THF	n.d. ^e	59	>19:1
5	MeCN	n.d. ^e	-31	91:9
6	CHCl₃	n.d. ^e	53	94:6
7	CCI ₂ HCCIH ₂	8	44	>19:1
8	CCI2HCCI2H	28	30	86:14

^aThe reactions were performed with **1a** (0.10 mmol), **2a** (0.10 mmol), **4** Å MS (50 mg) and Dy(OTf)₃/**L-RaMe**₂ (1:1, 10 mol %) in solvent (0.1 M) at 60 °C for 16 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dDetermined by ¹H NMR analysis. ^eNot determined.

Ph

Table S4. Screening of the additives.

	EtO_2C $\downarrow \qquad \qquad$	Dy(OTf) ₃ / L-RaMe₂ (1:1, 10 mol %) additives DCE, 60 °C	O COPh 3aa	,Et
entry ^a	additives	yield ^b (%)	ee ^c (%)	dr ^d
1	4 Å MS (50 mg)	59	72	94:6
2	3 Å MS (50 mg)	57	64	90:10
3	5 Å MS (50 mg)	52	68	93:7
4	4 Å MS (40 mg)	49	73	93:7
5	4 Å MS (60 mg)	52	70	94:6
6	4 Å MS (80 mg)	64	73	94:6
7	4 Å MS (100 mg)	66	68	92:8
8	4 Å MS (80 mg), LiNTf ₂ (10 mol %)	66	72	19:1
9	4 Å MS (80 mg), NaBAr ^F (10 mol %)	65	65	93:7

^eThe reactions were performed with **1a** (0.10 mmol), **2a** (0.10 mmol), additives and Dy(OTf)₃/**L-RaMe**₂ (1:1, 10 mol %) in DCE (0.1 M) at 60 °C for 16 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^cDetermined by ¹H NMR analysis.

Table S5. Screening of the substrates 1.

entry ^a	substrates 1	yield ^b (%)	ee ^c (%)	dr ^d
1	1a	59	72	94:6
2 ^e	1a	52	75	19:1
3 ^e	1b	75	87	>19:1
4 ^e	1c	72	92	>19:1

^aThe reactions were performed with **1** (0.10 mmol), **2a** (0.10 mmol), **4** Å MS (80 mg) and Dy(OTf)₃/**L-RaMe**₂ (1:1, 10 mol %) in DCE (0.1 M) at 60 °C for 16 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dDetermined by ¹H NMR analysis. ^eAt 50 °C for 48 h.

Table S6. Screening of the ratio of substrates.

^aThe reactions were performed with **1c** (0.10 mmol), **2a** (x mmol), 4 Å MS (80 mg) and Dy(OTf)₃/**L-RaMe**₂ (1:1, 10 mol %) in DCE (0.2 M) at 50 °C for 48 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dDetermined by ¹H NMR analysis.

5.2 Optimization of the reaction conditions of [4+2] cycloaddition between cyclobutenones and (*E*)-dioxopyrrolidines

Table S7. Screening of metal salts.

	Bn Ph +	0 metal salt/L-I (1:1, 10 m 4 Å MS DCE, 50 2a	$ \begin{array}{c} RaMe_2 \\ OI \%) \\ OC \\ Bn \\ 5aa \end{array} $	}—Ph ₽h
entry ^a	metal salt	ligand	yield ^b (%)	ee ^c (%)
1	Dy(OTf) ₃	L-RaMe₂	62	23
2	Ho(OTf) ₃	L-RaMe ₂	67	20
3	Er(OTf) ₃	L-RaMe₂	68	21
4	Tm(OTf) ₃	L-RaMe₂	64	17
5	Gd(OTf)₃	L-RaMe₂	63	21
6	Eu(OTf) ₃	L-RaMe₂	64	14
7	Sm(OTf) ₃	L-RaMe₂	65	9
8	Nd(OTf) ₃	L-RaMe₂	73	race
9	Pr(OTf) ₃	L-RaMe₂	70	6
10	Sc(OTf) ₃	L-RaMe₂	53	68
11	Y(OTf) ₃	L-RaMe₂	66	14
12	Ni(OTf) ₂	L-RaMe₂	38	7
13	Cu(OTf) ₂	L-RaMe₂	48	5
14	Zn(OTf) ₂	L-RaMe₂	56	race
15	Mg(OTf) ₂	L-RaMe ₂	46	5

^eThe reactions were performed with **4a** (0.1 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg) and metal salt/**L-RaMe**₂ (1:1, 10 mol %) in DCE (0.2 M) at 50 °C for 48 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase.

Table S8. Screening of the ligands.

	Ph + Ph + $2a$	Sc(OTf)₃/ligand (1:1, 10 mol %) 4 Å MS DCE, 50 °C	Bn ^{-N} Ph 5aa
entry ^a	ligand	yield ^b (%)	ee ^c (%)
1	L-RaMe ₂	53	68
2	L-RaPr ₂	48	71
3	L-PiPr ₂	65	80
4	L-PrPr ₂	67	83
5	L-PrEt ₂	n.d. ^d	64
6	L-PrMe ₂	n.d. ^d	47
7	L-PrPr ₃	n.d. ^d	73
8	L-PrEt₂Me	n.d. ^d	57
9	L-PrCy	n.d. ^d	51

^aThe reactions were performed with **4a** (0.1 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg) and Sc(OTf)₃/ligand (1:1, 10 mol %) in DCE (0.2 M) at 50 °C for 48 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^aNot Determined.

Table S9. Screening of the solvents.

	$Bh \xrightarrow{O} Ph + Ph$ 4a 2a	Sc(OTf) ₃ / L-PrPr ₂ (1:1, 10 mol %) 4 Å MS solvent, 50 °C Bn ^{-N}	Ph 5aa
entryª	solvents	yield ^b (%)	ee ^c (%)
1	DCE	48	83
2	CHCl₃	46	83
3	EtOAc	36	65
4	Toluene	17	70
5	THF	23	69

^aThe reactions were performed with **4a** (0.1 mmol), **2a** (0.15 mmol), 4 Å MS (80 mg) and Sc(OTf)₃/**L-PrPr**₂ (1:1, 10 mol %) in solvent (0.2 M) at 50 °C for 48 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase.

Table S10. Screening of additives and other conditions.

			Supporting Information
1	4 Å MS (80 mg)	55	83
2	3 Å MS (80 mg)	54	82
3	5 Å MS (80 mg)	43	77
4	No additives	14	40
5	4 Å MS (80 mg), NaBAr ^F (10 mol %)	78	84
6	4 Å MS (80 mg), LiNTf ₂ (10 mol %)	66	86
7	4 Å MS (80 mg), LiNTf ₂ (20 mol %)	68	89
8 ^{<i>d</i>}	4 Å MS (80 mg), LiNTf₂ (30 mol %)	84	89

^aThe reactions were performed with **4a** (0.1 mmol), **2a** (0.15 mmol), additives and Sc(OTf)₃/**L-PrPr**₂ (1:1, 10 mol %) in DCE (0.2 M) at 50 °C for 48 h. ^bYield of the isolated product. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dFor 72 h.

LiNTf₂ was beneficial to activate cyclobutenone to generate the vinylketene intermediate under mild conditions presumably through coordinating with the oxygen of cyclobutenone. On the other hand, a counter ion exchange between 'NTf₂ and 'OTf might occur, the larger steric hindrance of the 'NTf₂ ion would make the catalyst space more compact. As a result, the enantioselectivities of the reactions with (*E*)-dioxopyrrolidines were increased. As for the more bulky (*E*)-alkenyloxindoles, the addition of LiNTf₂ as the additive did not show any obvious effect on the chiral control (Table S4, entry 8).

6 General procedures for the scale-up versions

6.1 General procedure for the gram-scale synthesis of product 3ca

An oven-dried round-bottom flask was charged with catalyst **L-RaMe**₂/Dy(OTf)₃ (1:1, 10 mol %), **1c** (3.0 mmol), **2a** (4.5 mmol), 4 Å MS (2.40 g), DCE (15 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 48 h. The reaction mixture was filtered (solvent: CH₂Cl₂), and concentrated under reduced pressure, the crude product was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1 and 9/1, v/v) to afford the corresponding product **3ca** (1.53 g, 99% yield, 93% ee).

6.2 General procedure for the gram-scale synthesis of product 5da

An oven-dried round-bottom flask was charged with catalyst L-PrPr₂/Sc(OTf)₃ (1:1, 10 mol %), LiNTf₂ (30 mol %), 4d (2.5 mmol), 2a (3.75 mmol), 4 Å MS (2.0 g), DCE (12.5 mL) under N₂ atmosphere. The resulted solution was stirred at 50 °C in an oil bath for 72 h. The reaction mixture was filtered (solvent: CH_2Cl_2), and concentrated under reduced pressure, the crude product was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (4/1 and 2/1, v/v) to afford the desired product 5da (1.03 g, 84% yield, 87% ee).

7 General procedure for the synthesis of compound 11

To a solution of **3ca** (51.1 mg, 0.1 mmol, 93% ee, >19:1 dr) in CH_2CI_2 (0.5 mL) and MeOH (0.5 mL) was added NH₃ H₂O (0.2 mL) at room temperature and stirred for 15 minutes at 35 °C. Then, the mixture was concentrated under reduced pressure, the crude product was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1 and 1/1, v/v) to afford the desired product **11** (34.3 mg, 88% yield, 93% ee, >19:1 dr).

8 General procedure for the synthesis of compound 12

To a solution of **3ca** (51.1 mg, 0.1 mmol, 93% ee, >19:1 dr) in CH_2CI_2 (0.5 mL) and MeOH (0.5 mL) was added NaBH₄ (8.4 mg) at room temperature and stirred for 20 minutes. Then, the mixture was quenched with H_2O , extracted with CH_2CI_2 , dried over Na_2SO_4 , concentrated, the residue was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate = 2/1 and 1/1, v/v) to afford the desired product **12** (17.2 mg, 44% yield, 90% ee, >19:1 dr).

9 Analysis results of 2D NMR spectra of the product 3ja

HSQC-Correlation Peak: (3,43, 27.0); (3.95, 44.4); (3.77, 55.8); (7.77, 119.6); (7.64, 116.2); (7.47, 129.7); (7.28, 125.2); (7.71, 129.1); (7.49, 126.4); (6.79, 110.6); (6.60, 122.7); (8.02, 112.6); (6.91, 116.4). **HMBC**-Correlation Peak: (1.16, 83.1); (1.16, 27.4); (3.95, 168.8); (3.95, 176.7); (7.75, 167.9); (3.76, 157.1); (6.60, 137.1); (8.00, 157.0); (6.90, 140.1); (6.90, 140.1); (7.9

HMBC-Correlation Peak: (1.16, 83.1); (1.16, 27.4); (3.95, 168.8); (3.95, 176.7); (7.75, 167.9); (3.76, 157.1); (6.60, 137.1); (8.00, 157.0); (6.90, 157.1); 6.75, 157.2); (6.75, 61.0); (7.50, 137.1); (7.68, 158.7); (6.76, 112.7); (6.76, 134.6); (7.99, 134.6).

