## Supporting Information

# Identification of small molecule positive modulators of calcitonin-like receptor-based receptors 

Erica R. Hendrikse ${ }^{1,2 \wedge}$, Lydia P. Liew ${ }^{3 \wedge}$, Rebekah L. Bower ${ }^{1,2}$, Muriel Bonnet ${ }^{3}$, Muhammad A. Jamaluddin¹,2, Nicole Prodan¹, Keith D. Richards¹, Christopher S. Walker ${ }^{1,2}$, Garry Pairaudeau ${ }^{4}$, David M. Smith ${ }^{5}$, Roxana-Maria Rujan ${ }^{6}$, Risha Sudra ${ }^{6}$, Christopher A. Reynolds ${ }^{6}$, Jason M. Booe ${ }^{7}$, Augen A. Pioszak ${ }^{7}$, Jack U. Flanagan ${ }^{2,3 *}$, Michael P. Hay ${ }^{2,3 *}$, Debbie L. Hay ${ }^{1,2 *}$<br>${ }^{1}$ School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand ${ }^{2}$ Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand<br>${ }^{3}$ Auckland Cancer Society Research Centre, University of Auckland, 1023, Auckland, New Zealand<br>${ }^{4}$ Hit Discovery, Discovery Sciences, R\&D, AstraZeneca, Cambridge, UK<br>${ }^{5}$ Emerging Innovations, Discovery Sciences, R\&D, AstraZeneca, Cambridge, UK<br>${ }^{6}$ School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK<br>${ }^{7}$ Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma 73104, United States<br>${ }^{\wedge}$ Both authors contributed equally<br>*Corresponding authors

Corresponding authors:
Jack U. Flanagan j.flanagan@auckland.ac.nz
Michael P. Hay m.hay@auckland.ac.nz
Debbie L. Hay dl.hay@auckland.ac.nz

## Table of contents

## Supplemental Information Chemistry (page S4)

Table S1
Table S2
Table S3
Table S4

## General procedures for chemical characterization and synthesis

 General chemistry methodsMethod A: Suzuki-Miyaura coupling
Method B: Nitro reduction
Method C: Urea formation with triphosgene
Method D: Amide coupling with HBTU
Method E: Alkylation with K2CO3 in DMF
Method F: Acid hydrolysis of carbamates
Method G: Tin (II) chloride reduction
Method H: Amide coupling with HATU
Method I: Alkylation with organic base in DCM
Method J: Base hydrolysis
Method K: BOC formation
Method L: Alkylation with NaH
Method M: Alkene reduction
Method N: Oxindole condensation
Method O: CDI condensation
Method P: Reductive amination
Synthesis of compounds from Table S1
Synthesis of compounds from Table S3

## Supplemental Information Biology

## Supplemental Methods (page S161)

## CHO-K1 cAMP assays

Application of an operational model of allostery Binding assays

## Supplemental Results (page S164)

CHO-K1 cell line validation
Table S5: Cell line validation for $\mathrm{CHO}^{-A M} 1$ and $\mathrm{CHO}-\mathrm{CGRP}$ cells
Figure S1: Validation of DiscoveRx $\mathrm{CHO}-\mathrm{AM}_{1}$ and $\mathrm{CHO}-\mathrm{CGRP}$ cell lines using agonists Figure S2: Validation of DiscoveRx CHO-AM1 and CHO-CGRP cell lines using antagonists

Figure S4: Compound 9 is a structurally-related inactive compound that does not modulate ligand-induced $\beta$-arrestin recruitment in $\mathrm{CHO}-\mathrm{AM}_{1}$ or $\mathrm{CHO}-\mathrm{CGRP}$ cells.
Figure S5: Weak modulation of CGRP-induced $\beta$-arrestin recruitment in CHO-CGRP cells by selected active compounds (3-8, 10-12)
Table S6 pEC50, $E_{\text {min }}$ and $E_{\text {max }}$ values from $\mathrm{AM}_{1}$ receptor $\beta$-arrestin recruitment assays with multiple concentrations of compounds 3-8, 10-12.
Table 57 pEC50, $E_{\text {min }}$ and $E_{\text {max }}$ values from CGRP receptor $\beta$-arrestin recruitment assays with multiple concentrations of compounds 3-8, 10-12.
Figure S6: Ligand-swap experiments - compound modulation of $\beta$-arrestin recruitment induced by CGRP in CHO-AM1 cells or by AM in CHO-CGRP cells.
Figure S7: Modulation of cAMP production in $\mathrm{CHO}-\mathrm{AM}_{1}$ and CHO-CGRP cells by compounds 4 and 6.
Table S8: $\mathrm{pEC}_{50}$ and $\mathrm{E}_{\max }$ values for Figure 6, modulation of cAMP production by compound 6 in transfected Cos7 cells
Figure S8: Fluorescence polarization/anisotropy compound binding experiments

## Table S1

Compounds with aryl, heteroaryl, fused aryl, benzyl, benzyl ether and benzyl amine substituents on a pyridine or phenyl core (Compounds S1-S118).

| Compound number | SN | Structure | SMILES | HPLC <br> Purity \% |
| :---: | :---: | :---: | :---: | :---: |
| S1 | 34328 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{~F})=\mathrm{CC} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.3 |
| S2 | 34395 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} \\ & 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 99.5\% |
| S3 | 34397 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{C})=\mathrm{CC} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.4 |
| S4 | 34422 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{CC} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.5 |
| S5 | 34427 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \\ & \mathrm{C}=\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}= \\ & \mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 99.7 |
| S6 | 34428 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.2 |
| S7 | 34434 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 85.6 |
| S8 | 34439 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{OC})=\mathrm{C} \\ & \mathrm{C}=\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}= \\ & \mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 98.5 |
| S9 | 34440 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{OC})=\mathrm{C} \\ & \mathrm{C}=\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}= \\ & \mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 77.7 |


| S10 | 34442 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC3}=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.4 |
| :---: | :---: | :---: | :---: | :---: |
| S11 | 34491 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC} 4 \\ & \mathrm{CCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |
| S12 | 34496 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC} 4 \\ & \mathrm{CCCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |
| S13 | 34498 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC} 4 \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.5 |
| S14 | 34499 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CC})=\mathrm{O} \\ & \mathrm{)CC} 3 \end{aligned}$ | 88.8 |
| S15 | 34807 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NCC} 3=\mathrm{CC}=\mathrm{CO} 3)=\mathrm{O}) \mathrm{CC} \\ & 2) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | * |
| S16 | 34816 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{~N} 3 \mathrm{C} 4=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 4 \mathrm{NC} 3=\mathrm{O} \end{aligned}$ | 100 |
| S17 | 34817 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC3}=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{Cl})=\mathrm{CC} \\ & =\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 96.5 |
| S18 | 34848 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C2CCN}(\mathrm{C}(\mathrm{NC3=CC}(\mathrm{C} 4=\mathrm{CC}(\mathrm{C}(\mathrm{~F})(\mathrm{F}) \\ & \mathrm{F})=\mathrm{CC}=\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}= \\ & \mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 99.1 |


| S19 | 34849 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC3}=\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{C}(\mathrm{~F}) \\ & (\mathrm{F}) \mathrm{F}) \mathrm{C}=\mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}= \\ & \mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 99.1 |
| :---: | :---: | :---: | :---: | :---: |
| S20 | 34857 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 1) \mathrm{CCC} 1 \mathrm{C} 2=\mathrm{CNC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 32 \\ & ) \mathrm{NC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{C} \end{aligned}$ | * |
| S21 | 34860 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CCCN} 2 \mathrm{C}(\mathrm{NC3}(\mathrm{CCCC} 3) \mathrm{C} 2=\mathrm{O})=\mathrm{O}) \mathrm{C} \\ & 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | * |
| S22 | 34927 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CCCN} 2 \mathrm{~N}=\mathrm{NN}(\mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C} 2= \\ & \mathrm{O}) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | * |
| S23 | 34929 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1 \mathrm{CCN}(\mathrm{C}(\mathrm{CC} 2 \mathrm{CCCC} 2)=\mathrm{O}) \mathrm{CC} 1) \mathrm{C} 3=\mathrm{C} \\ & \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{O} 3 \end{aligned}$ | * |
| S24 | 34931 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{CC}(\mathrm{~N}[\mathrm{C} @ @ \mathrm{H}] 3 \mathrm{CCS}(\mathrm{C} 3)(= \\ & \mathrm{O})=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | * |
| S25 | 34964 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NCC3=CC=CO3)=O)CC} \\ & \text { 2)C4=CC=CN=C4N1 } \end{aligned}$ | ND |
| S26 | 34983 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{~S}(=\mathrm{O})(\mathrm{C} 3=\mathrm{CC}=\mathrm{CS} 3)=\mathrm{O}) \mathrm{CC} \\ & 2) \mathrm{C} 4=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | ND |
| S27 | 34988 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC3}=\mathrm{CC}(\mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}= \\ & \mathrm{C} 4)=\mathrm{CN}(\mathrm{C}) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{~N} 1 \end{aligned}$ | 99.6 |


| S28 | 34989 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 3=\mathrm{C}(\mathrm{C}) \mathrm{OC}(\mathrm{C})=\mathrm{C} 3)=\mathrm{O}) \\ & \mathrm{CC} 2) \mathrm{C} 4=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | 99.2 |
| :---: | :---: | :---: | :---: | :---: |
| S29 | 35136 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1 \mathrm{C}) \mathrm{N} 2 \mathrm{CCC}(\mathrm{CC} 2) \mathrm{N} 3 \mathrm{C} \\ & =\mathrm{NC} 4=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 34 \end{aligned}$ | * |
| S30 | 35138 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{N} 2 \mathrm{CCC}(\mathrm{C} 3=\mathrm{CNC} 4= \\ & \mathrm{CC}=\mathrm{CC}=\mathrm{C} 34)=\mathrm{CC} 2 \end{aligned}$ | * |
| S31 | 35139 |  | $\begin{aligned} & \text { CIC1=CC=C(OC)C(NC(N2CCC(CN3CCOC } \\ & \mathrm{C} 3) \mathrm{CC} 2)=\mathrm{O})=\mathrm{C} 1 \end{aligned}$ | * |
| S32 | 35145 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC} 4 \\ & \mathrm{CCCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 89.3 |
| S33 | 35147 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CC} 4 \mathrm{C} \\ & \mathrm{CCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |
| S34 | 35148 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CC} 4 \mathrm{C} \\ & \mathrm{CCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |
| S35 | 35149 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4 \mathrm{CC} \\ & \mathrm{CC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |
| S36 | 35150 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4 \mathrm{CC} \\ & \mathrm{CCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |


| S37 | 35155 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC}(\mathrm{C} \\ & ) \mathrm{C})=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.8 |
| :---: | :---: | :---: | :---: | :---: |
| S38 | 35156 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4 \mathrm{CC} \\ & \mathrm{OCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 98 |
| S39 | 35157 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4 \mathrm{CC} \\ & 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.7 |
| S40 | 35160 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCCC} \\ & 4 \mathrm{CCCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |
| S41 | 35174 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{~N} 3 \mathrm{C}=\mathrm{NC} 4 \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 43 \end{aligned}$ | 100 |
| S42 | 35175 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{NC}(\mathrm{C} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O} \end{aligned}$ | 100 |
| S43 | 35177 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{CN} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}( \\ & \mathrm{CCC} 4 \mathrm{CCCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.3 |
| S44 | 35179 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{~N} 3 \mathrm{C}(\mathrm{C}(\mathrm{~F})( \\ & \mathrm{F}) \mathrm{F})=\mathrm{NC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 43 \end{aligned}$ | 100 |
| S45 | 35190 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{NC}(\mathrm{NC} 3= \\ & \mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O} \end{aligned}$ | 100 |


