Electrophilic Azides for Materials Synthesis and Chemical Biology

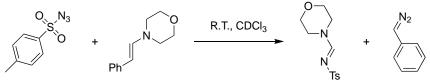
Sheng Xie,¹* Madanodaya Sundhoro,² K. N. Houk, ³* Mingdi Yan²*

¹State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

²Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA

³Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

Table of Contents


1.	Cycloaddition reaction of sulfonyl azide and phenylacetaldehyde enamineS1
2.	Synthesis of 4-methyl- <i>N</i> -(morpholinomethylene)benzenesulfonamideS1
3.	Figure S1. ¹ H NMR spectrum of 4-methyl- <i>N</i> -(morpholinomethylene)benzenesulfonamide in
	DMSO- <i>d</i> ₆
4.	Figure S2. ¹³ C NMR spectrum of 4-methyl- <i>N</i> -(morpholinomethylene)benzenesulfonamide in
	CDCl ₃ S3
5.	References

1. Cycloaddition reaction of sulfonyl azide and phenylacetaldehyde enamine

We carried out the cycloaddition reaction of sulfonyl azide with phenylacetaldehyde enamine under similar conditions (CDCl₃, room temperature) as in our earlier published paper for PFAAs.¹ The amidine product was isolated in 20-40% yields, accompanied by unanalyzable byproducts. Similar transformation was also reported in the literature.²

Below is a specific reaction between tosyl azide and styrylmorpholine (Scheme S1), together with the experimental details and NMR spectra (Figs. S1, S2) of the product.

2. Synthesis of 4-methyl-N-(morpholinomethylene)benzenesulfonamide

Scheme S1. Reaction of tosyl azide with styrylmorpholine.

To a solution of (*E*)-4-styrylmorpholine (1.0 mmol) in CDCl₃ (1.0 mL), a solution of tosyl azide (1.1 mmol) in CDCl₃ (1.0 mL) was added dropwise while stirring at room temperature. The reaction progress was monitored by NMR spectroscopy. After the completion of the reaction (~24 h), the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (EtOAc/hexanes = 1:9) to give the amidine product (R_f = 0.2) as a white powder (yield: 30%). ¹H NMR (500 MHz, DMSO-d₆): δ_H 2.36 (s, 3H, Ar-CH₃), 3.58 (m, 8H, morpholine H), 7.34 (d, 2H, Ar-H, J_{HH}= 8.1 Hz), 7.65 (dm, 1H, Ar-H, J_{HH}= 8.2 Hz), 8.29 (s, 1H, NC-*H*); ¹³C NMR (125 MHz, CDCl₃): δ 21.64, 44.31, 50.41, 66.04, 66.92, 126.69, 129.51, 139.21, 142.83, 157.69.

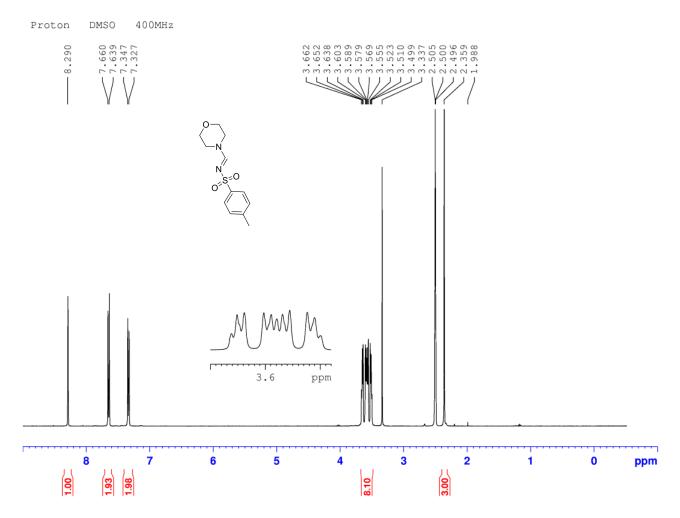


Figure S1. ¹H NMR spectrum of 4-methyl-*N*-(morpholinomethylene)benzenesulfonamide in DMSO-*d*₆.

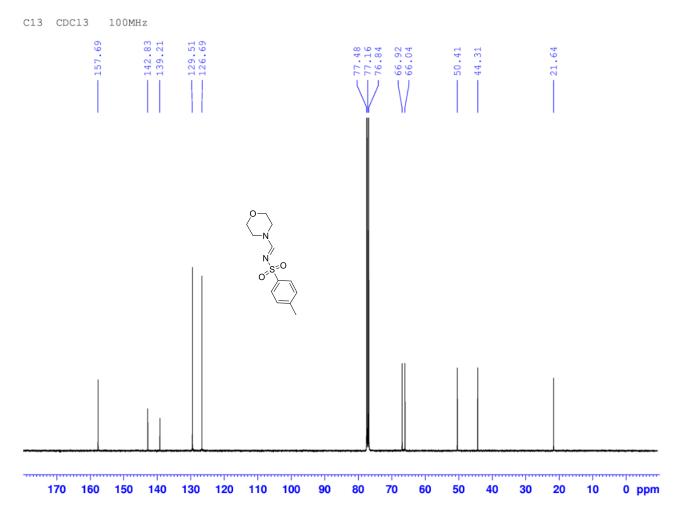


Figure S2. ¹³C NMR spectrum of 4-methyl-*N*-(morpholinomethylene)benzenesulfonamide in CDCl₃.

References

- 1. Xie, S.; Lopez, S. A.; Ramstrom, O.; Yan, M.; Houk, K. N. 1,3-Dipolar cycloaddition reactivities of perfluorinated aryl azides with enamines and strained dipolarophiles. *J. Am. Chem. Soc.* **2015**, *137*, 2958-2966.
- Efimov, I.; Bakulev, V.; Beliaev, N.; Beryozkina, T.; Knippschild, U.; Leban, J.; Zhi-Jin, F.; Eltsov, O.; Slepukhin, P.; Ezhikova, M.; Dehaen, W. Reactions of β-Azolylenamines with Sulfonyl Azides as an Approach to *N*-Unsubstituted 1,2,3-Triazoles and Ethene-1,2-diamines. *Eur. J. Org. Chem.* 2014, 3684-3689.