Number of Atom	н	С	Number of Atom	н	С
1		168.9	16		136.4 (<i>J</i> _{C-F} = 7.1 Hz)
2		61.1	17	7.28 (ddd)	125.3 (<i>J</i> _{C-F} = 3.0 Hz)
3		128.3	18	7.54-7.43 (m)	130.0 (<i>J</i> _{C-F} = 8.1 Hz)
4	6.76 (d)	110.8	19	7.64 (ddd)	116.4 (<i>J</i> _{C-F} = 23.2 Hz)
5		157.2	20		162.4 (<i>J</i> _{C-F} = 247.5 Hz)
6	8.01 (d)	112.8	21	7.76 (dt)	119.8 (<i>J</i> _{C-F} = 21.2 Hz)

Supporting Information

7	6.90 (dd)	116.5	22		137.2
8		134.7	23	7.72-7.68 (m)	129.3
9	3.95 (dd)	44.5	24	7.54-7.43 (m)	126.5
10		27.2	25	7.54-7.43 (m)	131.4
11		158.8	26		175.8
12	6.60-6.58 (m)	122.8	27		83.2
13		192.7	28	1.16	27.5
14	3.76	55.9	29	3.50-3.36 (m)	
15		168.0 (<i>J</i> _{C-F} = 3.0 Hz)	30	3.50-3.36 (m)	

10 Determination of absolute configurations of compound 3fa, 5da and 12

10.1 The X-ray structure of product 3fa

The crystals of product **3fa** were obtained from its solution in CH_2Cl_2 and petroleum ether. The absolute configuration of the product **3fa** was determined as (1*R*,2*R*) by its X-ray crystal structure. CCDC **1956580** contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure 1. the thermal ellipsoid figure of 3fa with 50% probablities

10.2 The X-ray structure of product 5da

The crystals of product **5da** were obtained from its solution in CH_2CI_2 , toluene and ethyl acetate. The absolute configuration of the product **5da** was determined as (*S*) by its X-ray crystal structure. CCDC **1989600** contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure 2. the thermal ellipsoid figure of 5da with 50% probablities

10.3 The X-ray structure of product 12

The crystals of product **12** were obtained from its solution in CH_2CI_2 and petroleum ether. The absolute configuration of the product **12** was determined as (1*R*,2*R*,3*S*) by its X-ray crystal structure. CCDC **1956579** contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Supporting Information

11 The X-ray structure of catalyst Dy(OTf)₃/L-RaEt₂ and working modes

The crystals of complex $Dy(OTf)_3/L$ -RaEt₂ were obtained from its solution in MeOH and ether. The coordination mode of catalyst $Dy(OTf)_3/L$ -RaEt₂ was determined by its X-ray crystal structure. CCDC **1977127** contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure 4. the thermal ellipsoid figure of catalyst Dy(OTf)₃/L-RaEt₂ with 50% probablities

At the current stage, we do not have a clear-cut explanation on this interesting reverse (ref.11 in manuscript), and we assumed that steric hindrance or coordination form played an important role in chiral control. As shown in Figure 5, when **L-RaMe**₂ or **L-RaEt**₂ was used, the vinylketene intermediate would attack (*E*)-alkenyloxindole from its β -*Re* face (Mode I), delivering the observed (1*R*,2*R*)-**3aa** as the major enantiomer. However, when **L-RaPr**₂ was used, arising from the steric repulsion between 2,6-diisopropyl group and oxindole moiety of substrate **1a** (Mode I'), the vinylketene intermediate preferred to attack (*E*)-alkenyloxindole from its β -*Si* face to afforded (1*S*,2*S*)-**3aa** as the main product (Mode II). Further studies on the reaction mechanism are undergoing in our laboratory.

12 Reference

(1) Wen, Y. H.; Huang, X.; Huang, J. L.; Xiong, Y.; Qin, B.; Feng, X. M. Synlett 2005, 2445.

(2) Sugimoto, K.; Hayashi, R.; Nemoto, H. Toyooka, N.; Matsuya, Y. Org. Lett. 2012, 14, 3510.

13 Characterization of the products

Ethyl 1'-benzoyl-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

J = 7.2 Hz, 3H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.3, 175.4, 169.6, 169.0, 158.2, 141.4, 136.8, 133.6, 133.0, 131.1, 129.7, 129.3, 129.0, 128.1, 126.3, 124.5, 122.9, 122.7, 115.3, 61.6, 60.7, 44.1, 27.0, 13.4.

IR: 3061, 2982, 1765, 1733, 1691, 1658, 1606, 1472, 1343, 1286, 1249, 1167, 1075, 753, 695 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{29}H_{23}NO_5Na^+$ 488.1468; Found 488.1480.

	Retention	Area	% Area
	Time		
1	16.359	3281966	3.99
2	19.187	1320088	1.61
3	24.511	10541159	12.82
4	30.602	67054782	81.58

Tert-butyl 1'-benzoyl-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Ph Oil; 37.0 mg, 75% yield, 87% ee; $[\alpha]^{25}_{D}$ = +123.89 (*c* = 0.54 in CH₂Cl₂). HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R* (major) = 18.99 min, *t_R* (minor) = 21.57 min. **H NMR** (400 MHz, CDCl₃) δ = 8.09 – 7.93 (m, 3H), 7.76 – 7.67 (m, 2H), 7.64 – 7.57 (m, 1H), 7.51 (qd, *J* = 4.9, 1.7 Hz, 5H), 7.39 (td, *J* = 7.9, 1.4 Hz, 1H), 7.24 – 7.08 (m, 2H), 6.64 – 6.56 (m, 1H), 3.97 (dd, *J*

= 11.1, 6.8 Hz, 1H), 3.58 - 3.33 (m, 2H), 1.14 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.7, 175.6, 169.1, 168.8, 158.4, 141.4, 136.9, 133.8, 132.8, 131.1, 129.5, 129.3, 128.9, 128.1, 126.8, 126.2, 124.6, 122.6, 122.5, 115.3, 82.9, 60.8, 44.2, 27.1, 26.9.

IR: 3062, 2978, 1768, 1227, 1690, 1656, 1607, 1472, 1368, 1343, 1286, 1247, 1162, 754, 695 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₁H₂₇NO₅Na⁺ 516.1781; Found 516.1788.

	Time	Area	% Area
1	18.986	83008814	93.52
2	21.574	5749222	6.48

Tert-butyl 1'-(3-fluorobenzoyl)-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 76–78 °C; 50.9 mg, 99% yield, 93% ee; $[\alpha]^{25}_{D}$ = +122.77 (*c* = 0.94 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 14.17 min, t_R (minor) = 20.66 min.

 $\frac{1}{1}$ **MMR** (400 MHz, CDCl₃) $\delta = 8.07 - 7.97$ (m, 1H), 7.81 (dt, J = 7.7, 1.3 Hz, 1H), 7.75 - 7.65 (m, 3H), **3ca** $R^2 = 3 - FC_6H_4$ 7.53 - 7.44 (m, 4H), 7.43 - 7.36 (m, 1H), 7.33 - 7.27 (m, 1H), 7.24 - 7.18 (m, 1H), 7.14 (td, J = 7.6, 1.1 Hz, 1H), 6.63 - 6.55 (m, 1H), 3.97 (dd, J = 11.0, 6.9 Hz, 1H), 3.56 - 3.34 (m, 2H), 1.14 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.6, 175.6, 168.7, 167.9 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 158.5, 141.0, 136.9, 135.8 (*J*_{C-F} = 7.1 Hz), 131.1, 129.7 (*J*_{C-F} = 7.1 Hz), 129.3, 129.0, 126.8, 126.2, 125.2 (*J*_{C-F} = 3.0 Hz), 124.8, 122.7, 122.5, 119.7 (*J*_{C-F} = 21.2 Hz), 116.3 (*J*_{C-F} = 24.2 Hz), 115.3, 82.9, 60.7, 44.1, 27.1, 26.9;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112. 2.

IR: 2977, 2362, 1767, 1726, 1691, 1651, 1607, 1471, 1442, 1342, 1244, 1153, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for C₃₁H₂₆FNO₅Na⁺ 534.1687; Found 534.1686.

	Retention Time	Area	% Area
1	14.169	11968218	96.52
2	20.661	509023	3.48

Tert-butyl 5'-fluoro-1'-(3-fluorobenzoyl)-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 81–84 °C; 52.5 mg, 99% yield, 91% ee; $[\alpha]^{25}_{D}$ = +129.12 (*c* = 0.89 in CH₂Cl₂). HPLC DAIC EL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R* (major) = 9.82 min, *t_R* (minor) = 14.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.03 (dd, *J* = 9.0, 4.6 Hz, 1H), 7.77 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.65 (ddd, *J* = 9.1, 2.6, 1.5 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.29 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 7.11 (td, *J* = 8.9, 2.6 Hz, 1H), 6.92 (dd, *J* = 7.7, 2.7 Hz, 1H), 6.61 (t, *J* = 1.5 Hz, 1H), 3.97 (dd, *J* = 3.41 (m, 2H) 1.17 (s, 9H):

= 10.4, 7.5 Hz, 1H), 3.44 - 3.41 (m, 2H), 1.17 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.2, 175.5, 168.7, 168.0 (*J*_{C-F} = 3.0 Hz), 162.5 (*J*_{C-F} = 248.5 Hz), 159.9 (*J*_{C-F} = 246.4 Hz), 159.0, 137.4 (*J*_{C-F} = 2.0 Hz), 137.0, 136.0 (*J*_{C-F} = 8.1 Hz), 131.6, 130.0 (*J*_{C-F} = 8.1 Hz), 129.3, 128.5 (*J*_{C-F} = 8.1 Hz), 126.6, 125.4 (*J*_{C-F} = 3.0 Hz), 122.7, 120.1 (*J*_{C-F} = 21.2 Hz), 116.9 (*J*_{C-F} = 8.1 Hz), 116.5 (*J*_{C-F} = 24.2 Hz), 116.0 (*J*_{C-F} = 22.2 Hz), 110.8 (*J*_{C-F} = 25.3 Hz), 83.4, 61.07, 44.5, 27.5, 27.1;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCI₃) $\delta = -112.2, -115.9.$

IR: 2964, 2362, 1770, 1726, 1691, 1650, 1609, 1479, 1443, 1343, 1257, 1151, 1086, 760 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}F_2NO_5Na^+$ 552.1593; Found 552.1590.