| S46 | 35199 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC} 1 \mathrm{CCCC} 1) \mathrm{N}(\mathrm{CC} 2) \mathrm{CCC} 2 \mathrm{~N} 3 \mathrm{C}(\mathrm{NC}(\mathrm{C} \\ & =\mathrm{CC}=\mathrm{C} 4)=\mathrm{C} 4 \mathrm{C} 3)=\mathrm{O} \end{aligned}$ | 98.4 |
| :---: | :---: | :---: | :---: | :---: |
| S47 | 35326 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCC} 4 \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |
| S48 | 35352 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}=\mathrm{CN}(\mathrm{CC} 4=\mathrm{CC}= \\ & \mathrm{CC}=\mathrm{C} 4) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 97.6 |
| S49 | 35356 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{CN} 3 \mathrm{C}=\mathrm{CC}=\mathrm{C}(\mathrm{NCC4}=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 4) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | 98.9 |
| S50 | 35357 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C2CCN}(\mathrm{CC}(\mathrm{NC} 3=\mathrm{CC}=\mathrm{CN}(\mathrm{CC} 4=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 4) \mathrm{C} 3=\mathrm{O})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | ND |
| S51 | 35362 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CCN} 4 \\ & \mathrm{CCOCC} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 90.3 |
| S52 | 35385 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C2CCN}(\mathrm{CC}(\mathrm{NC} 3=\mathrm{CC}=\mathrm{CN}(\mathrm{CC} 4=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 4) \mathrm{C} 3=\mathrm{O})=0) \mathrm{CC} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5 \mathrm{~N} 1 \end{aligned}$ | ND |
| S53 | 35702 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{C}=\mathrm{CC}=\mathrm{C} 1 \mathrm{NCC}(\mathrm{~N} \\ & (\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O})=\mathrm{O} \end{aligned}$ | 94.0 |
| S54 | 35737 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{CC}(\mathrm{NC} 4 \\ & =\mathrm{CC}=\mathrm{CN}(\mathrm{CCOC}) \mathrm{C} 4=\mathrm{O})=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.0 |


| S55 | 35765 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 1) \mathrm{CCC} 1 \mathrm{~N} 2 \mathrm{C} 3=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 3 \mathrm{NC} 2= \\ & \mathrm{O}) \mathrm{CNC} 4=\mathrm{CC}=\mathrm{CN}(\mathrm{CCOC}) \mathrm{C} 4=\mathrm{O} \end{aligned}$ | 96.6 |
| :---: | :---: | :---: | :---: | :---: |
| S56 | 35766 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 2) \mathrm{C}=\mathrm{C} \\ & 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4= \\ & \mathrm{O})=\mathrm{O} \end{aligned}$ | 95.3 |
| S57 | 35767 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 2) \mathrm{C}=\mathrm{C} \\ & 1[\mathrm{~N}+]([\mathrm{O}-])=\mathrm{O} \end{aligned}$ | 100 |
| S58 | 35768 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 2) \mathrm{C}=\mathrm{C} \\ & 1 \mathrm{~N} \end{aligned}$ | 99.9 |
| S59 | 35769 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN} 4 \mathrm{C} \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{NCCC}) \mathrm{C} 4=\mathrm{O})=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 98.1 |
| S60 | 35770 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{~F})=\mathrm{C} 2 \mathrm{~F}) \mathrm{C}=\mathrm{C} 1 \\ & \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O} \\ & )=\mathrm{O} \end{aligned}$ | 98.1 |
| S61 | 35771 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC2=CC=C(C(OC)=O)C=C} \\ & \text { 2) } \mathrm{C}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \\ & \mathrm{NC} 4=\mathrm{O})=\mathrm{O} \end{aligned}$ | 97.2 |
| S62 | 35774 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}(\mathrm{C} \# \mathrm{~N})=\mathrm{CC}=\mathrm{C} 2) \mathrm{C}= \\ & \mathrm{C} 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4 \\ & =\mathrm{O})=\mathrm{O} \end{aligned}$ | 98.6 |
| S63 | 35775 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 2) \mathrm{C}=\mathrm{C} \\ & 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4= \\ & \mathrm{O})=\mathrm{O} \end{aligned}$ | 98.7 |


| S64 | 36205 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{ClC} 3=\mathrm{C}(\mathrm{C}) \mathrm{N} \\ & (\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | ND |
| :---: | :---: | :---: | :---: | :---: |
| S65 | 36206 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC2=CC}(\mathrm{~F})=\mathrm{CC}=\mathrm{C} 2) \mathrm{C}=\mathrm{C} 1 \\ & \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O} \\ & )=\mathrm{O} \end{aligned}$ | 99.8 |
| S66 | 36207 | $=$ | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} / \mathrm{C} 3=\mathrm{C}(\mathrm{C}) \mathrm{N} \\ & (\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | ND |
| S67 | 36227 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}(\mathrm{~F})=\mathrm{C} 2)=\mathrm{C} / \mathrm{C} 3=\mathrm{C}( \\ & \mathrm{C}) \mathrm{N}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | ND |
| S68 | 36228 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}(\mathrm{~F})=\mathrm{C} 2)=\mathrm{ClC3}=\mathrm{C}( \\ & \mathrm{C}) \mathrm{N}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | ND |
| S69 | 36230 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{CC2=CC(C)=CC=C2)C=C1} \\ & \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O} \\ & )=\mathrm{O} \end{aligned}$ | 98.5 |
| 570 | 36266 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{C}(\mathrm{NCC2=CC=CC=C2)=O)C} \\ & =\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} \\ & 4=\mathrm{O})=\mathrm{O} \end{aligned}$ | 96.1 |
| S71 | 36317 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{CC}(\mathrm{~N}(\mathrm{C}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{CC} 2= \\ & \mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{C} \\ & \mathrm{C}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O})=\mathrm{O} \end{aligned}$ | 99.6 |
| S72 | 36318 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC4}= \\ & \mathrm{C}(\mathrm{CC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5) \mathrm{C}=\mathrm{CN}(\mathrm{C}) \mathrm{C} 4=\mathrm{O})=\mathrm{O}) \mathrm{CC} \\ & 3 \end{aligned}$ | 97.3 |


| S73 | 36346 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{CC}(\mathrm{NCC2}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 1 \mathrm{~N} \\ & \mathrm{C}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O}) \\ & =\mathrm{O} \end{aligned}$ | 97.7 |
| :---: | :---: | :---: | :---: | :---: |
| S74 | 36371 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC4}= \\ & \mathrm{CC}=\mathrm{CN}=\mathrm{C} 4 \mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.6 |
| S75 | 36527 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC4}= \\ & \mathrm{C}(\mathrm{OC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5) \mathrm{C}=\mathrm{CN}(\mathrm{C}) \mathrm{C} 4=\mathrm{O})=\mathrm{O}) \mathrm{CC} \\ & 3 \end{aligned}$ | 98.4 |
| S76 | 36528 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{CC}(\mathrm{NC2=CC=CC=C2)=C1NC( } \\ & \mathrm{N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O})=\mathrm{O} \end{aligned}$ | 96.8 |
| S77 | 36551 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{C}=\mathrm{CC}(\mathrm{OCC2=CC=CC=C2)=C1N} \\ & \mathrm{C}(\mathrm{~N}(\mathrm{CC} 3) \mathrm{CCC} 3 \mathrm{~N} 4 \mathrm{C} 5=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 5 \mathrm{NC} 4=\mathrm{O}) \\ & =\mathrm{O} \end{aligned}$ | 99.9 |
| S78 | 36556 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC2}=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 4= \\ & \mathrm{CC}(\mathrm{C}(\mathrm{NC5}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{O})=\mathrm{CN}(\mathrm{C}) \mathrm{C} 4=\mathrm{O})= \\ & \mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 97.9 |
| S79 | 36621 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC}(\mathrm{C}( \\ & \mathrm{N} 4 \mathrm{C})=\mathrm{O})=\mathrm{CC}=\mathrm{C} 4 \mathrm{CC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 95.7 |
| S80 | 36622 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC4=} \\ & \mathrm{CC}=\mathrm{C}(\mathrm{NCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5) \mathrm{N}=\mathrm{C} 4 \mathrm{OC})=\mathrm{O}) \mathrm{CC} \\ & 3 \end{aligned}$ | 87.3 |
| S81 | 36707 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 4 \\ & =\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.4 |



| S91 | 36962 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN}(\mathrm{C} \\ & ) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{C} \\ & \mathrm{C} 3 \end{aligned}$ | 99.8 |
| :---: | :---: | :---: | :---: | :---: |
| S92 | 36963 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN}(\mathrm{C} \\ & ) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{C} \\ & \mathrm{C} 3 \end{aligned}$ | 99.9 |
| S93 | 36972 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CNC} 4 \\ & =\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 92.5 |
| S94 | 36973 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 4= \\ & \mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.8 |
| S95 | 36987 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC} 4= \\ & \mathrm{CC}=\mathrm{C}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5) \mathrm{C}=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.9 |
| S96 | 36988 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C3CCN}(\mathrm{C}(\mathrm{NC} 4 \\ & =\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}(\mathrm{C}(\mathrm{~F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 5)=\mathrm{C} 4 \\ & )=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |
| S97 | 37102 |  | $\begin{aligned} & \mathrm{CC}(\mathrm{C})(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{COC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{NCC}(\mathrm{~N} 3 \mathrm{C} \\ & \mathrm{CC}(\mathrm{~N} 4 \mathrm{C}(\mathrm{NC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 45)=\mathrm{O}) \mathrm{CC} 3)=\mathrm{O})= \\ & \mathrm{C} 2) \mathrm{C}=\mathrm{C} 1) \mathrm{C} \end{aligned}$ | 99.6 |
| S98 | 37103 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{N} 2 \mathrm{CCC}(\mathrm{~N} 3 \mathrm{C}(\mathrm{NC} 4=\mathrm{C} \\ & 3 \mathrm{C}=\mathrm{CC}=\mathrm{N} 4)=\mathrm{O}) \mathrm{CC} 2 \end{aligned}$ | 99.9 |
| S99 | 37104 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{N} 2 \mathrm{CCC}(\mathrm{~N} 3 \mathrm{C}(\mathrm{NC} 4= \\ & \mathrm{C} 3 \mathrm{C}=\mathrm{CC}=\mathrm{N} 4)=\mathrm{O}) \mathrm{CC} 2 \end{aligned}$ | 99.7 |


| S100 | 37105 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C3CCN}(\mathrm{C}(\mathrm{C} 4= \\ & \mathrm{CC}=\mathrm{CC}([\mathrm{~N}+\mathrm{]}([\mathrm{O}-\mathrm{]})=\mathrm{O})=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |
| :---: | :---: | :---: | :---: | :---: |
| S101 | 37106 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC2=CC=C(C(OC)=O)} \\ & \mathrm{C}=\mathrm{C} 2)=\mathrm{C} 1) \mathrm{N} 3 \mathrm{CCC}(\mathrm{~N} 4 \mathrm{C}(\mathrm{NC} 5=\mathrm{C} 4 \mathrm{C}=\mathrm{CC}=\mathrm{N} 5 \\ & )=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 99.1 |
| S102 | 37107 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC} 2=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{NC4}= \\ & \mathrm{CC}=\mathrm{CC}(\mathrm{OCC}=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{C} \\ & \mathrm{C} 3 \end{aligned}$ | 98.3 |
| S103 | 37130 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC2=NC=CC=C2CN1C3CCN(C(NC4} \\ & =\mathrm{CC}=\mathrm{CC}(\mathrm{OCC5}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 97.5 |
| S104 | 37131 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{CN} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C} \\ & \mathrm{NC} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \\ & \mathrm{CC} 3 \end{aligned}$ | 98.5 |
| S105 | 37134 |  | $\mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{N} 1) \mathrm{N} 2 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN}(\mathrm{C}$ (OC(C)(C)C)=O)C4=CC=CC(OCC5=CC=C( $\mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C}) \mathrm{C}=\mathrm{C} 5)=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3$ | 98.9 |
| S106 | 37135 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}(\mathrm{OCC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{CC}=\mathrm{C} 1 \\ & ) \mathrm{NC} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{C} 3 \end{aligned}$ | 99.4 |
| S107 | 37163 | 边 | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}(\mathrm{NCC2=CC=CC=C2)=CC=C1)} \\ & \mathrm{N} 3 C C C(N 4 C(N C 5=C 4 C=C C=N 5)=O) C C 3 \end{aligned}$ | 96.5 |
| S108 | 37164 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4= \\ & \mathrm{CC}=\mathrm{CC}(\mathrm{~N})=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 96.6 |


