Supporting Information

Enhanced Carrier-Exciton Interactions in Monolayer MoS₂

under Applied Voltages

Yuanzheng Li, Weizhen Liu*, Hang Ren, Qiushi Feng, Jiaxu Yan, Weiheng Zhong, Xing Xin, Haiyang Xu* and Yichun Liu

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun 130024, China.

*Email: wzliu@nenu.edu.cn and hyxu@nenu.edu.cn

Note 1: Detail for Mass Action Model

The populations of excitons and charged excitons originated from the equation (1) and (2) in main text can be derived as:

$$N_{A}(n) = \frac{G}{\Gamma_{ex} + k_{ce}(n)}$$
(S1)

$$N_{A^{-}}(n) = \frac{k_{ce}(n)}{\Gamma_{ce}} \cdot \frac{G}{\Gamma_{ex} + k_{ce}(n)}$$
(S2)

where the Γ_{ex} and Γ_{ce} represent the decay rate of the exciton and charged exciton, respectively. Since the PL intensity of the exciton (I_A) and charged exciton (I_A⁻) are proportional to N_A and N_A⁻, the I_A and I_A⁻ can be expressed as follows:^{1,2}

$$I_{A}(n) = \frac{AG\gamma_{ex}}{\Gamma_{ex} + k_{ce}(n)}$$
(S3)
$$I_{A^{-}}(n) = \frac{k_{ce}(n)}{\Gamma_{ce}} \cdot \frac{AG\gamma_{ce}}{\Gamma_{ex} + k_{ce}(n)}$$
(S4)

where γ_{ex} and γ_{ce} express the radiative recombination rate of the exciton and charged exciton, respectively. The coefficient A expresses the collection efficiency of luminescence. To previous reports,^{1,2} for simplicity, the radiative decay rate of exciton is independent of the carrier density. The values Γ_{ex} and Γ_{ce} are based on the previously

reported values.³ The fitting parameters $AG\gamma_{ex}/AG\gamma_{ce}$ is 0.15.¹ In the condition studied here (i.e., $k_{ce} \gg \Gamma_{ex}$), the PL intensity of the exciton (I_A) and trion (I_A⁻) can be approximately expressed as:

$$I_{A}(n) \approx \frac{AG\gamma_{ex}}{k_{ce}(n)}$$
(S5)
$$I_{A^{-}}(n) \approx \frac{AG\gamma_{ce}}{\Gamma_{ce}}$$
(S6)

The mass action law associated with the charged exciton⁴ is applied to calculate the electron concentration in the ML MoS₂. Based on these above equations, the corresponding result is demonstrated as follow:^{1,2}

$$\frac{N_{A} \cdot n_{e}}{N_{A^{-}}} = \left(\frac{4m_{X}m_{e}}{\pi\hbar^{2}mm_{A^{-}}}\right)k_{B}Te^{\left(-\frac{E_{b}}{k_{B}T}\right)}$$
(S7)

where T, k_B , and E_b are respectively the temperature, Boltzmann constant and the binding energy of charged exciton (~20 meV)⁵. The m_e (0.35m₀) and m_h (0.45m₀) represent the effective mass of electrons and holes,⁶ respectively, where the m₀ is the mass of a free electron. Moreover, the effective mass of an exciton (m_A) and a charged exciton (m_A⁻) can be calculated as 0.8m₀ and 1.15m₀, respectively. Using these parameters, the PL weight of charged excitons can be presented as:

$$\frac{I_{A^-}}{I_{total}} = \frac{\frac{\gamma_{ce}}{\gamma_{ex}} \cdot \frac{N_{A^-}}{N_A}}{1 + \frac{\gamma_{ce}}{\gamma_{ex}} \cdot \frac{N_{A^-}}{N_A}} \approx \frac{4 \times 10^{-14} n_e}{1 + 4 \times 10^{-14} n_e} \qquad (S8)$$

Based on the equation S8, the relation between the PL intensity weight of charged excitons and electron concentration is plotted in **Figure 5(c)**.

References:

1. Mouri, S.; Miyauchi, Y.; Matsuda, K., Tunable Photoluminescence of Monolayer MoS₂ via Chemical Doping. *Nano Lett.* 2013, 13, 5944-5948.

2. Li, Z.; Ye, R.; Feng, R.; Kang, Y.; Zhu, X.; Tour, J. M.; Fang, Z., Graphene Quantum Dots Doping of MoS₂ Monolayers. *Adv. Mater.* 2015, 27, 5235-5240.

3. Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L., Exciton Dynamics in Suspended Monolayer and Few-Layer MoS₂ 2D Crystals. *ACS Nano* 2013, 7, 1072-1080.

4. Ross, J. S.; Wu, S.; Yu, H.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X., Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor. *Nat. Commun.* 2013, 4, 1474.

5. Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J., Tightly Bound Trions in Monolayer MoS₂. *Nat. Mater.* 2013, 12, 207-211.

6. Cheiwchanchamnangij, T.; Lambrecht, W. R. L., Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS₂. *Phys. Rev. B* 2012, 85, 205302.