	Retention Time	Area	% Area
1	7.331	20347	1.94
2	8.874	18259	1.74
3	10.185	504209	48.13
4	15.024	504731	48.18

	Retention Time	Area	% Area
1	9.824	27493964	95.43
2	14.958	1316845	4.57

Tert-butyl 5'-chloro-1'-(3-fluorobenzoyl)-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 54.1 mg, 99% yield, 91% ee; $[\alpha]^{25}_{D} = +154.54$ (*c* = 0.97 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 9.75 min, t_R (minor) = 12.36 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.98 (d, *J* = 8.8 Hz, 1H), 7.78 (dt, *J* = 7.9, 1.2 Hz, 1H), 7.74 - 7.70 (m, 2H), 7.66 (ddd, *J* = 9.2, 2.4, 1.6 Hz, 1H), 7.54 - 7.44 (m, 4H), 7.38 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.30 (tdd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 7.14 (d, *J* = 2.1 Hz, 1H), 6.61 (t, *J* = 1.5 Hz, 1H), 3.96 (dd, *J* = 10.4, 7.6 Hz, 1H), 7.6 Hz, 1H), 7.90 (dd, *J* = 10.4, 7.6 Hz, 1H), 7.90 (dd, J = 10.4, 7.6 Hz, 1H), 7.90 (dd

1H), 3.48 - 3.37 (m, 2H), 1.18 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.2, 175.3, 168.7, 167.9 (J_{C-F} = 3.0 Hz), 162.5 (J_{C-F} = 248.5 Hz), 159.1, 140.0, 137.0, 135.8 (J_{C-F} = 8.1 Hz), 131.6, 130.4, 130.1 (J_{C-F} = 8.1 Hz), 129.6, 129.3, 128.7, 126.6, 125.5 (J_{C-F} = 3.0 Hz), 123.2, 122.7, 120.2 (J_{C-F} = 21.2 Hz), 116.7, 116.6 (J_{C-F} = 24.2 Hz), 83.5, 60.9, 44.5, 27.6, 27.1;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.1$.

IR: 2361, 1770, 1729, 1695, 1652, 1609, 1471, 1426, 1332, 1234, 1153, 757 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{34.9689}CIFNO_5Na^+ 568.1297$; Found 568.1293.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for $C_{31}H_{25}^{36.9659}CIFNO_5Na^+ 570.1267$; Found 570.1264.

	Retention	Area	% Area
	Time		
1	6.835	134327	1.73
2	8.525	156381	2.02
3	9.954	3727156	48.08
4	12.357	3733573	48.17

	Retention	Area	% Area
	Time		
1	6.820	102974	0.16
2	8.459	1019293	1.60
3	9.745	59584095	93.74
4	12.358	2859235	4.50

Tert-butyl 5'-bromo-1'-(3-fluorobenzoyl)-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 198–200 °C; 58.7 mg, 99% yield, 90% ee; $[\alpha]^{25}_{D} = +154.03$ (*c* = 0.94 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 10.13 min, t_R (minor) = 11.81 min.

 $\begin{array}{l} \overset{\circ}{\text{COR}^2} & \ensuremath{^1\text{H}}\ensuremath{\,\text{NMR}}\ensuremath{\,}(400\ensuremath{\,\text{MHz}}\ensuremath{,\text{CDCI}}\ensuremath{_3}\ensuremath{)}\delta = 7.92\ensuremath{\,}(d, J = 8.7\ensuremath{\,\text{Hz}}\ensuremath{,\text{1H}}\ensuremath{)}, 7.74 - 7.70\\ \textbf{3fa}\ensuremath{\,\text{R}}^2 = 3\text{-}\text{FC}_6\text{H}_4 & (m, 2\text{H}), 7.66\ensuremath{\,}(dd, J = 9.0, 2.6, 1.5\ensuremath{\,\text{Hz}}\ensuremath{,\text{1H}}\ensuremath{)}, 7.56 - 7.44\ensuremath{\,}(m, 5\text{H})\ensuremath{)}, 7.30\ensuremath{\,}(tdd, J = 8.0, 2.4, 1.2\ensuremath{\,\text{Hz}}\ensuremath{,\text{2H}}\ensuremath{)}, 8.661\ensuremath{\,}(t, J = 1.6\ensuremath{\,\text{Hz}}\ensuremath{)}, 1.39\ensuremath{\,}(dd, J = 9.0, 2.6, 1.5\ensuremath{\,\text{Hz}}\ensuremath{)}, 1.18\ensuremath{\,}(s, 9\text{H})\ensuremath{)}; \end{array}$

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.1, 175.2, 168.7,167.9 (J_{C-F} = 3.0 Hz),162.5 (J_{C-F} = 248.5 Hz), 159.1, 140.5, 137.0, 135.81 (J_{C-F} = 7.1 Hz), 132.6, 131.6, 130.1 (J_{C-F} = 8.1 Hz), 129.3, 129.1, 126.6, 126.0, 125.5 (J_{C-F} = 4.0 Hz), 122.7, 120.2 (J_{C-F} = 21.2 Hz), 117.9, 117.1, 116.6 (J_{C-F} = 24.2 Hz), 83.5, 60.9, 44.6, 27.6, 27.1;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.1$.

IR: 2972, 2362, 1776, 1731, 1690, 1650, 1609, 1464, 1368, 1240, 1156, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{78.9183}BrFNO_5Na^+$ 612.0792; Found 612.0793.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for $C_{31}H_{25}^{80.9163}BrFNO_5Na^+$ 614.0772; Found 614.0775.

	Retention Time	Area	% Area
1	7.022	233866	1.78
2	8.704	264629	2.02
3	10.164	6343013	48.40
4	11.754	6264889	47.80

	Retention Time	Area	% Area
1	7.028	40791	0.18
2	8.679	433350	1.89
3	10.127	21279025	92.92
4	11.813	1146618	5.01

Tert-butyl 5'-iodo-1'-(3-fluorobenzoyl)-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 200–202 °C; 61.4 mg, 96% yield, 84% ee; $[\alpha]^{25}_{D}$ = +148.50 (*c* = 0.80 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 10.62 min, t_R (minor) = 11.62 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.82 – 7.75 (m, 2H), 7.75 – 7.70 (m, 3H), 7.66 (ddd, *J* = 9.0, 2.6, 1.6 Hz, 1H), 7.54 – 7.42 (m, 5H), 7.33 – 7.27 (m, 1H), 6.63 – 6.57 (m, 1H), 3.95 (dd, *J* = 10.7, 7.3 Hz, 2H) 1.17 (e. 0H):

1H), 3.49 – 3.36 (m, 2H), 1.17 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 191.9, 174.8, 168.4, 167.6 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 158.8, 140.9, 138.3, 136.7, 135.5 (J = 7.1 Hz), 131.3, 131.2,129.8 (J = 8.1 Hz), 129.2, 129.0, 126.3, 125.2 (*J*_{C-F} = 3.0 Hz), 122.4, 119.9 (*J*_{C-F} = 22.2 Hz), 116.3 (*J*_{C-F} = 23.2 Hz), 116.2, 87.8, 83.2, 60.4, 44.3, 27.2, 26.76;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.0.

IR: 2967, 2362, 1776, 1728, 1680, 1649, 1610, 1463, 1368, 1329, 1240, 1156, 751 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₁H₂₅IFNO₅Na⁺ 660.0654; Found 660.0654.

	Retention Time	Area	% Area
1	7.136	2641881	2.37
2	7.985	2931024	2.63
3	9.933	54981136	49.25
4	11.050	51085412	45.76

	Retention Time	Area	% Area
1	10.618	7322133	91.78
2	11.624	655452	8.22

Tert-butyl 1'-(3-fluorobenzoyl)-5'-nitro-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 101–103 °C; 51.2 mg, 92% yield, 79% ee; $[\alpha]^{25}_{D}$ = +182.66 (*c* = 0.74 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 22.44 min, t_R (minor) = 18.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.35 (dd, *J* = 9.0, 2.3 Hz, 1H), 8.11 (d, *J* = 9.0 Hz, 1H), 8.02 (d, *J* = 2.3 Hz, 1H), 7.82 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.72 (tdd, *J* = 8.9, 2.9, 1.6 Hz, 3H), 7.58 - 7.47 (m, 4H),

7.34 (tdd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 6.63 (dd, *J* = 2.1, 1.0 Hz, 1H), 4.02 (dd, *J* = 11.1, 6.8 Hz, 1H), 3.57 – 3.42 (m, 2H), 1.19 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 191.5, 175.1, 168.4, 167.8 (J_{C-F} = 3.0 Hz), 162.5 (J_{C-F} = 248.5 Hz), 159.8, 146.7, 144.6, 136.8, 135.1 (J_{C-F} = 7.1 Hz), 131.8, 130.3 (J_{C-F} = 8.1 Hz), 129.4, 128.3, 126.7, 126.0, 125.8 (J_{C-F} = 3.0 Hz), 122.6, 120.9 (J_{C-F} = 21.2 Hz), 118.5, 116.9 (J_{C-F} = 23.2 Hz), 115.3, 83.8, 60.8, 44.8, 27.7, 27.2;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -111.7.

IR: 2362, 1772, 1701, 1654, 1607, 1524, 1470, 1441, 1341, 1297, 1244, 1152, 1079, 736 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}FN_2O_7Na^+579.1538$; Found 579.1538.

	Retention Time	Area	% Area
1	18.790	900135	50.22
2	22.769	892127	49.78

	Retention Time	Area	% Area
1	18.795	2658315	10.50
2	22.442	22647476	89.50

Tert-butyl 1'-(3-fluorobenzoyl)-5'-methyl-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 198–200 °C; 49.5 mg, 94% yield, 85% ee; $[\alpha]^{25}_{D}$ = +154.29 (*c* = 0.79 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 8.86 min, t_R (minor) = 23.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.91 (d, *J* = 8.3 Hz, 1H), 7.78 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.73 (m, 2H), 7.66 (ddd, *J* = 9.1, 2.6, 1.5 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.29 (ddd, *J* = 8.4, 2.6, 1.0 Hz, 1H),

3ia $R^2 = 3-FC_6H_4$ 2H), 7.66 (ddd, J = 9.1, 2.6, 1.5 Hz, 1H), 7.53 - 7.43 (m, 4H), 7.29 (ddd, J = 8.4, 2.6, 1.0 Hz, 1H), 7.19 (ddd, J = 8.3, 1.8, 0.8 Hz, 1H), 6.98 (d, J = 1.6 Hz, 1H), 6.60 (dd, J = 2.4, 1.2 Hz, 1H), 3.96 (dd, J = 11.2, 6.7 Hz, 1H), 3.53 - 3.36 (m, 2H), 2.30 (s, 3H), 1.14 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 193.1, 176.0, 169.1, 168.1 (J_{C-F} = 3.0 Hz), 162.5 (J_{C-F} = 248.5 Hz), 158.7, 139.0, 137.3, 136.3 (J_{C-F} = 7.1 Hz), 135.0, 131.4, 130.1, 130.0 (J_{C-F} = 7.1 Hz), 129.3, 127.1, 126.6, 125.4 (J_{C-F} = 3.0 Hz), 123.5, 122.9, 119.9 (J_{C-F} = 22.2 Hz), 116.5 (J_{C-F} = 23.2 Hz), 115.4, 83.2, 61.1, 44.5, 27.5, 27.1, 21.4;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.3$.