| S109 | 37176 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CN} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{~N} \\ & \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{O})=\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 98.5 |
| :---: | :---: | :---: | :---: | :---: |
| S110 | 37177 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{N} 1) \mathrm{N} 2 \mathrm{C} 3 \mathrm{CCN}(\mathrm{CC} 4=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}([\mathrm{~N}+]([\mathrm{O}-\mathrm{J})=\mathrm{O})=\mathrm{C} 4) \mathrm{CC} 3 \end{aligned}$ | 99.8 |
| S111 | 37178 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 1) \mathrm{CCC} 1 \mathrm{C} 2=\mathrm{CNC} 3=\mathrm{NC}=\mathrm{CC}=\mathrm{C} 32 \\ & ) \mathrm{NC} 4=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ | 92.5 |
| S112 | 37179 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC2=NC=CC=C2N1C3CCN(CC(NC4} \\ & =C C(C(N C C 5=C C=C C=C 5)=O)=C C(O C)=C \\ & 4)=O) C C 3 \end{aligned}$ | 98.9 |
| S113 | 37180 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{C} 1) \mathrm{N} 2 \mathrm{C} 3 \mathrm{CCN}(\mathrm{CCCC} \\ & \mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 4) \mathrm{C} 5=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 5) \mathrm{CC} 3 \end{aligned}$ | 98.8 |
| S114 | 37241 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{N} 1) \mathrm{N} 2 \mathrm{C} 3 \mathrm{CCN}(\mathrm{CC} 4=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}(\mathrm{NC}(\mathrm{CC} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5)=\mathrm{O})=\mathrm{C} 4) \mathrm{CC} 3 \end{aligned}$ | 97.0 |
| S115 | 37242 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1 \mathrm{CCC}(\mathrm{~N} 2 \mathrm{C}(\mathrm{NC3}=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{N} 3)=\mathrm{O}) \mathrm{C} \\ & \mathrm{C} 1) \mathrm{NC} 4=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}(\mathrm{C})=\mathrm{CC}=\mathrm{C} 5)=\mathrm{CC}=\mathrm{C} \\ & 4 \end{aligned}$ | 99.7 |
| S116 | 37243 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{~N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{C} 4= \\ & \mathrm{CC}=\mathrm{CC}(\mathrm{NCC}=\mathrm{CC}=\mathrm{CC}(\mathrm{C}(\mathrm{~F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 5)=\mathrm{C} 4) \\ & =\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 97.5 |
| S117 | 37244 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN}(\mathrm{C} \\ & ) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}(\mathrm{C}(\mathrm{~F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 5) \\ & =\mathrm{C} 4)=\mathrm{O}) \mathrm{CC} 3 \end{aligned}$ | 100 |


| $\mathbf{S 1 1 8}$ | 37245 | $\mathrm{O}=\mathrm{C} 1 \mathrm{NC}(\mathrm{N}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{CN}(\mathrm{C}$ <br> $\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}(\mathrm{OCC} 5=\mathrm{CC}=\mathrm{CC}(\mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 5)$ <br> $=\mathrm{C} 4)=\mathrm{C}) \mathrm{CC} 3$ | 99.6 |
| :--- | :--- | :--- | :--- | :--- |

*Compounds were purchased and tested as received from the vendor.

Table S2. Compounds selected for testing from the virtual screen using a model of the AM1 receptor derived from 3AQF (Compounds S119-S153).

| Compound number | Chembridge ID | Structure | SMILES |
| :---: | :---: | :---: | :---: |
| S119 | 14271319 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCC} 1 \mathrm{OCCCC} 1) \mathrm{C} 2=\mathrm{COC}(\mathrm{COC} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 3) \\ & =\mathrm{N} 2 \end{aligned}$ |
| S120 | 5100323 |  | $\mathrm{CCOC}(\mathrm{CNC}(\mathrm{N}[\mathrm{C} @ \mathrm{H}](\mathrm{C}) \mathrm{C} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1)=\mathrm{O})=\mathrm{O}$ |
| S121 | 5106039 |  | $\begin{aligned} & \mathrm{CC}(\mathrm{C})(\mathrm{C} 1 \mathrm{CCC}(\mathrm{OC}(\mathrm{CCC}(\mathrm{NC} 2=\mathrm{NC}=\mathrm{NC}=\mathrm{N} 2)=\mathrm{O})=\mathrm{O}) \mathrm{CC} 1) \\ & \mathrm{C} \end{aligned}$ |
| S122 | 5475655 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CCC}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1)=\mathrm{O}) \mathrm{N} / \mathrm{N}=\mathrm{C} 2[\mathrm{C} @ \mathrm{H}](\mathrm{CCCC} / 2 \\ & ) \mathrm{C} \end{aligned}$ |
| S123 | 5545064 |  | $\mathrm{O}=\mathrm{C}(\mathrm{O} / \mathrm{N}=\mathrm{ClC} 1=\mathrm{CC}=\mathrm{NC}=\mathrm{C} 1) \mathrm{NC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 2) \mathrm{OC}$ |
| S124 | 5569618 |  | $\mathrm{O}=\mathrm{S}(\mathrm{NC} 1=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{OC})(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{O}$ |
| S125 | 5688261 |  | $\mathrm{O}=\mathrm{C}(\mathrm{NC}(\mathrm{S} 1)=\mathrm{NC} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2) \mathrm{COC} 3=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{CC}=\mathrm{C} 3$ |
| S126 | 6236278 |  | $\mathrm{O}=\mathrm{S}(\mathrm{N}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C} 1) \mathrm{CC}(\mathrm{N} 2 \mathrm{CCOCC} 2)=\mathrm{O})(\mathrm{C})=\mathrm{O}$ |


| S127 | 6267661 |  | $\begin{aligned} & {[\mathrm{O}-} \\ & ] \mathrm{C}(\mathrm{~N}(\mathrm{C}) \mathrm{C} 1=\mathrm{O})=\mathrm{C}(\mathrm{~N} 2 \mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}(\mathrm{~N} 1 \mathrm{C})=\mathrm{NC} 2=\mathrm{S} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S128 | 6399732 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{~N}(\mathrm{C} 1=\mathrm{CC}(\mathrm{Br})=\mathrm{CC}=\mathrm{C} 1) \mathrm{CC}(\mathrm{NCC} 2=\mathrm{CN}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{O})( \\ & \mathrm{C})=\mathrm{O} \end{aligned}$ |
| S129 | 6625020 | Me, | $\mathrm{S}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 1) \mathrm{N}(\mathrm{C}[\mathrm{C@H}] 2 \mathrm{C}) \mathrm{C}[\mathrm{C} @ \mathrm{H}](\mathrm{O} 2) \mathrm{C}$ |
| S130 | 6717909 |  | $\begin{aligned} & \mathrm{CIC} 1=\mathrm{C}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 1) \mathrm{C} 2=\mathrm{NOC}(\mathrm{C})=\mathrm{C} 2 \mathrm{C}(\mathrm{~N}[\mathrm{C} @ \mathrm{H}](\mathrm{CC} 3) \mathrm{CS} 3 \\ & (=\mathrm{O})=\mathrm{O})=\mathrm{O} \end{aligned}$ |
| S131 | 6806958 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CN}(\mathrm{C}(\mathrm{C} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{C} 1)=\mathrm{O}) \mathrm{C} 2=\mathrm{O}) \mathrm{N} 3 \mathrm{CC}[\mathrm{C} @ \mathrm{H}](\mathrm{C} 4 \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C} 3 \end{aligned}$ |
| S132 | 7258158 |  | $\begin{aligned} & \mathrm{CCOC}(\mathrm{C} 1=\mathrm{C}(\mathrm{NC}(\mathrm{COC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{O}) \mathrm{SC}(\mathrm{C}(\mathrm{~N})=\mathrm{O})=\mathrm{C} \\ & 1 \mathrm{C})=\mathrm{O} \end{aligned}$ |
| S133 | 7380441 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CN}(\mathrm{C}(\mathrm{C} 1=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{C} 1)=\mathrm{O}) \mathrm{S} 2(=\mathrm{O})=\mathrm{O}) \mathrm{NC} 3=\mathrm{CC}=\mathrm{C} \\ & \mathrm{C}(\mathrm{OC})=\mathrm{C} 3 \end{aligned}$ |
| S134 | 7457259 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC}(\mathrm{NCC} 1=\mathrm{CC}=\mathrm{CO} 1)=\mathrm{O}) \mathrm{S} 2(=\mathrm{O})=\mathrm{O}) \mathrm{C} 3=\mathrm{C} 2 \mathrm{C}=\mathrm{CC} \\ & =\mathrm{C} 3 \end{aligned}$ |
| S135 | 7645530 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{~N} 2 \mathrm{CC}[\mathrm{NH}+](\mathrm{C}) \mathrm{CC} 2) \mathrm{C}=\mathrm{C} 1) \mathrm{COC} 3=\mathrm{C}(\mathrm{C} \\ & =\mathrm{CC}=\mathrm{C} 3) \mathrm{C} \end{aligned}$ |


| S136 | 7646371 |  | $\mathrm{O}=\mathrm{C}(\mathrm{NC1CCCCC} 1) \mathrm{C}[\mathrm{C} @ @ \mathrm{H}] 2 \mathrm{COC} 3=\mathrm{C}(\mathrm{O} 2) \mathrm{C}=\mathrm{CC}=\mathrm{C} 3$ |
| :---: | :---: | :---: | :---: |
| S137 | 7676715 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CSC} 1=\mathrm{NC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{NC}=\mathrm{C} 2)=\mathrm{NN} 1) \mathrm{NCC} 3=\mathrm{CC}=\mathrm{CC}= \\ & \mathrm{C} 3 \end{aligned}$ |
| S138 | 7701549 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{NN}=\mathrm{C}(\mathrm{CC}[\mathrm{NH}+] 2 \mathrm{CCCCC} 2) \mathrm{S} 1) \mathrm{CCC} 3=\mathrm{CC}=\mathrm{CC} \\ & =\mathrm{C} 3 \end{aligned}$ |
| S139 | 7745171 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}[\mathrm{C} @ @ \mathrm{H}] 1 \mathrm{SC} 2=\mathrm{NCCN2C1=O}) \mathrm{NC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 3) \\ & \mathrm{OC} \end{aligned}$ |
| S140 | 7748258 |  | $\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{CSC} 2=\mathrm{NN}=\mathrm{C}(\mathrm{C}[\mathrm{NH}+] 3 \mathrm{CCOC}$ C3)N2C |
| S141 | 7933822 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}(\mathrm{NCC}(\mathrm{OCC} 2=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{O})=\mathrm{O}) \\ & \mathrm{C}=\mathrm{C} 1) \mathrm{C} \end{aligned}$ |
| S142 | 7952006 |  | $\mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CNC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 12) \mathrm{CSC} 3=\mathrm{NN}=\mathrm{C}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CO}$ <br> 4)N3C |
| S143 | 7984549 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1[\mathrm{C} @ @ \mathrm{H}](\mathrm{CCC}[\mathrm{C} @ \mathrm{H}] 1[\mathrm{C} @](\mathrm{C} 2=\mathrm{C}(\mathrm{~N} 3) \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)( \\ & \mathrm{O}) \mathrm{C} 3=\mathrm{O}) \mathrm{C} \end{aligned}$ |
| S144 | 9000840 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{C}(\mathrm{NC}([\mathrm{C} @ \mathrm{H}] 2 \mathrm{OCCC} 2)=\mathrm{O}) \mathrm{C}=\mathrm{CC}=\mathrm{C} 1) \mathrm{NCC} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |


| S145 | 9002015 |  | $\begin{aligned} & \mathrm{CCOC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}(\mathrm{NCC} 2=\mathrm{NC}(\mathrm{C} 3=\mathrm{CC}(\mathrm{C})=\mathrm{CC}=\mathrm{C} 3)=\mathrm{NO} 2) \\ & =\mathrm{O}) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S146 | 9048476 |  | $\operatorname{CCOC}(\mathrm{C} 1=\mathrm{C}(\mathrm{NC}(\mathrm{C} 2=\mathrm{CN}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{O}) \mathrm{SN}=\mathrm{C} 1 \mathrm{C})=\mathrm{O}$ |
| S147 | 9061534 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1)[\mathrm{C} @ \mathrm{H}] 2 \mathrm{ON}=\mathrm{C}(\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C} \\ & =\mathrm{C} 3) \mathrm{OC} \end{aligned}$ |
| S148 | 9065389 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{CC}(\mathrm{CC} 2=\mathrm{C} 1 \mathrm{C}(\mathrm{C})=\mathrm{NC}(\mathrm{NC}[\mathrm{C} @ \mathrm{H}] 3 \mathrm{CCCO} 3)=\mathrm{N} 2)(\mathrm{C}) \\ & \mathrm{C} \end{aligned}$ |
| S149 | 9123217 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC}(\mathrm{SCC}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 1)=\mathrm{O})=\mathrm{N} 2) \mathrm{C}=\mathrm{C} 2 \mathrm{C} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |
| S150 | 9138048 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC}(\mathrm{SCC}(\mathrm{NC} 1=\mathrm{CC}(\mathrm{OC})=\mathrm{CC}=\mathrm{C} 1)=\mathrm{O})=\mathrm{N} 2) \mathrm{C}(\mathrm{CCO})= \\ & \mathrm{C} 2 \mathrm{C} \end{aligned}$ |
| S151 | 9235375 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{NOC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 2)=\mathrm{C} 1) \mathrm{NCC} 3=\mathrm{CC}=\mathrm{CC}= \\ & \mathrm{C} 3 \end{aligned}$ |
| S152 | 9245673 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCN} 1 \mathrm{CCOCC} 1)[\mathrm{C} @ \mathrm{H}] 2 \mathrm{ON}=\mathrm{C}(\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{Cl}) \\ & \mathrm{C}=\mathrm{C} 3 \end{aligned}$ |
| S153 | 9245673 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCN} 1 \mathrm{CCOCC} 1)[\mathrm{C} @ @ \mathrm{H}] 2 \mathrm{ON}=\mathrm{C}(\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{Cl} \\ & ) \mathrm{C}=\mathrm{C} 3 \end{aligned}$ |