IR: 2967, 2361, 1767, 1726, 1691, 1651, 1604, 1473, 1435, 1342, 1244, 1154, 753 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{32}H_{28}FNO_5Na^+$ 548.1844; Found 548.1838.

	Retention Time	Area	% Area
1	8.997	4942876	50.60
2	23.043	4825898	49.40

	Retention Time	Area	% Area
1	8.860	48766724	92.52
2	23.174	3940671	7.48

Tert-butyl 1'-(3-fluorobenzoyl)-5'-methoxy-4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 201–203 °C; 46.7 mg, 86% yield; 90% ee; $[\alpha]^{25}D = +104.30$ (*c* = 0.70 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 10.80 min, t_R (minor) = 26.95 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.01 (d, *J* = 8.9 Hz, 1H), 7.76 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.72 - 7.68 (m, 2H), 7.64 (ddd, *J* = 9.1, 2.6, 1.5 Hz, 1H), 7.54 - 7.43 (m, 4H), 7.28 (ddd, *J* = 8.4, 2.6, 1.0 Hz, 1H),

6.90 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.76 (d, *J* = 2.6 Hz, 1H), 6.60 – 6.58 (m, 1H), 3.95 (dd, *J* = 10.5, 7.4 Hz, 1H), 3.76 (s, 3H), 3.50 – 3.36 (m, 2H), 1.16 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.8, 175.8, 168.9, 168.0 (*J*_{C-F} = 3.0 Hz), 162.4 (*J*_{C-F} = 247.5 Hz), 158.8, 157.2, 137.2, 136.4 (*J*_{C-F} = 7.1 Hz), 134.7, 131.4, 130.0 (*J*_{C-F} = 8.1 Hz), 129.3, 128.3, 126.5, 125.3 (*J*_{C-F} = 3.0 Hz), 122.8, 119.8 (*J*_{C-F} = 21.2 Hz), 116.4 (*J*_{C-F} = 23.2 Hz), 116.5, 112.7, 110.8, 83.2, 61.1, 55.9, 44.5, 27.5, 27.1;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.3.

IR: 2964, 2362, 1775, 1727, 1680, 1648, 1613, 1482, 1348, 1302, 1273, 1238, 1153, 752 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{32}H_{28}FNO_6Na^+$ 564.1793; Found 564.1790.

	Retention Time	Area	% Area
1	10.803	15278026	94.97
2	26.950	809121	5.03

Tert-butyl 6'-chloro-1'-(3-fluorobenzoyl)- 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

3ka $R^2 = 3 - FC_6 H_4$

White solid; melting point: 99–101 °C; 54.3 mg, 99% yield, 92% ee; $[\alpha]^{25}_{D} = +157.62$ (*c* = 0.89 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL ·IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 9.82 min, t_R (minor) = 14.45 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.07 (d, J = 1.7 Hz, 1H), 7.79 (dt, J = 7.8, 1.2 Hz, 1H), 7.69 (dddd, J = 11.5, 9.1, 3.0, 1.6 Hz, 3H), 7.53 – 7.43 (m, 4H), 7.30 (tdd, J = 8.4, 2.6, 1.0 Hz, 1H), 7.15 – 7.07 (m, 2H), 6.59 (t, J = 1.5 Hz, 1H), 3.95 (dd, J = 9.9, 7.9 Hz, 1H), 3.46 - 3.36 (m, 2H), 1.18 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.0, 175.2, 168.5, 167.6 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 158.6, 142.0, 136.7, 135.4 (*J*_{C-F} = 8.1 Hz), 135.2, 131.3, 129.7 (*J*_{C-F} = 8.1 Hz), 129.0, 126.2, 125.2 (*J*_{C-F} = 3.0 Hz), 125.1, 124.8, 123.5, 122.4, 120.0 (J_{C-F} = 21.2 Hz), 116.3 (J_{C-F} = 23.2 Hz), 115.9, 83.1, 60.4, 44.2, 27.3, 26.9;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.1.

IR: 2979, 1770, 1695, 1653, 1596, 1477, 1442, 1338, 1243, 1155, 1072, 759 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{34.9689}$ CIFNO₅Na⁺ 568.1297; Found 568.1294.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₁H₂₅^{36.9659}CIFNO₅Na⁺ 570.1267; Found 570.1275.

	Retention Time	Area	% Area
1	9.824	14545605	96.28
2	14.453	562244	3.72

Tert-butyl 7'-fluoro-1'-(3-fluorobenzoyl)- 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 84–86 °C; 49.8 mg, 94% yield, 48% ee; $[\alpha]^{25}_{D}$ = +73.86 (*c* = 0.75 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R* (major) = 14.00 min, *t_R* (minor) = 32.71 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.96 (dt, *J* = 7.9, 1.2 Hz, 1H), 7.84 (ddd, *J* = 9.1, 2.6, 1.6 Hz, 1H), 7.72 - 7.68 (m, 2H), 7.53 - 7.47 (m, 4H), 7.36 - 7.31 (m, 1H), 7.14 - 7.07 (m, 2H), 7.03 - 6.95 (m, 1H), 6.60 - 6.56 (m, 1H), 4.00 (dd, *J* = 11.0, 6.8 Hz, 1H), 3.51 - 3.35 (m, 2H), 1.23 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 191.6, 174.5, 168.7, 165.9 (J = 3.0 Hz), 162.4 (J_{C-F} = 248.5 Hz), 158.6, 148.7 (J_{C-F} = 253.5 Hz), 136.8, 134.7 (J_{C-F} = 7.1 Hz), 131.2, 130.0 (J_{C-F} = 8.1 Hz), 129.7 (J_{C-F} = 2.0 Hz), 129.0, 128.4 (J_{C-F} = 10.1 Hz), 126.5 (J_{C-F} = 3.0 Hz), 126.2, 125.6 (J_{C-F} = 7.1 Hz), 122.4, 120.9 (J_{C-F} = 21.2 Hz), 118.6 (J = 3.0 Hz), 117.8 (J_{C-F} = 20.2 Hz), 117.2 (J_{C-F} = 20.2 Hz), 83.2, 61.6, 44.5, 27.4, 27.0;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.0, -116.1.

IR: 2971, 2362, 1765, 1713, 1654, 1608, 1484, 1443, 1346, 1243, 1150, 744 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}F_2NO_5Na^+$ 552.1593; Found 552.1599.

	Retention Time	Area	% Area
1	14.422	2129030	50.41
2	33.485	2094709	49.59

	Retention Time	Area	% Area
1	13.999	15441028	74.21
2	32.714	5364803	25.79

Tert-butyl 4'-chloro-1'-(3-fluorobenzoyl)- 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 72–75 °C; 50.4 mg, 92% yield; 79% ee; $[\alpha]^{25}_{D} = -64.68$ (c = 0.50 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 17.58 min, t_R (minor) = 14.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.84 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.63 – 7.53 (m, 4H), 7.46 – 7.36 (m, 5H), 7.25 – 7.22 (m, 2H), 6.61 (d, *J* = 2.2 Hz, 1H), 4.50 (dd, *J* = 12.0, 5.0 Hz, 1H), 3.72 (ddd, *J* = 18.0, 12.0, 2.4 Hz, 1H), 3.14 (dd, *J* = 18.0, 6.0 Hz, 1H), 1.25 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 189.1, 170.7, 169.7, 167.4 (*J*_{C-F} = 3.0 Hz), 162.1 (*J*_{C-F} = 248.5 Hz), 159.8, 142.7, 137.1, 135.9 (*J*_{C-F} = 8.1 Hz), 130.7, 130.4, 130.2, 129.7 (*J*_{C-F} = 8.1 Hz), 128.7, 126.2, 125.8, 125.3, 124.8 (*J*_{C-F} = 3.0 Hz), 122.4, 119.7 (*J*_{C-F} = 21.2 Hz), 116.1 (*J*_{C-F} = 23.2 Hz), 113.2, 82.5, 61.0, 46.1, 27.5, 27.4;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.1$.

IR: 2977, 2362, 1772, 1699, 1661, 1594, 1444, 1341, 1256, 1133, 748 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{34.9689}CIFNO_5Na^+$ 568.1297; Found 568.1295.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{36.9659}CIFNO_5Na^+ 570.1267$; Found 570.1270.

	Retention Time	Area	% Area
1	14.173	112787886	43.75
2	17.504	116782472	45.30
3	23.596	28248854	10.96

	Retention Time	Area	% Area
1	14.345	13034303	10.01
2	17.580	110614134	84.92
3	24.178	6607526	5.07

Tert-butyl 4'-bromo-1'-(3-fluorobenzoyl)- 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 158–160 °C; 52.0 mg, 88% yield; 55% ee; $[\alpha]^{25}_{D} = -74.39$ (c = 0.58 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_{R} (major) = 19.08 min, t_{R} (minor) = 15.67 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.88 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.65 – 7.51 (m, 4H), 7.47 – 7.37 (m, 5H), 7.31 (t, *J* = 8.1 Hz, 1H), 7.24 (ddd, *J* = 8.3, 2.6, 1.1 Hz, 1H), 6.62 (d, *J* = 2.2 Hz, 1H), 4.64 (dd, *J* = 12.0, 5.0 Hz, 1H), 3.73 (ddd, *J* = 18.0, 12.0, 2.4 Hz, 1H), 3.16 (dd, J = 20.0, 4.0 Hz, 1H), 1.25 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 189.1, 170.7, 169.7, 167.3 (*J*_{C-F} = 3.0 Hz), 162.1 (*J*_{C-F} = 258.6 Hz), 159.6, 142.9, 137.1, 135.9 (*J*_{C-F} = 7.1 Hz), 130.7, 130.6, 129.7 (*J*_{C-F} = 8.1 Hz), 129.0, 128.7, 127.0, 126.2, 124.8 (*J*_{C-F} = 3.0 Hz), 122.6, 119.7 (*J*_{C-F} = 21.2 Hz), 118.6, 116.1 (*J*_{C-F} = 23.2 Hz), 113.7, 82.4, 61.7, 45.9, 29.5, 27.4;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.1$.

IR: 2975, 2362, 1759, 1663, 1588, 1444, 1339, 1259, 1124, 755 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{78.9183}BrFNO_5Na^+$ 612.0792; Found 612.0792.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{80.9163}BrFNO_5Na^+$ 614.0772; Found 614.0770.

2810369

2.48

3

23.447

Ethyl 1'-(3-fluorobenzoyl)- 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 209–211 °C; 42.6 mg, 88% yield, 86% ee; $[\alpha]^{25}D = +132.28$ (*c* = 0.63 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 23.26 min, t_R (minor) = 19.12 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.1 Hz, 1H), 7.81 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.74 - 7.68 (m, 3H), 7.55 - 7.45 (m, 4H), 7.39 (td, *J* = 7.8, 1.5 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.20 - 7.11 (m, 2H), 6.62 (t, *J* = 1.5 Hz, 1H), 4.08 - 3.98 (m, 2H), 3.93 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.58 - 3.39 (m, 2H), 1.00 (t, *J* = 7.5 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.55 - 7.55 (m, 2H), 7.55 (m, 2H), 7.55 - 7.55 (m, 2H), 7.

7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.2, 175.5, 169.5, 167.7 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 247.5 Hz), 158.2, 141.1, 136.8, 135.7 (*J*_{C-F} = 7.1 Hz), 131.2, 129.7 (*J*_{C-F} = 8.1 Hz), 129.4, 129.0, 126.2, 126.2, 125.4 (*J*_{C-F} = 3.0 Hz), 124.8, 122.8, 122.7, 119.8 (*J*_{C-F} = 21.2 Hz), 116.5 (*J*_{C-F} = 23.2 Hz), 115.3, 61.6, 60.7, 44.1, 27.0, 13.4;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.3.

IR: 2921, 2362, 1762, 1735, 1690, 1643, 1602, 1443, 1345, 1295, 1251, 1159, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for C₂₉H₂₂FNO₅Na⁺ 506.1374; Found 506.1370.

	Retention Time	Area	% Area
1	13.525	93595	2.54
2	14.300	90730	2.46
3	19.141	1768403	47.92
4	23.592	1737862	47.09

	Retention Time	Area	% Area
1	13.491	137205	1.38
2	14.263	43556	0.44
3	19.117	760545	7.63
4	23.263	9031908	90.56

6-Benzoyl-1'-(3-fluorobenzoyl)-4-phenyl[cyclohexane-1,3'-indolin]-3-ene-2,2'-dione

White solid; melting point: 95–97 °C; 51.2 mg, 99% yield, 91% ee; $[\alpha]^{25}D = +56.70$ (*c* = 0.84 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R* (major) = 39.79 min, *t_R* (minor) = 27.17 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.01 – 7.98 (m, 1H), 7.81 – 7.79 (m, 2H), 7.66 – 7.35 (m, 12H), 7.26 – 7.13 (m, 3H), 6.68 (d, *J* = 1.7 Hz, 1H), 4.92 (dd, *J* = 10.5, 6.8 Hz, 1H), 3.54 – 3.37 (m, 2H);

3pa $R^2 = 3 - FC_6H_4$ ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 197.7$, 191.8, 175.1, 167.3 (*J*_{C-F} = 2.0 Hz), 162.0 (*J*_{C-F} = 248.5 Hz), 157.9, 140.6, 136.6, 135.8 (*J*_{C-F} = 7.1 Hz), 135.2, 133.6, 131.1, 129.6 (*J*_{C-F} = 8.1 Hz), 129.0, 128.9, 128.7, 128.4, 126.1, 126.1, 125.1 (*J*_{C-F} = 3.0 Hz), 124.7, 123.2, 123.03, 119.5 (*J*_{C-F} = 21.2 Hz), 116.2 (*J*_{C-F} = 24.2 Hz), 115.4, 61.2, 47.6, 29.1; **19**F{**1**} NMR (376 MHz, CDCl₃) $\delta = -112.3$.

IR: 2362, 1758, 1658, 1594, 1441, 1341, 1257, 1161, 752 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₃H₂₂FNO₄Na⁺ 538.1425; Found 538.1432.

	Retention Time	Area	% Area
1	26.694	4633754	50.58
2	40.679	4527869	49.42

	Retention Time	Area	% Area
1	27.174	1306499	4.34
2	39.785	28789887	95.66

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(2-flurophenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 36.7 mg, 69% yield, 66% ee; $[\alpha]^{25}_{D}$ = +96.6 (*c* = 0.71 in CH₂Cl₂); HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R* (major) = 9.05 min, *t_R* (minor) = 13.74 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.80 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.68 (ddd, *J* = 9.1, 2.7, 1.6 Hz, 1H), 7.46 (dddd, *J* = 9.1, 6.7, 4.5, 1.4 Hz, 3H), 7.40 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.23 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.20 - 7.16 (m, 2H), 6.46 (d, *J* = 2.3 Hz, 1H), 3.97 (dd, *J* = 11.6, 6.3 Hz, 1H), 3.56 (ddt, *J* = 20.0, 11.7, 2.3 Hz, 1H), 3.32 - 3.25 (m, 1H), 1.13 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.6, 175.8, 168.8, 168.2 (J_{C-F} = 3.0 Hz), 162.5 (J_{C-F} = 248.5 Hz), 161.1 (J_{C-F} = 252.5 Hz), 156.2 (J_{C-F} = 2.0 Hz), 141.4, 136.2 (J_{C-F} = 8.1 Hz), 132.2 (J_{C-F} = 8.1 Hz), 130.0 (J_{C-F} = 8.1 Hz), 129.7, 129.0 (J_{C-F} = 3.0 Hz), 126.8 (J_{C-F} = 22.2 Hz), 126.7, 126.6, 126.4, 125.5 (J_{C-F} = 3.0 Hz), 125.3, 124.9 (J_{C-F} = 3.0 Hz), 123.1, 120.0 (J_{C-F} = 22.2 Hz), 116.9 (J_{C-F} = 23.2 Hz), 116.6 (J_{C-F} = 24.2 Hz), 115.60, 83.2, 61.1, 44.7, 28.6 (J_{C-F} = 5.1 Hz), 27.5; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = -111.7, -112.3.

IR: 2925, 2362, 1767, 1726, 1692, 1658, 1609, 1481, 1342, 1242, 1153, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}F_2NO_5Na^+$ 552.1593; Found 552.1595.

	Retention Time	Area	% Area
1	9.180	861943	50.31
2	13.890	851461	49.69

	Retention Time	Area	% Area
1	9.049	5215367	82.88
2	13.735	1077139	17.12

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(3-flurophenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 52.5 mg, 99% yield, 92% ee; $[\alpha]^{25}D = +140.68$ (*c* = 1.03 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 8.43 min, t_R (minor) = 11.93 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 (d, *J* = 8.1 Hz, 1H), 7.80 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.68 (ddd, *J* = 9.1, 2.6, 1.6 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.42 – 7.38 (m, 2H), 7.32 – 7.27 (m, 1H), 7.24 – 7.17 (m, 2H), 7.14 (td, *J* = 7.5, 1.0 Hz, 1H), 6.57 (d, *J* = 2.1 Hz, 1H), 3.97 (dd, *J* = 11.2, 6.6 Hz, 1H), 3.51 – 3.32 (m, 2H), 1.13 (s, 9H);

 ${}^{3}C{^{1}H} \text{ NMR (101 MHz, CDCI_3) } \delta = 192.4, 175.4, 168.5, 167.8 (J_{C-F} = 2.0 Hz), 162.8 (J_{C-F} = 248.5 Hz), 162.2 (J_{C-F} = 247.5 Hz), 156.9 (J_{C-F} = 2.0 Hz), 141.0, 139.1 (J_{C-F} = 7.1 Hz), 135.8 (J_{C-F} = 8.1 Hz), 130.6 (J_{C-F} = 8.1 Hz), 129.7 (J_{C-F} = 7.1 Hz), 129.4, 126.6, 125.2 (J_{C-F} = 3.0 Hz), 124.9, 123.3, 122.6, 121.9 (J_{C-F} = 3.0 Hz), 119.8 (J_{C-F} = 21.2 Hz), 117.9 (J_{C-F} = 21.2 Hz), 116.3 (J_{C-F} = 23.2 Hz), 115.3, 113.3 (J_{C-F} = 23.2 Hz), 83.0, 60.7, 44.0, 27.1, 26.9;$

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -111.2, -112.2.

IR: 2924, 2362, 1767, 1726, 1692, 1656, 1584, 1440, 1342, 1244, 1154, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}F_2NO_5Na^+$ 552.1593; Found 552.1594.

	Retention Time	Area	% Area
1	8.433	34412872	96.03
2	11.926	1423158	3.97

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(4-flurophenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

129.7 ($J_{C-F} = 7.1 \text{ Hz}$), 129.4, 128.3 ($J_{C-F} = 9.1 \text{ Hz}$), 126.7, 125.2 ($J_{C-F} = 3.0 \text{ Hz}$), 124.8, 122.4 ($J_{C-F} = 29.3 \text{ Hz}$), 119.7 ($J_{C-F} = 21.2 \text{ Hz}$), 116.3 ($J_{C-F} = 23.2 \text{ Hz}$), 116.1 ($J_{C-F} = 22.2 \text{ Hz}$), 115.3, 83.0, 60.6, 44.1, 27.1, 26.9.;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -108.1, -112.2.

IR: 2362, 1763, 1726, 1692, 1652, 1594, 1508, 1471, 1342, 1293, 1231, 1154, 755 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}F_2NO_5Na^+$ 552.1593; Found 552.1592.

	Retention Time	Area	% Area
1	16.031	2943136	49.97
2	29.088	2946867	50.03

	Retention Time	Area	% Area
1	16.058	6592312	93.62
2	29.272	449033	6.38

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(3-methylphenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 52.3 mg, 99% yield, 90% ee; $[\alpha]^{25}D = +142.58$ (*c* = 0.88 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 12.48 min, t_R (minor) = 15.33 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 (d, *J* = 8.0 Hz, 1H), 7.81 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.69 (ddd, *J* = 9.1, 2.6, 1.6 Hz, 1H), 7.52 - 7.44 (m, 3H), 7.42 - 7.37 (m, 2H), 7.34 - 7.27 (m, 2H), 7.21 - 7.19 (m, 1H), 7.14 (td, *J* = 7.5, 1.1 Hz, 1H), 6.59 - 6.58 (m, 1H), 3.96 (dd, *J* = 10.9, 7.0 Hz, 1H), 3.2 - 3.37 (m, 2H), 2.44 (s, 3H), 1.14 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.6, 175.7, 168.8, 167.9 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 158.7, 141.0, 138.7, 136.9, 135.8 (*J*_{C-F} = 8.1 Hz), 131.9, 129.7 (*J*_{C-F} = 8.1 Hz), 129.3, 128.8, 126.9, 126.8, 125.2 (*J*_{C-F} = 4.1 Hz), 124.8, 123.4, 122.7, 122.4, 119.7 (*J*_{C-F} = 22.2 Hz), 116.3 (*J*_{C-F} = 23.2 Hz), 115.2, 82.9, 60.7, 44.1, 27.1, 26.9, 21.3; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = –112.2.

IR: 2976, 1767, 1726, 1691, 1652, 1592, 1471, 1343, 1293, 1243, 1156, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₂H₂₈FNO₅Na⁺ 548.1844; Found 548.1841.