Table S3
Compounds to mimic the binding of the $N$-terminal tyrosine (AM peptide) to the $A M_{1}$ receptor (S154-S240).

| Compound number | SN | Structure | SMILES | HPLC <br> Purity \% |
| :---: | :---: | :---: | :---: | :---: |
| S154 | 37308 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} \\ & \hline \end{aligned}$ | 94.7 |
| S155 | 37309 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C} \\ & =\mathrm{C} 3 \end{aligned}$ | 98.8 |
| S156 | 37310 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}= \\ & \mathrm{C} 3 \end{aligned}$ | 100 |
| S157 | 37312 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} \\ & 3 \mathrm{~N} 1 \end{aligned}$ | 99.2 |
| S158 | 37321 |  | $\mathrm{OC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CC}(\mathrm{C}(\mathrm{OCC})=\mathrm{O}) \mathrm{NC}(\mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 1$ | * |
| S159 | 37322 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}= \\ & \mathrm{C} 3 \end{aligned}$ | 99.2 |
| S160 | 37340 |  | $\mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C}$ | 98.4 |
| S161 | 37341 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{C} \\ & \mathrm{l}=\mathrm{C} 3 \end{aligned}$ | 100 |


| S162 | 37342 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{C})=\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \\ & \mathrm{~N} 1 \end{aligned}$ | 100 |
| :---: | :---: | :---: | :---: | :---: |
| S163 | 37343 |  | $\begin{aligned} & \text { O=C1/C(C2=CC=CC=C2N1)=C/C3=CC=C(C)C= } \\ & C 3 \end{aligned}$ | 98.9 |
| S164 | 37344 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} \\ & 3 \end{aligned}$ | 99.5 |
| S165 | 37345 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C}= \\ & \mathrm{C} 3 \end{aligned}$ | 100 |
| S166 | 37365 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}([\mathrm{~N}+](\mathrm{O} \\ & [\mathrm{O}-\mathrm{J})=\mathrm{O})=\mathrm{C} 3 \end{aligned}$ | 99.8 |
| S167 | 37366 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C}(\mathrm{OC}) \\ & =\mathrm{O}) \mathrm{C}=\mathrm{C} 3 \end{aligned}$ | 99.1 |
| S168 | 37367 |  | $\mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{CC2}=\mathrm{CC}=\mathrm{CC}(\mathrm{N})=\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \mathrm{~N} 1$ | 96.4 |
| S169 | 37368 |  | $\begin{aligned} & \text { O=C1/C(C2=CC=CC=C2N1)=C/C3=CC=CC(N)=} \\ & C 3 \end{aligned}$ | 97.9 |
| S170 | 37369 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{C}(\mathrm{OC})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C} \\ & =\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ | 98.5 |


| S171 | 37443 |  | $\begin{aligned} & \text { O=C1/C(C2=CC=CC=C2N1)=ClC3=CC=C(N)C=} \\ & C 3 \end{aligned}$ | 99.7 |
| :---: | :---: | :---: | :---: | :---: |
| S172 | 37444 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{~N}=\mathrm{CC}= \\ & \mathrm{C} 3 \end{aligned}$ | 100 |
| S173 | 37446 |  | $\mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{N}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \mathrm{~N} 1$ | 100 |
| S174 | 37510 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC}=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{OC})=\mathrm{C} 3 \end{aligned}$ | 100 |
| S175 | 37511 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}(\mathrm{C})=\mathrm{CC}(\mathrm{C} \\ & )=\mathrm{C} 3 \end{aligned}$ | 100 |
| S176 | 37513 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}(\mathrm{OC})=\mathrm{CC}( \\ & \mathrm{OC})=\mathrm{C} 3 \end{aligned}$ | 100 |
| S177 | 37514 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}(\mathrm{C})=\mathrm{C}(\mathrm{O}) \\ & \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 100 |
| S178 | 37515 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ \mathrm{O})=\mathrm{C} 3 \end{gathered}$ | 100 |
| S179 | 37516 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}( \\ & \mathrm{OC})=\mathrm{C} 3 \end{aligned}$ | 100 |


| S180 | 37517 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NCC3}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 2) \mathrm{C} \\ 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{gathered}$ | 95.5 |
| :---: | :---: | :---: | :---: | :---: |
| S181 | 37518 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{C} \\ \mathrm{C}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 5=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 5 \mathrm{~N} 1 \end{gathered}$ | 98.6 |
| S182 | 37519 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{C}=\mathrm{C} \\ & \mathrm{C}=\mathrm{C} 3 \end{aligned}$ | 99.9 |
| S183 | 37520 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{F})=\mathrm{C} 3 \end{aligned}$ | 99.9 |
| S184 | 37562 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}(\mathrm{C})=\mathrm{C}(\mathrm{OC} \\ \mathrm{O}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 100 |
| S185 | 37563 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{CO})=\mathrm{C} 3 \end{aligned}$ | 99.0 |
| S186 | 37657 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C} 4 \mathrm{C}(\mathrm{OC} \\ & \mathrm{O} 4)=\mathrm{C} 3 \end{aligned}$ | 100 |
| S187 | 37658 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} 3 \mathrm{CCN}(\mathrm{C}(\mathrm{OC}(\mathrm{C})(\mathrm{C} \\ ) \mathrm{C})=\mathrm{O}) \mathrm{CC} / 3 \end{gathered}$ | 99.1 |
| S188 | 37659 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{C} 2 \mathrm{CCN}(\mathrm{C}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{CC} 2) \mathrm{C} 3=\mathrm{CC}= \\ & \mathrm{CC}=\mathrm{C} 3 \mathrm{~N} 1 \end{aligned}$ | 97.4 |


| S189 | 37660 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC}=\mathrm{CC}=\mathrm{C}(\mathrm{OCC} 4 \\ & \mathrm{O} 4=\mathrm{C} 3 \end{aligned}$ | 99.8 |
| :---: | :---: | :---: | :---: | :---: |
| S190 | 37673 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C} 3 \mathrm{C}(\mathrm{OCO} 3)=\mathrm{C} 2) \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}= \\ & \mathrm{C} 4 \mathrm{~N} 1 \end{aligned}$ | 97.0 |
| S191 | 37674 |  | $\mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} 3 \mathrm{CCNCC} / 3 . \mathrm{Cl}$ | ND |
| S192 | 37729 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NCC3}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 2) \mathrm{C} \\ 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \mathrm{~N} 1 \end{gathered}$ | 96.8 |
| S193 | 37730 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC3}=\mathrm{CC}=\mathrm{C}(\mathrm{~N}(\mathrm{C}) \mathrm{C} \\ & \mathrm{C}=\mathrm{C} 3 \end{aligned}$ | 99.7 |
| S194 | 37731 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{OC}) \\ & =\mathrm{C} 3 \end{aligned}$ | 100 |
| S195 | 37732 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OCC} \\ & \mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 100 |
| S196 | 37769 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \\ & \mathrm{C} \end{aligned}$ | 99.8 |
| S197 | 37770 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{C})= \\ & \mathrm{C} 3 \end{aligned}$ | 99.8 |


| S198 | 37771 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{C})= \\ & \mathrm{C} 3 \mathrm{C} \end{aligned}$ | 99.7 |
| :---: | :---: | :---: | :---: | :---: |
| S199 | 37797 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C}(\mathrm{C}) / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC} \\ & \mathrm{O}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.8 |
| S200 | 37798 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C}(\mathrm{C} \\ & \mathrm{l}=\mathrm{C} 3 \end{aligned}$ | 99.9 |
| S201 | 37799 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC}(\mathrm{C}=\mathrm{C} 3 \mathrm{OC})=\mathrm{CC} \\ & =\mathrm{C} 3 \mathrm{C} \end{aligned}$ | 99.8 |
| S202 | 37800 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}([\mathrm{~N}+][[ \\ & \mathrm{O}-\mathrm{J}]=\mathrm{O}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.2 |
| S203 | 37801 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{Br}) \mathrm{C}( \\ & \mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 100 |
| S204 | 37836 |  | $\begin{gathered} \mathrm{OC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CC}(\mathrm{NC}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{C}(\mathrm{~N})=\mathrm{O}) \mathrm{C}=\mathrm{C} \\ 1 \end{gathered}$ | 94.9 |
| S205 | 37837 |  | $\begin{aligned} & \text { O=C1/C(C2=CC=CC=C2N1)=C/C3=CC=CC(C)=} \\ & C 3 O C \end{aligned}$ | ND |
| S206 | 37838 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C} \\ & =\mathrm{C} 3 \mathrm{C} \end{aligned}$ | 99.0 |


| S207 | 37839 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{C})= \\ & \mathrm{C} 3 \mathrm{OC} \end{aligned}$ | 100 |
| :---: | :---: | :---: | :---: | :---: |
| S208 | 37840 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}(\mathrm{C})=\mathrm{CC}= \\ & \mathrm{C} 3 \mathrm{OC} \end{aligned}$ | 100 |
| S209 | 37841 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}(/ \mathrm{C}=\mathrm{C} / \mathrm{C}(\mathrm{OC})=\mathrm{O})=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \\ \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 96.4 |
| S210 | 37847 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OCC} \\ & \mathrm{N}(\mathrm{C}) \mathrm{C}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 82.5 |
| S211 | 37883 |  | $\begin{aligned} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}(\mathrm{Br})=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O} \\ \mathrm{C}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.0 |
| S212 | 37884 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C})=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \\ & \mathrm{C}(\mathrm{CO})=\mathrm{C} 3 \end{aligned}$ | 98.1 |
| S213 | 37943 |  | $\mathrm{O}=\mathrm{C} 1 \mathrm{CC} 2=\mathrm{CC}(\mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{N})=\mathrm{C} 3)=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1$ | 99.3 |
| S214 | 37944 |  | $\begin{aligned} \mathrm{O}= & =\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}(\mathrm{CCC}(\mathrm{OC})=\mathrm{O})=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3 \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 97.8 |
| S215 | 37988 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) \mathrm{N}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 2) \mathrm{C} 3=\mathrm{C} 1 \mathrm{~N}=\mathrm{CC}=\mathrm{C} \\ & 3 \end{aligned}$ | 99.8 |


| S216 | 37989 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1 \mathrm{C}) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{ClC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC} \\ & \mathrm{OC}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.9 |
| :---: | :---: | :---: | :---: | :---: |
| S217 | 37991 |  | $\begin{gathered} \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{ClC} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{CC} \\ )=\mathrm{C} 3 \end{gathered}$ | 99.4 |
| S218 | 37992 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N} 1) / \mathrm{C}(\mathrm{C} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{CC} \\ & \mathrm{l}=\mathrm{C} 3 \end{aligned}$ | 99.4 |
| S219 | 37993 |  | $\begin{aligned} & \text { O=C1CC2=CC=C(NCC3=CC=C(OC)C(C)=C3)C= } \\ & \text { C2N1 } \end{aligned}$ | 90.7 |
| S220 | 37994 |  | $\mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} 3 \mathrm{CCN}(\mathrm{C}) \mathrm{CC} / 3$ | 95.2 |
| S221 | 38047 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC}=\mathrm{CC}=\mathrm{C}(\mathrm{OCC} \\ \mathrm{N} 4 \mathrm{CCCCC} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 98.8 |
| S222 | 38048 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC3}=\mathrm{CC}=\mathrm{C}(\mathrm{OCC} \\ \mathrm{N} 4 \mathrm{CCCC} 4) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 99.3 |
| S223 | 38049 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1) \\ =\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 97.9 |
| S224 | 38050 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 96.8 |