	Retention	Area	% Area
	Time		
1	6.608	150841	2.73
2	7.850	147805	2.68
З	12.861	2604332	47.19
4	15.683	2615779	47.40

	Retention Time	Area	% Area
1	12.481	15696010	94.94
2	15.334	1013333	5.06
Tert-butyl 1'-(3-fluorobenzoyl)- 4-(4-methylphenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

0 CO₂^tBu 0 COR2

Oil, 41.7 mg, 79% yield, 88% ee; $[\alpha]^{25}D = +131.29$ (*c* = 0.59 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R $(major) = 12.91 \text{ min}, t_R (minor) = 33.31 \text{ min}.$

¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 (dd, J = 8.2, 1.0 Hz, 1H), 7.81 (dt, J = 7.8, 1.2 Hz, 1H), 7.69 (ddd, J = 9.2, 2.6, 1.5 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.47 (td, J = 8.0, 5.4 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.34 – 7.27 (m, 3H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.13 (td, J = 7.5, 1.1 Hz, 1H), 6.60 - 6.57 (m, 1H), 3.96 (dd, *J* = 10.4, 7.5 Hz, 1H), 3.50 – 3.37 (m, 2H), 2.43 (s, 3H), 1.13 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.6, 175.7, 168.8, 167.9 (*J*_{C-F} = 3.1 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), **3cf** $R^2 = 3-FC_6H_4$ 158.3, 141.8, 141.0, 135.9 (*J*_{C-F} = 7.1 Hz), 133.9, 129.7 (*J*_{C-F} = 7.1 Hz), 129.6, 129.3, 126.9, 126.2, 125.2 (*J*_{C-F} = 3.1 Hz), 124.8, 122.7, 121.6, 119.7 (J_{C-F} = 21.2 Hz), 116.3 (J_{C-F} = 24.2 Hz), 115.2, 82.9, 60.7, 44.1, 27.1, 26.7, 21.3;

¹⁹F{¹H} NMR (376 MHz, CDCl₃) $\delta = -112.3$.

IR: 2362, 1767, 1726, 1691, 1649, 1598, 1471, 1343, 1245, 1154, 754 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₂H₂₈FNO₅Na⁺ 548.1844; Found 548.1848.

	Retention	Area	% Area
	Time		
1	13.122	1652336	50.09
2	33.888	1646382	49.91

	Retention Time	Area	% Area
1	12.906	6480819	93.69
2	33.306	436510	6.31

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(4-methoxyphenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 53.7 mg, 99% yield, 87% ee; $[\alpha]^{25}$ _D = +149.90 (*c* = 0.92 in CH₂Cl₂)

3cg $R^2 = 3-FC_6H_4$

HPLC DAICEL CHIRALCEL ID, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 24.86 min, t_R (minor) = 44.07 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.01 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.81 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.72 – 7.67 (m, 3H), 7.46 (td, *J* = 8.0, 5.5 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.32 – 7.27 (m, 1H), 7.19 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.12 (td, *J* = 7.5, 1.1 Hz, 1H), 7.02 – 6.98 (m, 2H), 6.56 (d, *J* = 1.6 Hz, 1H), 3.95 (dd, *J* = 9.6, 8.4 Hz, 1H), 3.88 (s, 3H), 3.43 – 3.41 (m, 2H), 1.13 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.5, 175.8, 168.8, 167.9 (J_{C-F} = 3.0 Hz), 162.2 (J_{C-F} = 247.5 Hz), 162.1, 157.7, 141.0, 135.9 (J_{C-F} = 8.1 Hz), 129.7 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2, 128.8, 128.0, 127.0, 125.2 (J_{C-F} = 7.1 Hz), 129.2 (J_{C-F} = 7.1 Hz),

= 3.0 Hz), 124.8, 122.7, 120.5, 119.7 (J_{C-F} = 21.2 Hz), 116.3 (J_{C-F} = 24.2 Hz), 115.2, 114.3, 82.8, 60.6, 55.3, 44.1, 29.5, 27.1; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = -112.3.

IR: 2921, 2361, 1767, 1726, 1691, 1646, 1593, 1513, 1468, 1343, 1239, 1155, 1028, 755 cm⁻¹. **HRMS** (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₂H₂₈FNO₆Na⁺ 564.1793; Found 564.1793.

	Retention Time	Area	% Area
1	24.860	17581717	93.68
2	44.071	1187066	6.32

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(4-phenylphenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 58.5 mg, 99% yield, 99% ee; $[\alpha]^{25}_{D}$ = +149.15 (*c* = 1.06 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t_R*

(major) = 20.42 min, $t_{\rm R}$ (minor) = 32.96 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.04 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.84 – 7.79 (m, 3H), 7.76 – 7.69 (m, 3H), 7.68 – 7.64 (m, 2H), 7.52 – 7.47 (m, 3H), 7.44 – 7.39 (m, 2H), 7.30 (tdd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 7.23 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.15 (td, *J* = 7.6, 1.1 Hz, 1H), 6.69 – 6.64 (m, 1H), 4.00 (dd, *J* = 10.6, 7.3 Hz, 1H), 3.57 – 3.47 (m, 2H), 1.15 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.5, 175.6, 168.7, 167.9 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 157.8, 143.9, 141.0, 139.5, 135.8 (*J*_{C-F} = 7.1 Hz), 135.5, 129.7 (*J*_{C-F} = 7.1 Hz), 129.3, 128.8, 128.0,

127.5, 126.9, 126.8, 126.7, 125.2 (*J*_{C-F} = 3.0 Hz), 124.8, 122.7, 122.1, 119.7 (*J*_{C-F} = 21.2 Hz), 116.3 (*J*_{C-F} = 23.2 Hz), 115.3, 82.9, 60.7, 44.1, 27.1, 26.7;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.2$.

IR: 2921, 2362, 1767, 1726, 1692, 1650, 1597, 1458, 1343, 1293, 1245, 1155, 757 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{37}H_{30}FNO_5Na^+$ 610.2000; Found 610.2000.

	Retention Time	Area	% Area
1	20.415	20514202	99.50
2	32.958	102460	0.50

Tert-butyl 1'-(3-fluorobenzoyl)- 4-(4-bromophenyl)-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

Oil; 58.6 mg, 99% yield, 87% ee; $[\alpha]^{25}D = +114.88$ (*c* = 1.10 in CH₂Cl₂)

3ci R² = 3-FC₆H₄

HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 21.11 min, t_R (minor) = 38.87 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.01 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.79 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.68 (ddd, *J* = 9.1, 2.7, 1.6 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.58 – 7.54 (m, 2H), 7.48 – 7.45 (m, 1H), 7.40 (ddd, *J* = 8.1, 7.3, 1.7 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.18 – 7.11 (m, 2H), 6.59 – 6.54 (m, 1H), 3.96 (dd, *J* = 11.2, 6.6 Hz, 1H), 3.49 – 3.31 (m, 2H), 1.12 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 192.4, 175.5, 168.5, 167.8 (*J*_{C-F} = 3.0 Hz), 162.2 (*J*_{C-F} = 248.5 Hz), 157.0, 141.0, 135.7, 132.2, 132.1, 130.0, 129.7 (*J*_{C-F} = 8.1 Hz), 129.4, 127.7, 126.6, 125.7, 125.1 (*J*_{C-F} = 8.1 Hz), 129.4,

= 3.0 Hz), 124.8, 122.6 (J_{C-F} = 11.1 Hz), 119.8 (J_{C-F} = 21.2 Hz), 116.3 (J_{C-F} = 24.2 Hz), 115.3, 83.0, 60.6, 44.0, 27.1, 26.7;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ = -112.2.

IR: 2923, 2362, 1764, 1725, 1692, 1652, 1587, 1479, 1342, 1292, 1245, 1154, 1073, 755 cm⁻¹.

 $\label{eq:HRMS} \text{(FTMS+c ESI)} \ \text{m/z:} \ [\text{M} + \text{Na}]^{+} \ \text{calcd for} \ \text{C}_{31}\text{H}_{25}^{78.9183}\text{BrFNO}_5\text{Na}^{+} \ \text{612.0792}; \ \text{Found} \ \text{612.0793}.$

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{25}^{80.9163}BrFNO_5Na^+ 614.0772$; Found 614.0774.

	Retention Time	Area	% Area
1	21.106	4467222	93.44
2	38.868	313760	6.56

(E)-2-Benzyl-4-benzylidene-9-phenyl-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 197–198 °C; 35.5 mg, 84% yield, 89% ee; $[\alpha]^{25}_{D} = -5.07$ (c = 0.41 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 37.27 min, t_R (minor) = 24.37 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.61 – 7.56 (m, 2H), 7.47 (dd, *J* = 5.1, 2.0 Hz, 3H), 7.37 – 7.27 (m, 7H), 7.25 (d, *J* = 1.4 Hz, 1H), 7.16 – 7.14 (m, 2H), 6.91 (t, *J* = 2.4 Hz, 1H), 6.53 (t, *J* = 1.5 Hz, 1H), 4.57 (d, *J* = 1.7 Hz, 2H), 4.29 – 4.13 (m, 2H), 3.28 (ddd, *J* = 101.3, 18.0, 1.6 Hz, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.0, 163.3, 151.0, 135.9, 134.8, 134.4, 132.3, 130.6, 128.9, 128.8, 128.6, 128.5, 128.3, 127.9, 127.8, 125.9, 114.7, 99.8, 81.7, 48.0, 46.8, 33.2.

IR: 2362, 1697, 1489, 1447, 1365, 1270, 1242, 1110, 1071, 1025, 875, 752, 688 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₄NO₃⁺ 422.1756; Found 422.1767.

1

3

4

1306096

1289057

533919

537614

35.62

35.16

14.56

14.66

23.398

34.618

39.655

44.084

	Retention Time	Area	% Area
1	24.372	1080102	5.46
2	37 268	18690572	94 54

Minutes

(E)-2-Benzyl-4-(3-fluorobenzylidene)-9-phenyl-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 181–183 °C; 33.0 mg, 75% yield, 88% ee; $[\alpha]^{25}_{D} = -11.69$ (c = 0.40 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_{R} (major) = 21.87 min, t_{R} (minor) = 16.07 min.

1H NMR (400 MHz, CDCl₃) δ = 7.58 (dd, J = 6.8, 2.9 Hz, 2H), 7.47 (dd, J = 5.2, 1.9 Hz, 3H), 7.38 - 7.29 **5ba** (m, 4H), 7.28 - 7.25 (m, 2H), 6.99 (td, J = 8.4, 2.4 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.84 (dt, J = 9.9, 2.0 Hz, 1H), 6.53 (s, 1H), 4.57 (s, 2H), 4.26 - 4.11 (m, 2H), 3.40 - 3.11 (m, 2H);

¹³C{¹H} NMR (101 MHz, CDCI₃) δ = 168.9, 162.6 (J_{C-F} = 247.5 Hz), 163.2, 150.8, 136.4 (J_{C-F} = 7.1 Hz), 135.8, 134.7, 133.9, 130.7, 130.2 (J_{C-F} = 8.1 Hz), 128.9, 128.8, 128.0 (J_{C-F} = 2.0 Hz), 127.3, 125.9, 124.4 (J_{C-F} = 3.0 Hz), 115.2 (J_{C-F} = 21.2 Hz), 115.1 (J_{C-F} = 21.2 Hz), 114.7, 81.5, 47.9, 46.8, 33.3;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) $\delta = -112.1$.

IR: 2362, 1696, 1579, 1447, 1363, 1271, 1237, 1106, 1077, 875, 763, 680 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₃FNO₃⁺ 440.1662; Found 440.1651.

 Retention Time
 Area
 % Area

 1
 16.070
 1913097
 6.04

 2
 21.868
 29780570
 93.96

(E)-2-Benzyl-4-(4-fluorobenzylidene)-9-phenyl-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 183–185 °C; 32.1 mg, 73% yield, 90% ee; $[\alpha]^{25}_{D} = -7.88$ (c = 0.37 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, t_{R} (major) = 22.45 min, t_{R} (minor) = 19.51 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.58 (dd, *J* = 6.8, 2.9 Hz, 2H), 7.47 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.34 (qd, *J* = 7.7, 6.9, 3.7 Hz, 3H), 7.26 (t, *J* = 4.4 Hz, 2H), 7.12 (dd, *J* = 8.5, 5.4 Hz, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 6.87 (s, 1H), 6.52 (d, *J* = 2.0 Hz, 1H), 4.57 (s, 2H), 4.24 - 4.08 (m, 2H), 3.41 - 3.11 (m, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.0, 163.3, 162.3 (J_{C-F} = 250.5 Hz), 150.9, 135.8, 134.8, 132.1, 130.6, 130.5 (J_{C-F} = 3.0 Hz), 130.3 (J_{C-F} = 8.1 Hz), 128.9, 128.8, 128.0, 127.9, 127.3, 125.9, 115.7 (J_{C-F} = 21.2 Hz), 114.7, 81.6, 47.90, 46.8, 33.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = -111.9.

IR: 2362, 1691, 1505, 1416, 1273, 1225, 1102, 1072, 1020, 822, 761, 679 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₃FNO₃⁺ 440.1662; Found 440.1661.

	Retention Time	Area	% Area
1	19.505	1151873	5.01
2	22.446	21850892	94.99

o o Ph Bn-N 5da Cl White solid; melting point: 178–180 °C; 41.8 mg, 85% yield, 87% ee; $[\alpha]^{25}_{D} = -5.02$ (*c* = 0.46 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB , *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, *t*_R (major) = 36.34 min, *t*_R (minor) = 31.94 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.58 – 7.56 (m, 2H), 7.47 (dd, *J* = 5.3, 1.9 Hz, 3H), 7.41 (d, *J* = 8.3 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.26 – 7.22 (m, 3H), 6.98 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.81 (s, 1H), 6.52 (s, 1H), 4.56 (s, 2H), 4.22 – 4.08 (m, 2H), 3.39 – 3.09 (m, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 168.8, 163.1, 150.6, 135.7, 134.7, 134.6, 134.3, 132.8, 132.4, 130.7, 130.6, 130.1, 128.9, 128.9, 128.0, 127.9, 127.5, 126.1, 125.9, 114.6, 81.38, 47.69, 46.76, 33.29.

IR: 2362, 1708, 1475, 1446, 1364, 1245, 1109, 765, 698 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{28}H_{22}^{34.9689}Cl_2NO_3^+$ 490.0971; Found 490.0968.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{28}H_{22}^{36.9659}Cl_2NO_3^+$ 494.0911; Found 494.0910.

	Retention Time	Area	% Area
1	21.804	500458	13.95
2	29.641	469707	13.09
3	32.705	1355148	37.77
4	38.194	1263033	35.20

	Retention Time	Area	% Area
1	31.942	3360317	6.67
2	36.342	47043512	93.33

(E)-2-Benzyl-4-(4-bromobenzylidene)-9-phenyl-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

Bn-N-Fh

White solid; melting point: 164–166 °C; 35.6 mg, 71% yield, 87% ee; $[\alpha]^{25}_{D} = -1.43$ (*c* = 0.63 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, *t*_R (major) = 41.38 min, *t*_R (minor) = 32.09 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.57 (dt, *J* = 6.8, 2.2 Hz, 2H), 7.48 – 7.43 (m, 5H), 7.37 – 7.30 (m, 3H), 7.27 – 7.24 (m, 2H), 7.02 – 6.98 (m, 2H), 6.84 (d, *J* = 2.4 Hz, 1H), 6.52 (d, *J* = 1.6 Hz, 1H), 4.56 (s, 2H), 4.22 – 4.07 (m, 2H), 3.25 (ddd, *J* = 100.3, 18.0, 1.6 Hz, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 168.9, 163.2, 150.8, 135.8, 134.7, 133.3, 133.2, 131.8, 130.6, 129.9, 128.9, 128.8, 128.0, 127.3, 125.9, 122.4, 114.7, 81.5, 47.9, 46.8, 33.3.

IR: 2362, 1694, 1485, 1364, 1268, 1238, 1006, 874, 763, 695 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{28}H_{23}^{78.9183}BrNO_3^+$ 500.0856; Found 500.0883.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{28}H_{23}^{80.9163}BrNO_3^+$ 502.0835; Found 502.0863.

	Retention	Area	% Area
	Time		
1	23.451	13209034	13.36
2	29.184	7745921	7.83
3	30.771	42413489	42.88
4	42.191	35537941	35.93

	Retention Time	Area	% Area
1	32.087	1447576	6.48
2	41.379	20907090	93.52

(E)-2-Benzyl-4-(4-(trifluoromethyl)benzylidene)-9-phenyl-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 153–156 °C; 35.4 mg, 72% yield, 83% ee; $[\alpha]^{25}_{D} = -11.35$ (*c* =0.65 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, *t*_R (major) = 39.31 min, *t*_R (minor) = 26.59 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.60 – 7.54 (m, 4H), 7.46 (dd, *J* = 5.2, 2.0 Hz, 3H), 7.36 – 7.30 (m, 3H),

7.26 – 7.24 (m, 4H), 6.94 (s, 1H), 6.52 (d, *J* = 1.6 Hz, 1H), 4.56 (s, 2H), 4.24 – 4.11 (m, 2H), 3.26 (ddd, *J* = ^{CF}₃ 95.4, 18.0, 1.6 Hz, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 168.8, 163.1, 150.6, 137.8, 135.7, 135.2, 134.7, 130.7, 130.0 (*J*_{C-F} = 33.3 Hz), 128.9, 128.8, 128.7, 128.0, 127.0, 125.9, 125.5 (*J*_{C-F} = 4.0 Hz), 123.6 (*J*_{C-F} = 272.7 Hz), 114.7, 81.4, 47.8, 46.8, 33.4; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = -62.7.

IR: 2362, 1698, 1617, 1448, 1363, 1321, 1264, 1112, 1067, 1013, 828, 761, 695 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{29}H_{23}F_3NO_3^+$ 490.1625; Found 490.1632.

	Retention	Area	% Area
	Time		
1	18.024	28191909	17.12
2	20.050	33589480	20.39
3	26.404	50983837	30.95
4	41.526	51952279	31.54

	Retention Time	Area	% Area
1	26.593	5847883	8.44
2	39.305	63453571	91.56

(E)-2-Benzyl-4-benzylidene-9-(4-fluorophenyl)-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 141–144°C; 36.2 mg, 82% yield, 97% ee; $[\alpha]^{25}_{D} = -8.13$ (c = 0.41 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_{R} (major) = 23.23 min, t_{R} (minor) = 33.82 min.

^{bh} ^{5ad} ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (dd, J = 8.6, 5.2 Hz, 2H), 7.32 (dq, J = 12.3, 6.7 Hz, 6H), 7.27 – 7.25 (m, 2H), 7.15 (dt, J = 8.6, 4.8 Hz, 4H), 6.90 (s, 1H), 6.48 (s, 1H), 4.56 (s, 2H), 4.21 (ddd, J = 48.4, 14.3, 2.3 Hz, 2H), 3.36 – 3.10 (m, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.0, 164.0 (J_{C-F} = 253.5 Hz), 163.2, 149.6, 134.8, 134.3, 132.2, 132.0 (J_{C-F} = 3.0 Hz), 128.8, 128.6, 128.5, 128.3, 128.0, 127.9, 127.9, 116.1 (J_{C-F} = 21.2 Hz), 114.5, 81.5, 48.1, 46.8, 33.4; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ = -108.9.

IR: 2360, 1699, 1599, 1510, 1413, 1358, 1232, 1162, 1073, 1017, 832, 753, 696 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₂₈H₂₂FNO₃Na⁺ 462.1476; Found 462.1480.

	Retention Time	Area	% Area
1	23.233	4069565	98.56
2	33.817	59271	1.44

(E)-2-Benzyl-4-benzylidene-9-(4-methylphenyl)-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 134–137 °C; 29.3 mg, 67% yield, 86% ee; $[\alpha]^{25}_{D}$ = +13.39 (*c* =0.34 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, *t*_R (major) = 35.40 min, *t*_R (minor) = 29.06 min.

^{bh} ^{5af} ¹**H NMR** (400 MHz, CDCl₃) δ = 7.49 (d, J = 8.0 Hz, 2H), 7.33 (dt, J = 12.1, 6.1 Hz, 5H), 7.28 (m, 5H), 7.14 (d, J = 8.0 Hz, 2H), 6.89 (s, 1H), 6.50 (s, 1H), 4.57 (s, 2H), 4.20 (ddd, J = 56.6, 14.2, 2.3 Hz, 2H), 3.26 (ddd, J = 114.5, 18.0, 1.5 Hz, 2H), 2.41 (s, 3H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.1, 163.5, 151.0, 141.2, 134.9, 134.4, 132.9, 132.5, 129.6, 128.8, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 125.8, 113.7, 81.7, 48.1, 46.8, 33.0, 21.2.

IR: 2362, 1693, 1610, 1447, 1360, 1270, 1022, 947, 815, 759, 694 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + H]⁺ calcd for C₂₉H₂₆NO₃⁺ 436.1913; Found 436.1911.

	Retention Time	Area	% Area
1	29.057	504832	6.85
2	35.395	6870310	93.15

(E)-2-Benzyl-4-benzylidene-9-(4-methoxyphenyl)-6-oxa-2-azaspiro[4.5]dec-8-ene-1,7-dione

White solid; melting point: 147–150 °C; 28.1 mg, 62% yield, 78% ee; $[\alpha]^{25}_{D}$ = +27.8 (*c* =0.32 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 31.97 min, t_R (minor) = 25.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.56 (d, *J* = 8.0 Hz, 2H), 7.37 – 7.29 (m, 5H), 7.27 (d, *J* = 6.5 Hz, 3H), 7.14 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.89 (s, 1H), 6.45 (d, *J* = 1.7 Hz, 1H), 4.57 (s, 2H), 4.20 (ddd, *J* = 58.4, 14.2, 2.3 Hz, 2H), 3.87 (s, 3H), 3.25 (ddd, *J* = 117.6, 17.9, 1.6 Hz, 2H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.1, 163.6, 161.6, 150.5, 134.9, 134.4, 132.5, 128.8, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.5, 114.3, 112.4, 81.6, 55.3, 48.1, 46.8, 32.8.