| S225 | 38051 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~N}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC} \\ & \mathrm{OC}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 98.9 |
| :---: | :---: | :---: | :---: | :---: |
| S226 | 38052 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1 \\ \mathrm{C})=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 98.9 |
| S227 | 38053 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \\ & \mathrm{OC} \end{aligned}$ | 98.8 |
| S228 | 38054 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C} \# \mathrm{~N}) \\ & \mathrm{C}=\mathrm{C} 3 \end{aligned}$ | 94.2 |
| S229 | 38055 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{C}(\mathrm{~F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 3 \end{aligned}$ | 99.9 |
| S230 | 38056 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC}=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & \mathrm{Cl})=\mathrm{C} 3 \end{aligned}$ | 98.2 |
| S231 | 38078 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C})=\mathrm{ClC3}=\mathrm{CC}=\mathrm{C}(\mathrm{~N}) \mathrm{C} \\ & =\mathrm{C} 3 \end{aligned}$ | 92.6 |
| S232 | 38079 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{ClC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}( \\ & {[\mathrm{N}+[(\mathrm{O}-\mathrm{-}])=\mathrm{O})=\mathrm{C} 3} \end{aligned}$ | 96.91 |
| S233 | 38082 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{OC}) \\ & =\mathrm{C} 3 \mathrm{C} \end{aligned}$ | 99.3 |


| S234 | 38146 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~N}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1 \mathrm{C})=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O} \\ & \mathrm{C}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.0 |
| :---: | :---: | :---: | :---: | :---: |
| S235 | 38147 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{CCC} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O} \\ & \mathrm{C}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 97.0 |
| S236 | 38211 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1)= \\ \mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 99.9 |
| S237 | 38212 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{COC})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3 \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{aligned}$ | 99.8 |
| S238 | 38303 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{OCC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O}) \mathrm{C} \\ =\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 4 \end{gathered}$ | 98.8 |
| S239 | 38304 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{CCCCNC}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O} \\ )=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 98.9 |
| S240 | 38305 |  | $\begin{gathered} \mathrm{O}=\mathrm{C} 1 / \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{CNC}(\mathrm{OC}(\mathrm{C})(\mathrm{C}) \mathrm{C})=\mathrm{O})=\mathrm{O}) \\ \mathrm{C}=\mathrm{C} 2 \mathrm{~N} 1)=\mathrm{C} / \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}(\mathrm{C})=\mathrm{C} 3 \end{gathered}$ | 87.2 |

*Compounds were purchased and tested as received from the vendor.

Table S4
Compounds selected for testing from the virtual screen using a model of the AM1 receptor derived from 3AQF (S241-S318).

| Compound number | Chembridge ID | Structure | SMILES |
| :---: | :---: | :---: | :---: |
| S241 | 5210142 |  | $\begin{aligned} & \mathrm{OC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C} 2=\mathrm{NC}(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{O}) \mathrm{C}=\mathrm{C} 3)=\mathrm{NC}(\mathrm{O} \\ & \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{N} 2) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |
| S242 | 5580676 |  | $\begin{aligned} & \mathrm{C} 1(/ \mathrm{C}=\mathrm{N} / \mathrm{NC} 2=\mathrm{C} 3 \mathrm{C}=\mathrm{CC}=\mathrm{CC} 3=\mathrm{NC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CN}= \\ & \mathrm{C} 4)=\mathrm{N} 2)=\mathrm{CN}=\mathrm{CC}=\mathrm{C} 1 \end{aligned}$ |
| S243 | 6053535 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{NC}=\mathrm{C} 2) \mathrm{C}=\mathrm{C} 1) \mathrm{C} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}=\mathrm{C} 3 \mathrm{SCC} 4=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 4 \end{aligned}$ |
| S244 | 6557648 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{OC}(\mathrm{C}) \mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{C} 1)=\mathrm{O}) \mathrm{C} 2=\mathrm{CC}=\mathrm{C}( \\ & \mathrm{NC}(\mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S245 | 6568730 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{C} 2=\mathrm{CN}(\mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} \\ & \text { 3) } \mathrm{N}=\mathrm{C} 2 \mathrm{C} 4=\mathrm{CC}=\mathrm{CN}=\mathrm{C} 4 \end{aligned}$ |
| S246 | 6578789 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{CCC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{C} 3 \\ & \mathrm{CCN}(\mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{CC} 3 \end{aligned}$ |
| S247 | 6606435 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}) \mathrm{COC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{NC} 2=\mathrm{NN}=\mathrm{C}(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{Cl}) \\ & \mathrm{C}=\mathrm{C} 3) \mathrm{C} 4=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |
| S248 | 6809216 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCSCC} 1=\mathrm{CC}=\mathrm{CO} 1) \mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C} 3) \mathrm{S}(=\mathrm{O})(\mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S249 | 6865940 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCSCC} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{C})=\mathrm{C} 1) \mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~N}(\mathrm{C} \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{S}(=\mathrm{O})(\mathrm{C})=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |


| S250 | 6939665 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{CCCN}(\mathrm{C}) \mathrm{C}) \mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 2) \mathrm{C}(\mathrm{C}( \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{C} 3)=\mathrm{O})=\mathrm{C} 10 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S251 | 6968242 |  | $\begin{aligned} & \mathrm{CC}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{~S}(=\mathrm{O})(\mathrm{NCCC2}=\mathrm{CC}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}= \\ & \mathrm{C} 2)=\mathrm{O}) \mathrm{C}=\mathrm{C} 1)=\mathrm{O} \end{aligned}$ |
| S252 | 7030634 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{SC})=\mathrm{C} 1) \mathrm{CN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} \\ & 2) \mathrm{S}(=\mathrm{O})(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 3)=\mathrm{O} \end{aligned}$ |
| S253 | 7141751 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CN}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{N}=\mathrm{C} 1 \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}( \\ & \mathrm{N})=\mathrm{C} 3) \mathrm{O} \end{aligned}$ |
| S254 | 7591892 |  | $\mathrm{N} \# \mathrm{CC} 1=\mathrm{CC} 2=\mathrm{C}(\mathrm{~N}=\mathrm{C} 1 \mathrm{SCC}(\mathrm{O}) \mathrm{COCC}=\mathrm{CC}=\mathrm{CC}=$ C3)CCCC2 |
| S255 | 7596514 |  | $\begin{aligned} & \text { CC1=CC=C(S(=O)(NCC(N2CCN(C(C3=CC=CC= } \\ & \mathrm{C} 3) C 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{CC} 2)=\mathrm{O})=\mathrm{O}) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |
| S256 | 7639598 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{SC})=\mathrm{C} 1) \mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{OC} \\ & \mathrm{C}(\mathrm{NCC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O} \end{aligned}$ |
| S257 | 7722400 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{COC2}=\mathrm{CC}=\mathrm{C}(\mathrm{~S}(=\mathrm{O})( \\ & \mathrm{NCC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S258 | 7788404 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1 \mathrm{Cl}) \mathrm{CCC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{~S}(=\mathrm{O})( \\ & \mathrm{NCC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{O}) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S259 | 7789506 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCC}(\mathrm{~N} 2 \mathrm{CCN}(\mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{Cl})=\mathrm{C} \\ & 3) \mathrm{CC} 2)=\mathrm{O}) \mathrm{C}=\mathrm{C} 1)(\mathrm{NCC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{O} \end{aligned}$ |


| S260 | 7867889 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1 \mathrm{CCCCC} 1) \mathrm{COC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{CNCC3}=\mathrm{CC}= \\ & \mathrm{CN}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 2 \mathrm{OC} . \mathrm{Cl} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S261 | 7872017 |  | $\begin{aligned} & \mathrm{CC}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C} 2=\mathrm{CSC}(\mathrm{NCCC} 3=\mathrm{CC}(\mathrm{OC})=\mathrm{C}(\mathrm{O} \\ & \mathrm{C}) \mathrm{C}=\mathrm{C} 3)=\mathrm{N} 2) \mathrm{C}=\mathrm{C} 1)=\mathrm{O} \end{aligned}$ |
| S262 | 7921125 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{CC}(\mathrm{NC}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CHCC}(\mathrm{O}) \mathrm{CCCCC} 2) \mathrm{C} \\ & =\mathrm{C} 1)=\mathrm{O}) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |
| S263 | 7921132 |  | $\begin{aligned} & \mathrm{CSCC[C@@H](C(O)=O)NC(C1=CC=C(C} \mathrm{\# CC(C))} \\ & \mathrm{O}) \mathrm{C}) \mathrm{C}=\mathrm{C} 1)=\mathrm{O} \end{aligned}$ |
| S264 | 7929934 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2}=\mathrm{CC}(\mathrm{OC})=\mathrm{C}(\mathrm{OCC} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 2) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S265 | 7938921 |  | $\begin{aligned} & \mathrm{ClC(C=C1)=CC=C1COC2=CC=CC=C2CNCCC3} \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{~S}(=\mathrm{O})(\mathrm{N})=\mathrm{O}) \mathrm{C}=\mathrm{C} 3 . \mathrm{Cl} \end{aligned}$ |
| S266 | 7945479 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}(\mathrm{C})=\mathrm{C}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{S} 1) \mathrm{NCCC3}= \\ & \mathrm{CC}=\mathrm{C}(\mathrm{~S}(=\mathrm{O})(\mathrm{N})=\mathrm{O}) \mathrm{C}=\mathrm{C} 3 \end{aligned}$ |
| S267 | 7951332 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C} 2=\mathrm{CC}=\mathrm{C}(\mathrm{NCC}(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C} 3)=\mathrm{O}) \\ & \mathrm{C}=\mathrm{C} 2) \mathrm{CCC} 1 \end{aligned}$ |
| S268 | 7959301 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{CS} 1) \mathrm{CCNC2}=\mathrm{CC}=\mathrm{C}(\mathrm{CC} 3=\mathrm{CC}=\mathrm{NC} \\ & =\mathrm{C} 3) \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S269 | 7961792 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{COC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{CSCC} 2=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{CC}= \\ & \mathrm{C} 2 \mathrm{Cl})=\mathrm{O}) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |


| S270 | 7979845 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}) \mathrm{COC} 1=\mathrm{C}(\mathrm{OCC}) \mathrm{C}=\mathrm{C}(\mathrm{CNCCC2=CNC3=C} \\ & 2 \mathrm{C}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 1 \mathrm{Cl} . \mathrm{Cl} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S271 | 7997028 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}(\mathrm{CC} 1=\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{~N}=\mathrm{C} 10) \mathrm{CC} 30 \mathrm{CC} \\ & \mathrm{C} 3) \mathrm{COC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ |
| S272 | 9007761 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{~N}) \mathrm{C} 1=\mathrm{CC}(\mathrm{~S}(=\mathrm{O})(\mathrm{NC2}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{SC} 3=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 3)=\mathrm{O})=\mathrm{CC}=\mathrm{C} 1 \mathrm{C} \end{aligned}$ |
| S273 | 9018313 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2}=\mathrm{CC}=\mathrm{C}(\mathrm{OCO} 3) \mathrm{C} 3=\mathrm{C} 2) \\ & \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S274 | 9044198 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{CN} 1 \mathrm{CCN}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{C}(\mathrm{~F})(\mathrm{F}) \mathrm{F})=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N} \\ & \mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |
| S275 | 9114960 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{~N} 2 \mathrm{C}(\mathrm{CCCC} 2)=\mathrm{O}) \mathrm{C}=\mathrm{C} 1)(\mathrm{NCCC} 3 \\ & =\mathrm{CNC} 4=\mathrm{C} 3 \mathrm{C}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{O} \end{aligned}$ |
| S276 | 9133243 |  | $\begin{aligned} & \mathrm{C} 1(\mathrm{CNCC2}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{CC}=\mathrm{CC}(\mathrm{OC} 3=\mathrm{NN}=\mathrm{NN} \\ & 3 \mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{C} 1 . \mathrm{Cl} \end{aligned}$ |
| S277 | 9141148 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{NC}(\mathrm{CSC} 2=\mathrm{NC}(\mathrm{C})=\mathrm{NC}(\mathrm{C} 3=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 3)=\mathrm{C} 2)=\mathrm{O}) \mathrm{C}=\mathrm{C} 1 \end{aligned}$ |
| S278 | 9153159 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}(\mathrm{O} 1)=\mathrm{CC} 2=\mathrm{C} 1 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CCNC}=\mathrm{CC}=\mathrm{C}( \\ & \mathrm{CC} 4=\mathrm{CC}=\mathrm{NC}=\mathrm{C} 4) \mathrm{C}=\mathrm{C} 3 \end{aligned}$ |
| S279 | 9153611 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}(\mathrm{~S}(=\mathrm{O})(\mathrm{N} 2 \mathrm{CCN}(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 3) \\ & \mathrm{CC} 2)=\mathrm{O})=\mathrm{CS} 1) \mathrm{N} \end{aligned}$ |