IR: 2362, 1694, 1602, 1516, 1421, 1362, 1245, 1182, 1115, 1023, 829, 753, 691 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + H]^+$ calcd for $C_{29}H_{26}NO_4^+$ 452.1862; Found 452.1843.

	Retention Time	Area	% Area
1	25.522	6341578	49.99
2	31.993	6343205	50.01

	Retention Time	Area	% Area
1	25.680	1664538	11.00
2	31.966	13461984	89.00

Tert-butyl 1'-benzyl-2',4-dioxo-3-(1-phenylvinyl)spiro[azetidine-2,3'-indoline]-1-carboxylate

(major) = 9.56 min, t_R (minor) = 18.80 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.29 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.23 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.14 (dd, *J* = 6.7, 2.8 Hz, 2H), 7.09 - 7.02 (m, 2H), 6.92 (td, *J* = 7.6, 5.3 Hz, 3H), 6.81 (dd, *J* = 7.6, 1.6 Hz, 2H), 6.45 (d, *J* = 7.8 Hz, 1H), 5.80 (d, *J* = 1.8 Hz, 1H), 5.62 (d, *J* = 1.2 Hz, 1H), 5.05 - 4.95 (m, 2H), 4.64 (d, *J* = 15.7 Hz, 1H), 1.28 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.1, 163.6, 161.6, 150.5, 134.9, 134.4, 132.5, 128.8, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.5, 114.3, 112.4, 81.6, 55.3, 48.1, 46.8, 32.8.

IR: 2979, 2362, 1813, 1721, 1613, 1490, 1465, 1311, 1261, 1183, 1152, 1080, 908, 733, 697 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₃₀H₂₈N₂O₄Na⁺ 503.1941; Found 503.1941.

9.557	11106545	79.98
18.804	2779806	20.02

1

2

1'-Benzyl-3-(1-phenylvinyl)spiro[azetidine-2,3'-indoline]-2',4-dione

Oil.

Reacted for 24 h: 10.4 mg, 27% yield, 70% ee; $[\alpha]^{25}D = -140.4$ (*c* = 0.17 in CH₂Cl₂)

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 9.62 min, t_R (minor) = 15.63 min.

Reacted for 36 h: 11.4 mg, 30% yield, 63% ee; $[\alpha]^{25}D = -128.7$ (*c* = 0.18 in CH₂Cl₂)

9 HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 9.65 min, t_R (minor) = 15.68 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.31 – 7.27 (m, 4H), 7.10 (dd, *J* = 6.7, 2.9 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.97 – 6.90 (m, 3H), 6.78 (dd, *J* = 8.1, 1.4 Hz, 2H), 6.45 (d, *J* = 7.8 Hz, 1H), 6.30 (s, 1H), 5.79 (d, *J* = 1.8 Hz, 1H), 5.59 (s, 1H), 5.00 – 4.93 (m, 2H), 4.62 (dd, *J* = 15.7, 3.5 Hz, 1H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 175.2, 167.0, 142.6, 139.5, 137.9, 135.0, 129.9, 128.7, 127.9, 127.6, 127.5, 127.1, 125.1, 124.8, 123.6, 122.4, 116.4, 108.9, 66.0, 60.4, 44.1.

IR: 3279, 2977, 2362, 1814, 1770, 1723, 1613, 1490, 1466, 1184, 1153, 1079, 914, 732, 697 cm⁻¹.

HRMS (FTMS+c ESI) m/z: $[M + Na]^+$ calcd for $C_{25}H_{20}N_2O_2Na^+$ 403.1417; Found 403.1432.

	Retention	Area	% Area
	Time		
1	9.647	770727	18.56
2	15.684	3380815	81.44

Tert-butyl 4-phenyl-2,2'-dioxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 199–202 °C; 34.3 mg, 88% yield, 93% ee; $[\alpha]^{25}D = +346.05$ (*c* = 0.54 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL IB, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 13.53 min, t_R (minor) = 18.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.56 (s, 1H), 7.70 (dd, J = 6.6, 2.9 Hz, 2H), 7.49 (hept, J = 4.4 Hz, 3H),

7.23 (d, *J* = 15.3 Hz, 1H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.97 – 6.90 (m, 2H), 6.61 (s, 1H), 3.96 (dd, *J* = 11.1, 6.4 Hz, 1H), 3.56 – 3.29 (m, 2H), 1.19 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 193.0, 177.7, 169.5, 157.9, 142.4, 137.5, 131.1, 129.4, 129.2, 127.8, 126.5, 123.6, 123.5, 122.5, 110.7, 82.72, 61.25, 44.78, 27.57, 27.36.

IR: 3273, 2979, 1726, 1656, 1615, 1472, 1333, 1248, 1156, 751, 695 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₃O₄Na⁺ 412.1519; Found 412.1517.

	Retention	Area	% Area
	Time		
1	13.531	12097113	96.50
2	18.242	438731	3.50

Tert-butyl 2-hydroxy-4-phenyl-2'-oxospiro[cyclohexane-1,3'-indolin]-3-ene-6-carboxylate

White solid; melting point: 102–106 °C; 17.2 mg, 44% yield, 90% ee; $[\alpha]^{25}D = +147.6$ (*c* = 0.13 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, t_R (major) = 20.55 min, t_R (minor) = 10.44 min.

¹H NMR (400 MHz, CDCl₃) δ = 8.25 (s, 1H), 7.57 – 7.54 (m, 2H), 7.44 – 7.33 (m, 3H), 7.25 – 7.21 (m,

1H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.96 – 6.90 (m, 2H), 6.13 (q, *J* = 1.9 Hz, 1H), 4.90 – 4.86 (m, 1H), 3.44 (dd, *J* = 10.6,)7.1 Hz, 1H), 3.13 – 2.97 (m, 2H), 2.10 – 2.08 (m, 1H), 1.23 (s, 9H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 180.4, 169.9, 142.5, 138.9, 136.9, 128.6, 128.5, 128.0, 126.5, 126.5, 125.3, 125.1, 122.2, 109.7, 81.64, 73.2, 54.6, 44.6, 27.5.

IR: 2964, 2362, 1707, 1619, 1468, 1259, 1153, 1020, 796, 752, 688 cm⁻¹.

HRMS (FTMS+c ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₅NO₄Na⁺ 414.1676; Found 414.1676.

	Retention Time	Area	% Area
1	10.247	47209353	49.82
2	20.330	47555912	50.18

	Retention Time	Area	% Area
1	10.436	1234086	5.15
2	20.548	22736543	94.85

14 Copies of NMR spectra for products

170 160 150 140 130 -10 fl (ppm)

400 MHz, CDCl₃ - ¹H NMR

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.8.03
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.01
8.8.0

400 MHz, CDCl₃ - ¹H NMR

192.58 167.62 167.88 166.868 167.88 166.840 167.88 167.88 167.88 166.340 136.88 135.87 128.86 128.86 128.86 128.85 128.95 128.95 128.95 128.95 128.95 128.88 128

Supporting Information

Supporting Information

-99 -101 -103 -105 -107 -109 -111 -113 -115 -117 -119 -121 -123 -125 -127 -129 -131 -133 -13 f1 (ppm)

7, 39 7, 39 7, 77 7, 75

400 MHz, CDCI₃ - ¹H NMR

190 120 110 100 90 70 50 40 30 20 0 -10 180 170 160 150 140130 80 60 10 fl (ppm)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

7, 92 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 73 7, 7, 75 7, 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 7, 75 7, 77 7, 77 7, 75 7, 77 7,

400 MHz, CDCl₃ - ¹H NMR

192.73 192.73 167.67 167.79 167.79 167.79 167.79 167.79 167.79 167.33 135.95 1135.95 1135.95 1135.95 1135.95 1135.95 1129.70 1129.70 1129.62 1125.09 1125.09 1125.09 1125.09 1125.09 1125.04 1125.05 1125.04 1125.05 125.05

190 180 170 160 150 120 110 100 90 70 40 30 20 10 -1(140 130 80 60 50 0 fl (ppm)

Supporting Information

150 140 -1(fl (ppm)

70

f1 (ppm)

7, 88 7, 88 7, 88 7, 88 7, 88 7, 68 7, 68 7, 68 7, 68 7, 68 7, 68 7, 68 7, 68 7, 7, 58 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 72 7, 7, 73 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 74 7, 7, 72 7, 72

400 MHz, CDCI₃ - ¹H NMR

190 180 170 160 150 140 130 120 110 100 90 70 60 30 20 10 0 -10 80 50 40 fl (ppm)

f1 (ppm)

-192.17 -192.17 -192.17 -192.17 -169.29 -163.38 -135.75 -135.75 -135.75 -135.75 -135.75 -122.83 -122.95 -13.41 -13.41 -23.51 -26.96

-10 170 160 150 140 130 fl (ppm)

Supporting Information

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 192.63 102.64 1102.65 1112.65 1122.65 1122.65 1122.65 1122.65 1122.65 1122.65 1122.65 1122.65 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1122.55 1115.00 1115.00 1115.00 1115.00 1116.77 1116.72 1116.72 1116.72 1116.72 1116.72 1116.72 1116.72

78

400 MHz, CDCI₃ - ¹H NMR

192.43 192.43 167.85 167.85 167.85 165.59 165.59 165.59 165.59 165.59 165.29 135.63 135.63 135.63 135.63 135.63 135.63 135.96 135.96 132.96 132.96 132.96 132.96 132.96 132.96 132.96 132.96 132.96 132.96 132.96 132.95 132.96 132.95 132.96 132.95 132.95 132.96 132.95 132.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.

fl (ppm)

Supporting Information

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

400 MHz, CDCI₃ - ¹H NMR

170 160 150 -10 190 180 140 130 fl (ppm)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

8.8.8 8.8.9 8.9.9 8.9.9 8.9.9 8.9.9 <

400 MHz, CDCI₃ - ¹H NMR

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.02 8.02 8.02 8.02 8.02 8.02 1.125 1

400 MHz, CDCl₃ - ¹H NMR

400 MHz, CDCI₃ - ¹H NMR

400 MHz, CDCI₃ - ¹H NMR

Supporting Information

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

f1 (ppm)

400 MHz, CDCI₃ - ¹H NMR

400 MHz, CDCl₃ - ¹H NMR

fl (ppm)

f1 (ppm)

Supporting Information

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

f1 (ppm)

400 MHz, CDCI3 - ¹H NMR

170 160 -10 fl (ppm)

Supporting Information

-0.00

400 MHz, CDCI₃ - ¹H NMR

0.85 0.86

400 MHz, CDCI₃ - ¹H NMR

400 MHz, CDCI₃ - ¹H NMR

fl (ppm)

15 Copies of CD spectra for products

110