| S280 | 9155005 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{C}(\mathrm{CHN}) \mathrm{C}(\mathrm{CCC} 2)=\mathrm{C} 2 \mathrm{~S} 1) \mathrm{CSC} 3=\mathrm{NC}(\mathrm{C} \\ & 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4)=\mathrm{CC}(\mathrm{~N} 3)=\mathrm{O} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S281 | 9158511 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=CC=C(C3=CC=CC=C} \\ & 3 \mathrm{~F}) \mathrm{O} 2) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S282 | 9214149 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCC} 1=\mathrm{NC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{C})=\mathrm{NO} 1) \mathrm{C} 3=\mathrm{CC} \\ & =\mathrm{C}(\mathrm{CN} 4 \mathrm{CCCC} 4) \mathrm{C}=\mathrm{C} 3 \end{aligned}$ |
| S283 | 9231370 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCNC} 1=\mathrm{NC}(\mathrm{~N} 2 \mathrm{CCCCC} 2)=\mathrm{CC}(\mathrm{C})=\mathrm{N} 1) \mathrm{C} 3 \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 3 \mathrm{Cl} \end{aligned}$ |
| S284 | 9302281 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 1) \mathrm{CN} 2 \mathrm{C}(\mathrm{C}=\mathrm{CC}(\mathrm{C} 3 \\ & =\mathrm{CC}=\mathrm{C}(\mathrm{~F}) \mathrm{C}=\mathrm{C} 3)=\mathrm{N} 2)=\mathrm{O} \end{aligned}$ |
| S285 | 5232626 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNC}(\mathrm{C} 2=\mathrm{CC}(\mathrm{Cl})=\mathrm{CC}=\mathrm{C} 2 \mathrm{OC})= \\ & \mathrm{O}) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} \end{aligned}$ |
| S286 | 5674182 |  | $\begin{aligned} & \mathrm{COC} 1=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{CC}(\mathrm{CCNC2=NC}(\mathrm{C} 3=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \\ & \mathrm{C}=\mathrm{C} 3)=\mathrm{CS} 2)=\mathrm{C} 1 \end{aligned}$ |
| S287 | 5674819 |  | $\begin{aligned} & \mathrm{COC} 1=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{CC}(\mathrm{CCNC2}=\mathrm{NC}(\mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} \\ & 3)=\mathrm{CS} 2)=\mathrm{C} 1 \end{aligned}$ |
| S288 | 6578109 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O})=\mathrm{O} . \mathrm{O}=\mathrm{C}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{C} 2 \mathrm{C} \\ & \mathrm{CN}(\mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 2 \end{aligned}$ |
| S289 | 6578132 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O})=\mathrm{O} . \mathrm{O}=\mathrm{C}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{C} 2 \mathrm{C} \\ & \mathrm{CN}(\mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 3) \mathrm{CC} 2 \end{aligned}$ |


| S290 | 6578487 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N} 3 \mathrm{CCCCC} \\ & 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S291 | 6578792 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CN}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N}(\mathrm{CCC} 3=\mathrm{C} \\ & \mathrm{C}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ |
| S292 | 6578796 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2 \mathrm{CCCCC} 2) \mathrm{CC} 1) \mathrm{N}(\mathrm{CCC} 3=\mathrm{CC}= \\ & \mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ |
| S293 | 6578807 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CCCC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N}(\mathrm{CCC3} \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 . \mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O})=\mathrm{O} \end{aligned}$ |
| S294 | 6578810 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N}(\mathrm{CC} \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ |
| S295 | 6578811 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{N}(\mathrm{CC} \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{CC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4 \end{aligned}$ |
| S296 | 7126098 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}(\mathrm{CC}(\mathrm{C} 1=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 1)=\mathrm{O})(\mathrm{O}) \mathrm{C} 2= \\ & \mathrm{C} 3 \mathrm{C}=\mathrm{CC}=\mathrm{C} 2) \mathrm{N} 3 \mathrm{CCC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C4} \end{aligned}$ |
| S297 | 7422362 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCC} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{CC}(\mathrm{C} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}(\mathrm{C})=\mathrm{C} 3 \mathrm{O} \end{aligned}$ |
| S298 | 7645439 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{C}(\mathrm{NCC2=CC=CC=C2)=} \\ & \mathrm{O}) \mathrm{C} 3(\mathrm{CCOCC} 3) \mathrm{C} 4=\mathrm{CC}=\mathrm{C}(\mathrm{OC}) \mathrm{C}=\mathrm{C} 4 \end{aligned}$ |
| S299 | 7868949 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{NC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{C} 2=\mathrm{CSC}(\mathrm{NCCC} 3=\mathrm{CC} \\ & =\mathrm{CC}=\mathrm{C} 3)=\mathrm{N} 2 \end{aligned}$ |


| S300 | 7877565 |  | $\begin{aligned} & \mathrm{OC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{C} 2=\mathrm{CSC}(\mathrm{NCCC} 3=\mathrm{CC}(\mathrm{OC})=\mathrm{C} \\ & (\mathrm{OC}) \mathrm{C}=\mathrm{C} 3)=\mathrm{N} 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S301 | 7927320 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2}=\mathrm{CC}(\mathrm{Br})=\mathrm{CC}=\mathrm{C} 2 \mathrm{OCC3} \\ & =\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S302 | 7928297 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}=\mathrm{C} 2) \mathrm{C}= \\ & \mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S303 | 7949979 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 1)=\mathrm{C} 1 \mathrm{Cl}) \mathrm{NC} 2=\mathrm{CC}(\mathrm{~N}=\mathrm{C}(\mathrm{CCNC}(\mathrm{C} \\ & \mathrm{C})=\mathrm{O}) \mathrm{N} 3 \mathrm{C})=\mathrm{C} 3 \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S304 | 7960449 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{CS} 1) \mathrm{NC} 2=\mathrm{CC}(\mathrm{~N}=\mathrm{C}(\mathrm{CCNC}(\mathrm{C} 3 \mathrm{CCC} \\ & \mathrm{CC} 3)=\mathrm{O}) \mathrm{N} 4 \mathrm{C})=\mathrm{C} 4 \mathrm{C}=\mathrm{C} 2 \end{aligned}$ |
| S305 | 7974219 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=C(OCC)C=CC3=CC=} \\ & \mathrm{CC}=\mathrm{C} 23) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S306 | 7983219 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC(C=C(Cl)C=C2)=C2OCC} \\ & 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S307 | 7991851 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=C(C=CC=C3)C}=\mathrm{CC}= \\ & \mathrm{C} 2 \mathrm{OCC} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S308 | 9019928 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2}=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2 \mathrm{OC}) \mathrm{C}=\mathrm{C} 1 \\ & )(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S309 | 9029058 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=CC=C(C(OC)=C2)OC)} \\ & \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |


| S310 | 9037225 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=CC}(\mathrm{Cl})=\mathrm{CC}=\mathrm{C} 2 \mathrm{OC}) \mathrm{C}= \\ & \mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| S311 | 9040374 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=C(OC)C(OC)=CC=C2)} \\ & \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S312 | 9102814 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{NCCCC} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{OC})=\mathrm{C} 1) \mathrm{C}(\mathrm{CC} 2) \mathrm{CCN} 2 \mathrm{C} \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \mathrm{C} \end{aligned}$ |
| S313 | 9105783 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{NC} 1=\mathrm{CC} 2=\mathrm{C}(\mathrm{C}=\mathrm{C} 1) \mathrm{N}(\mathrm{C}) \mathrm{C}(\mathrm{CCN3CCN}(\mathrm{C}( \\ & \mathrm{C}=\mathrm{C} 4)=\mathrm{CC}=\mathrm{C} 4 \mathrm{~F}) \mathrm{CC} 3)=\mathrm{N} 2 \end{aligned}$ |
| S314 | 9110752 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{CC}=\mathrm{CC}(\mathrm{C})=\mathrm{C} 1) \mathrm{NC} 2=\mathrm{CC} 3=\mathrm{C}(\mathrm{C}=\mathrm{C} 2) \mathrm{N}( \\ & \mathrm{C}) \mathrm{C}(\mathrm{CCN} 4 \mathrm{CCOCC} 4)=\mathrm{N} 3 \end{aligned}$ |
| S315 | 9144907 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C} 1=\mathrm{CC}=\mathrm{C}(\mathrm{CCNCC2=C(OC)C(Cl)=CC(Cl)=C} \\ & \text { 2) } \mathrm{C}=\mathrm{C} 1)(\mathrm{N})=\mathrm{Cl} . \mathrm{Cl} \end{aligned}$ |
| S316 | 9153200 |  | $\begin{aligned} & \mathrm{O}=\mathrm{S}(\mathrm{C}(\mathrm{C}=\mathrm{C} 1)=\mathrm{CC}=\mathrm{C} 1 \mathrm{CCNCC2}=\mathrm{CC}(\mathrm{Cl})=\mathrm{C}(\mathrm{OCC} \\ & \mathrm{C}=\mathrm{C} 2)(\mathrm{N})=\mathrm{O} . \mathrm{Cl} \end{aligned}$ |
| S317 | 9220392 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{NCC} 3=\mathrm{CC}( \\ & \mathrm{OCC})=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |
| S318 | 9286559 |  | $\begin{aligned} & \mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{CCN}(\mathrm{CC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2) \mathrm{CC} 1) \mathrm{NC}(\mathrm{C})(\mathrm{C}) \mathrm{C} \\ & \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \end{aligned}$ |

## General procedures for chemical characterization and synthesis

All final products were analysed by reverse-phase HPLC, (ZORBAX Eclipse XDB C8 5 $\mu \mathrm{m}$ column, $4.6 \times 150 \mathrm{~mm}$; Agilent Technologies) using an Agilent Technologies 1260 Infinity equipped with a diode-array detector. Mobile phases were gradients of $80 \%$ acetonitrile $/ 20 \% \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ in 45 mM ammonium formate at pH 3.5 and $0.8 \mathrm{~mL} / \mathrm{min}$. Final compound purity was determined by monitoring at $330 \pm 50 \mathrm{nM}$ and was $>95 \%$. Microanalytical analyses were carried out in the Microchemical Laboratory, University of Otago, Dunedin, NZ. Melting points were determined on an Electrothermal 2300 Melting Point Apparatus. NMR spectra were obtained on a Bruker Avance 400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ spectra. Spectra were obtained in $\mathrm{CDCl}_{3}$ unless noted otherwise. Chemical shifts and coupling constants were recorded in units of ppm and Hz , respectively. Low resolution mass spectra were gathered by direct injection of methanolic solutions into an Agilent 6120 mass spectrometer using an atmospheric pressure chemical ionization $(\mathrm{APCl})$ mode with a fragmentor voltage of 50 V and a drying gas temperature of $250^{\circ} \mathrm{C}$. High resolution mass spectra (HRMS) were measured on an Agilent Technologies 6530 Accurate-Mass Quadrupole Time of Flight (Q-TOF) LC / MS interfaced with an Agilent Jet Stream Electrospray lonization (ESI) source allowing positive or negative ions detection.

Organic solutions were dried over $\mathrm{MgSO}_{4}$ or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were evaporated under reduced pressure on a rotary evaporator. Thin-layer chromatography was carried out on aluminium-backed silica gel plates (Merck $60 \mathrm{~F}_{254}$ ) with visualization of components by UV light ( 254 nm ) or exposure to $\mathrm{I}_{2}$. Column chromatography was carried out on silica gel (Merck 230-400 mesh). Abbreviations: DCM, dichloromethane; DIPEA, diisopropylethylamine; DMAP, 4-dimethylaminopyridine; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; EDCI, 1-ethyl-3-(dimethylaminopropyl)carbodiimide; $\mathrm{Et}_{2} \mathrm{O}$, diethyl ether; EtOAc, ethyl acetate, HATU, 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate; HBTU, (2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate; MeOH , methanol; pet. ether, petroleum ether boiling fraction $40-60^{\circ} \mathrm{C}$; THF, tetrahydrofuran; TFA, trifluoroacetic acid.

## General Methods

## Method A: Suzuki-Miyaura coupling

PdCl2.dppf.DCM (0.05 eq.) was added to a stirred suspension of bromide ( $1.0 \mathrm{eq}, 1$ mmol ), boronic acid (1.1 eq.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.2) in dioxane/water ( $1: 1,15 \mathrm{~mL} / \mathrm{mmol}$ ) and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $20^{\circ} \mathrm{C}$, diluted with water ( $50 \mathrm{~mL} / \mathrm{mmol}$ ) and extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The combined organic fraction was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried and the solvent evaporated. The crude solid was purified by column chromatography to give product.

## Method B: Nitro reduction

A mixture of nitroaryl compound ( 1.0 eq., 1 mmol ) and $\mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ was stirred in EtOAc/EtOH (1:1, 80 mL$)$ under $\mathrm{H}_{2}(60 \mathrm{psi})$ for 2 h . The mixture was filtered through diatomaceous earth, washed with EtOAc ( 30 mL ) and the solvent evaporated. The crude solid was purified by column chromatography to give aminoaryl compound.

## Method C: Urea formation with triphosgene

$\mathrm{iPr}_{2} \mathrm{NEt}$ (1.1 eq.) was added dropwise to a stirred suspension of aniline ( $1.0 \mathrm{eq} ., 0.5 \mathrm{mmol}$ ) and triphosgene ( 0.4 eq.) in dry $\mathrm{THF}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Amine ( 1.1 eq .) and $\mathrm{iPr}_{2} \mathrm{NEt}$ ( 2.2 eq .) were added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$, washed sequentially with water ( $3 \times 30 \mathrm{~mL}$ ), brine ( 30 mL ) and then dried and the solvent evaporated. The crude solid was purified by column chromatography to give urea.

## Method D: Amide coupling with HBTU

iPr $\mathrm{P}_{2} \mathrm{NEt}$ ( 1.1 eq.) was added dropwise to a stirred solution of acid ( 1.0 eq .1 mmol ) and HBTU (1.1 eq.) in dry DMF ( 5 mL ) at $20^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . Amine (1.2 eq.) and $\mathrm{iPr}_{2} \mathrm{NEt}$ ( 2.2 eq.) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with EtOAc ( 100 mL ), washed sequentially with water ( $3 \times 30$ $\mathrm{mL}), 1 \mathrm{M} \mathrm{HCl}$ solution $(2 \times 30 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}$ solution $(30 \mathrm{~mL})$, water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, and then dried and the solvent evaporated. The crude solid was purified by column chromatography to give amide.

## Method E: Alkylation with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF

A mixture of alkyl or aryl halide ( 1.0 eq., 10 mmol ), amine or phenol ( 1.3 eq .) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 eq.) in dry DMF ( 50 mL ) was stirred at $70^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue was partitioned between EtOAc ( 150 mL ) and water ( 150 mL ). The organic fraction was washed sequentially with water ( $2 \times 50 \mathrm{~mL}$ ), brine ( 50 mL ), then dried and the solvent evaporated. The residue was purified by column chromatography to give amine product.

## Method F: Acid hydrolysis of carbamates

A solution of HCl in dioxane ( $4 \mathrm{M}, 5 \mathrm{eq}$.) was added to a stirred solution of carbamate ( 1 eq., 5 mmol ) in $\mathrm{MeOH}(50 \mathrm{~mL})$ and the solution was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The solvent was evaporated to a small volume and chilled at $5{ }^{\circ} \mathrm{C}$ for 24 h . The precipitate was filtered and washed with ice-cold DCM ( 2 mL ) and dried to give amine hydrochloride.

## Method G: Tin (II) chloride reduction

$\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (5 eq.) was added to a solution of nitroaryl compound ( $1.0 \mathrm{eq} ., 3 \mathrm{mmol}$ ) in EtOAc ( 30 mL ) and the mixture was heated at $70^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was quenched with sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with water ( 100 mL ) and brine ( 100 mL ), dried and concentrated in vacuo to give amine.

## Method H: Amide coupling with HATU

${ }_{i} \mathrm{Pr}_{2} \mathrm{NEt}$ ( 5 eq.) was added dropwise to a stirred suspension of acid ( 1.0 eq., 0.2 mmol ) and HATU (1 eq.) in dry DMF ( 5 mL ) at $20^{\circ} \mathrm{C}$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 10 min. Amine ( 1.1 eq.) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with EtOAc ( 50 mL ), washed with water $(3 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and then dried and the solvent evaporated.

## Method I: Alkylation with organic base in DCM

Alkyl halide ( 1.05 eq.) was added dropwise to a stirred suspension of amine (1.0 eq., 2 mmol ) and $\mathrm{iPr}_{2} \mathrm{NEt}$ ( 1.5 eq .) in dry $\mathrm{DCM}\left(20 \mathrm{~mL}\right.$ ) and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with DCM ( 50 mL ) and washed sequentially with ice/water $(50 \mathrm{~mL})$, cold sat. aqueous $\mathrm{KHCO}_{3}(50 \mathrm{~mL})$, dried and the solvent evaporated to give product.

## Method J: Base hydrolysis

An aqueous solution of NaOH ( $1 \mathrm{M}, 10 \mathrm{eq}$.) was added to a solution of ester ( 1.0 eq., 0.5 mmol ) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 24 h . The pH of the reaction mixture was adjusted to $\sim 6$ with HCl solution ( 1 M ) and MeOH was removed under reduced pressure. The aqueous fraction was diluted with water ( 5 mL ) and extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The organic fractions were combined, dried and the solvent evaporated to give acid.

## Method K: BOC formation

A solution of amine ( 1.0 eq., 2 mmol ), di-tert-butyl dicarbonate (1.2 eq.) and DMAP (1.0 eq.) in dioxane ( 10 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 20 h . The mixture was diluted with EtOAc $(50 \mathrm{~mL})$, washed with water ( 50 mL ) and brine $(50 \mathrm{~mL})$, dried and the solvent evaporated to give carbamate.

## Method L: Alkylation with NaH

$\mathrm{NaH}(60 \%, 1.5$ eq.) was added to a solution of alcohol or amine ( $1.0 \mathrm{eq}$..1 mmol ) in dry DMF ( 10 mL ) at $20^{\circ} \mathrm{C}$ and the mixture stirred for 5 min . Halide ( 1.0 eq .) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The mixture was diluted with water ( 50 mL ) and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic fraction was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried and the solvent evaporated.

## Method M: Alkene reduction

Alkene ( 1 eq., 1 mmol ) and $10 \% \mathrm{Pd} / \mathrm{C}$ ( $10 \% \mathrm{w} / \mathrm{w}$ for alkene) were suspended in MeOH $(10 \mathrm{~mL})$. The reaction vessel was evacuated and filled with $\mathrm{H}_{2}$ gas. The reaction mixture was stirred under $\mathrm{H}_{2}(40 \mathrm{psi})$ at $20^{\circ} \mathrm{C}$ for 2 d . The catalyst was removed by filtration over a pad of diatomaceous earth, washed with MeOH and concentrated under reduced pressure.

## Method N: Oxindole condensation

A solution of oxindole ( 1 eq., 3.0 mmol ), aldehyde ( 2 eq .) and piperidine ( 0.1 eq. ) in EtOH $(10 \mathrm{~mL})$ was purged with $\mathrm{N}_{2}$, sealed and heated at $80^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and concentrated under reduced pressure.

## Method O: CDI condensation

CDI (3 eq.) was added to a solution of diamine ( 1.0 eq., 3 mmol ) in $\mathrm{MeCN}(20 \mathrm{~mL}$ ) and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The mixture was diluted with water ( 50 mL ), and extracted with EtOAc ( $2 \times 50 \mathrm{~mL}$ ). The organic layer was washed with water (50 mL ), then brine ( 50 mL ), dried and concentrated under reduced pressure.

## Method P: Reductive amination

TFA ( 2.2 eq.) was added to a solution of amine ( 1.0 eq., 1 mmol ) and aldehyde ( 1.2 eq .) in EtOAc $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 minutes and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.5$ eq.) was added. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for 20 h . The resulting mixture was quenched with $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL}$ ) and diluted with water ( 50 mL ). The product was extracted with EtOAc ( $2 \times 50 \mathrm{~mL}$ ) and the organic fraction was washed with brine ( 50 mL ), dried and concentrated under reduced pressure.

## Chemical synthesis of compounds S1-S118 (Table S1).

SN34328 N-[5-(3-Fluorophenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S1).


5-Bromo-1-methyl-3-nitropyridin-2(1H)-one (S1a). Prepared using Method E from methyl iodide and 5-bromo-3-nitropyridin-2-ol at $20^{\circ} \mathrm{C}$. The crude residue was purified by silica gel column chromatography, eluting with $50 \%$ EtOAc/pet. ether to give S1a ( 0.93 g , $87 \%$ ) as a yellow powder: mp $120-122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.37(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.81$ (d, J = 2.7 Hz, 1H, H-6), 3.68 (s, 3H, Me); MS m/z 231.4 ( $\mathrm{MH}^{+}, 100 \%$ ).

5-(3-Fluorophenyl)-1-methyl-3-nitro-2(1H)-pyridinone (S1b). Prepared using Method A from bromide S1a and 3-fluorophenylboronic acid. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give nitropyridinone $\mathbf{S 1 b}$ ( $260 \mathrm{mg}, 80 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $173-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.58$ (d, J = 2.7 Hz, 1H, H-6), 7.92 (d, J = 2.7 Hz, 1H, H-4), 7.45 (dt, J = 8.0, 6.0 Hz, 1H, H-5'), 7.22 (ddd, $\left.J=7.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 7.15$ (ddd, $J=9.6,2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 7.10 (ddd, $\left.J=8.4,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 3.78$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ); MS m/z $249.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{3}$ : C, 58.07; H, 3.65; N, 11.29. Found: C, 58.20; H, 3.47; N, 11.34\%.

3-Amino-5-(3-fluorophenyl)-1-methyl-2(1H)-pyridinone (S1c). Prepared using Method B from nitropyridinone $\mathbf{S 1 b}$. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S1c ( $127 \mathrm{mg}, 62 \%$ ) as a white powder: mp (EtOAc/pet. ether) $169-172{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.35$ (dt, $J=8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime}$ ), 7.17 (ddd, $\left.J=7.7,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 7.10$ (dt, $J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 6.99 (ddt, $J=8.4,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $6.94(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4$ ), 4.34 (br s, 2H, NH2), 3.65 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 219.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FN} \mathrm{F}_{2} \mathrm{O}$ : C, 66.05; H, 5.08; N, 12.84. Found: C, 66.22; H, 5.06; N, 13.01\%.


Piperidine• 2 HCl S1d was prepared as described previously (Burgey et al in WO 2004/092166). ${ }^{1}$

1-(4-Piperidinyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one Hydrochloride (S1d). $\mathrm{NaBH}(\mathrm{OAc})_{3}(5.82 \mathrm{~g}, 27.45 \mathrm{mmol})$ was added in portions to a stirred solution of 2,3diaminopyridone $(2.00 \mathrm{~g}, 18.3 \mathrm{mmol})$ and tert-butyl 4-oxopiperidine-1-carboxylate ( 3.85 $\mathrm{g}, 19.24 \mathrm{mmol}$ ) in DCM ( 50 mL ) at $20^{\circ} \mathrm{C}$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h and then quenched with aqueous NaOH solution ( $1 \mathrm{M}, 20 \mathrm{~mL}$ ). The mixture was extracted with DCM ( 100 mL ) and the combined organic fraction was washed sequentially with
aqueous NaOH solution ( $1 \mathrm{M}, 20 \mathrm{~mL}$ ), water ( $2 \times 20 \mathrm{~mL}$ ), brine $(20 \mathrm{~mL})$ and dried and the solvent evaporated. The residue was purified by column chromatography, eluting with a gradient (0-5\%) of $\mathrm{MeOH} / \mathrm{DCM}$, to give tert-butyl 4-((2-aminopyridin-3-yl)amino)piperidine-1-carboxylate (S1e) $(2.13 \mathrm{~g}, 40 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 10.04$ (br s, 1H, NH), 8.06 (dd, $\left.J=5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.33$ (dd, J = 7.9, 1.2 Hz, 1H, H-7'), 7.00 (dd, J = 7.9, 5.3 Hz, 1H, H-6'), 4.52 (tt, J = 12.4, 4.0 Hz, 1H, H-4), 4.32 (br s, 2H, H2, H-6), 2.87 (br s, 2H, H-2, H-6), 2.20 (dq, J = 12.5, $4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.87 (br d, J $=10.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.51$ [s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$; $\mathrm{MS} \mathrm{m} / \mathrm{z} 493.2\left(\mathrm{MH}^{+}, 100 \%\right)$. CDI ( 1.09 $\mathrm{g}, 6.7 \mathrm{mmol}$ ) was added to a stirred solution of carboxylate ( $1.78 \mathrm{~g}, 6.1 \mathrm{mmol}$ ) in MeCN $(150 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ and the mixture was stirred for 24 h . The solvent was evaporated and the residue was partitioned between $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and water ( 100 mL ). The organic fraction was washed with sequentially water ( $2 \times 50 \mathrm{~mL}$ ), brine ( 50 mL ) and dried. The solvent was evaporated and the residue purified by column chromatography, eluting with a gradient ( $0-3 \%$ ) of MeOH/DCM, to give tert-butyl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (S1f) (1.91 g, 98\%) as a white powder which was used directly. A solution of HCl in dioxane ( $4 \mathrm{M}, 8 \mathrm{~mL}$ ) was added to a stirred solution of carboxylate ( $1.91 \mathrm{~g}, 6.08 \mathrm{mmol}$ ) and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h before being chilled at $0{ }^{\circ} \mathrm{C}$ for 16 h . The resulting precipitate was filtered and washed with DCM ( 5 mL ) and dried to give piperidine S1d (1.41 g, 81\%) as the dihydrochloride salt: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 11.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.11-9.13(\mathrm{~m}, 1 \mathrm{H}), 8.90-8.92(\mathrm{~m}, 1 \mathrm{H}), 7.93$ (dd, J = 5.3, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (dd, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.61(\mathrm{~m}$, 1 H ), 3.40 (br d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.03-3.12 (m, 2H), 2.54-2.64 (m, 2H), 1.87 (br d, $J=$ $12.4 \mathrm{~Hz}, 2 \mathrm{H})$; MS $\mathrm{m} / \mathrm{z} 219.5\left(\mathrm{MH}^{+}, 100 \%\right)$. The mother liquor was concentrated and chilled to give a second crop of dihydrochloride ( $0.23 \mathrm{~g}, 13 \%$ ), spectroscopically identical to the first sample.

N-[5-(3-Fluorophenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S1). Prepared using Method C from amine S1c and piperidine S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea S1 ( $62 \mathrm{mg}, 33 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{DCM}) 279-282{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta$ 9.79 (br s, 1H, CONH), 8.53 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 8.07 (br s, 1H, CONH), 8.04 (dd, J $\left.=5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-55^{\prime}\right), 7.35\left(\mathrm{dt}, \mathrm{J}=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime \prime}\right), 7.32$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-7'), 7.28 (ddd, J = 7.8, 1.6, 1.0 Hz, 1H, H-4'"), 7.17-7.22 (m, 2H, H-4", H-2"'), 7.02 (ddt, $\left.J=8.4,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}\right), 6.98\left(\mathrm{dd}, J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.60(\mathrm{tt}, J=12.5,4.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.38$ (br d, $J=13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.10$ (br t, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.30 (dq, $J=12.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.99$ (br d, J = 12.5 Hz , $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 463.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FN}_{6} \mathrm{O}_{3} \cdot 3 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}$, 61.10; H, 5.39; N, 17.27. Found: C, 61.21; H, 5.27; N, 17.07\%.

SN34395 N-(1-Methyl-2-oxo-5-phenyl-1,2-dihydro-3-pyridinyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S2).

s2a



S2

1-Methyl-3-nitro-5-phenyl-2(1H)-pyridinone (S2a). Prepared using Method A from S1a and phenylboronic acid. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give nitropyridinone S2a ( $346 \mathrm{mg}, 81 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $216-218{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.60$ (d, $\left.J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.90$ (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.38-7.50$ (m, 5H, H-2', H-3', H-4', H-5', H-6'), 3.77 (s, 3H, NCH3); MS $\mathrm{m} / \mathrm{z} 231.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 62.60 ; \mathrm{H}, 4.38 ; \mathrm{N}, 12.17$. Found: C, 62.51; H, 4.38; N, 12.22\%.

3-Amino-1-methyl-5-phenyl-2(1H)-pyridinone (S2b). Prepared using Method B from S2a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S2b ( $252 \mathrm{mg}, 90 \%$ ) as a white powder: mp (EtOAc/pet. ether) $161-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) $)_{2} \mathrm{SO} \mathrm{f} \delta 7.45$ (br dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $2^{\prime}, \mathrm{H}-6^{\prime}$ ), 7.39 (br dd, J = 8.1, 7.4 Hz, 1H, H-3', H-5'), 7.31 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.27 (tt, J = 7.3, 1.2 Hz, 1H, H-4'), 6.80 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.22 (br s, 2H, NH2), 3.52 (s, $3 \mathrm{H}, \mathrm{NCH} 3$ ); MS m/z 201.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.98 ; \mathrm{H}, 6.04 ; \mathrm{N}$, 13.99. Found: C, 72.23; H, 6.11; N, 14.08\%.

N-(1-Methyl-2-oxo-5-phenyl-1,2-dihydro-3-pyridinyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S2). Prepared using Method C from S2b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 2}(196 \mathrm{mg}, 79 \%)$ as a white powder: mp (MeOH/DCM) 247-249 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO 89.73 (br s, 1H, CONH), 8.55 (d, J = 2.4 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ ), 8.07 (br s, 1H, CONH), 8.04 (dd, J=5.3, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.50 (br d, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}$ ), 7.41 (br dd, J = 7.8, 7.0 Hz, 2H, H-3"', H-5"'), 7.30-7.35 (m, 2H, H-7', H-4'"), 7.17 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 6.98 (dd, J = 7.9, $\left.5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.61$ (tt, J $=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.38$ (br d, J=13.7 Hz, 2H, H-2, H-6), 3.70 (s, 3H, NCH3), 3.09 (br t, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.30 (dq, $J=12.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.98 (br d, $J=$ $12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z 445.7 (MH ${ }^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 1 / 2 \mathrm{CH}_{3} \mathrm{OH}$ : C, 63.90; H, 5.69 ; N, 18.25. Found: C, 64.18; H, 5.64; N, 18.26\%.

SN34397 N-[1-Methyl-5-(3-methylphenyl)-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S3).



S3

1-Methyl-5-(3-methylphenyl)-3-nitro-2(1H)-pyridinone (S3a). Prepared using Method A from S1a and 3-methylphenylboronic acid. The crude solid was purified by column chromatography, eluting with a gradient ( $60-80 \%$ ) of EtOAc/pet. ether, to give nitropyridinone S3a ( $290 \mathrm{mg}, 80 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) 171-173 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.59(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.89(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.35$ (br dd, $J$ $\left.=7.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.20-7.25$ (m,3H, H-2', H-4', H-6'), 3.77 (s, 3H, NCH3), 2.42 (s, $3 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{3}$ ); MS m/z $245.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 63.93; H, 4.95; N, 11.47. Found: C, 64.06; H, 4.85; N, 11.50\%.

3-Amino-5-(3-methylphenyl)-1-methyl-2(1H)-pyridinone (S3b). Prepared using Method B from S3a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S3b ( $212 \mathrm{mg}, 88 \%$ ) as a white powder: mp (EtOAc/pet. ether) $111-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 7.24-7.31$ (m, 4H, H-6, H-2', H-4', H-5'), 7.08 (br d, J = 6.3 Hz, 1H, H-6'), 6.78 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.19 (br s, 2H, $\mathrm{NH}_{2}$ ), 3.51 (s, 3H, $\mathrm{NCH}_{3}$ ), 2.34 (s, 3H, 3'-CH3); MS m/z 215.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ : C, 72.87; H, 6.59; N, 13.07. Found: C, 73.04; H, 6.57 ; N, 12.92\%.
N-[5-(3-Methylphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-
dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S3). Prepared using Method C from S3b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathrm{S} 3(128 \mathrm{mg}$, $33 \%$ ) as a white powder: mp (MeOH/EtOAc) 240-242 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.89$ (br s, 1 H , CONH), 8.54 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "$ ), 8.08 (br s, 1H, CONH), 8.05 (dd, $J=5.3,1.2 \mathrm{~Hz}$, 1H, H-5'), 7.27-7.35 (m, 4H, H-7', H-2'", H-4'", H-5'"), 7.13-7.18 (m, 2H, H-4", H-6'"), 6.98 (dd, $\left.J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.62$ (tt, $\left.J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.39$ (br d, J = 13.8 Hz , $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.70 (s, 3H, NCH3), 3.10 (br t, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.36 (s, 3H, $3^{\prime \prime \prime}-$ $\mathrm{CH}_{3}$ ), 2.30 (dq, $J=12.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.98 (br d, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS $\mathrm{m} / \mathrm{z} 459.6$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{EtOAc}: \mathrm{C}, 64.99 ; \mathrm{H}, 5.87$; N, 17.49. Found: C, 65.10; H, 5.98; N, 17.63\%.

SN34422 N-[1-Methyl-5-(2-methylphenyl)-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S4).



S4
1-Methyl-5-(2-methylphenyl)-3-nitro-2(1H)-pyridinone (S4a). Prepared using Method A from S1a and 2-methylphenylboronic acid. The crude solid was purified by column chromatography, eluting with a gradient (50-80\%) of EtOAc/pet. ether, to give nitropyridinone S4a ( $314 \mathrm{mg}, 90 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) 197-199 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.34$ (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $7.65(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.25-7.35(\mathrm{~m}$, 3H, H-4', H-5', H-6'), 7.17 (br dd, J = 7.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$ ), 3.74 (s, 3H, NCH3), 2.32 (s, $\left.3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right)$; MS m/z $245.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 63.93; H, 4.95; N, 11.47. Found: C, 63.72; H, 4.95; N, 11.44\%.

3-Amino-5-(2-methylphenyl)-1-methyl-2(1H)-pyridinone (S4b). Prepared using Method B from S4a. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S4b ( $236 \mathrm{mg}, 92 \%$ ) as a white powder: mp (EtOAc/pet. ether) $122-125{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 7.14-7.26$ (m, 4H, H-2', H-4', H-5', H-6'), 6.89 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.46 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.15 (br s, 2H, NH2), 3.48 (s, 3H, NCH3 ), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right)$; MS m/z $215.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ : C, 72.87; H, 6.59; N, 13.07. Found: C, 72.67; H, 6.76; N, 12.90\%.

N-[5-(2-Methylphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S4). Prepared using Method C from S4c and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-6 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 4}(109 \mathrm{mg}$, $25 \%$ ) as a white powder: mp (MeOH/EtOAc) 262-264 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.93$ (br s, 1 H , CONH), 8.25 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "$ ), 8.06 (br s, 1H, CONH), 8.04 (dd, $J=5.3,1.2 \mathrm{~Hz}$, 1H, H-5'), 7.31 (dd, J = 7.9, 1.2 Hz, 1H, H-7'), 7.18-7.27 (m, 4H, H-3'", H-4'", H-5'", H-6"'), 6.98 (dd, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 6.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 4.60(\mathrm{tt}, J=12.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.37 (br d, J = $13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.68 (s, 3H, NCH3), 3.08 (br dd, J = $12.5,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime \prime}-\mathrm{CH}_{3}\right), 2.28$ (dq, J = 12.7, $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-$ 5), 1.97 (br d, J = $12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 459.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 64.00$; H, 5.83; N, 18.01. Found: C, $65.08 ; \mathrm{H}, 5.83$; N, 17.72\%.

SN34427 N-[5-(4-Methoxyphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S5).


5-(4-Methoxyphenyl)-1-methyl-3-nitro-2(1H)-pyridinone (S5a). Prepared using Method A from S1a and 4-methoxyphenylboronic acid. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give nitropyridinone S5a (293 mg, 86\%) as orange needles: mp (EtOAc/pet. ether) 191-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.54$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.83 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.35 (ddd, J = 8.9, 3.1, $2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathbf{2}^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}$ ), 6.99 (ddd, J = 8.9, 3.1, 2.2 Hz, 2H, H-3', H-5'), 3.86 (s, $\left.3 \mathrm{H}, 4^{\prime}-\mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; MS m/z $261.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 60.00; H, 4.65; N, 10.76. Found: C, 60.04; H, 4.63; N, 10.86\%.

3-Amino-5-(4-methoxyphenyl)-1-methyl-2(1H)-pyridinone (S5b). Prepared using Method B from S5a. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S5b ( $215 \mathrm{mg}, 86 \%$ ) as a white powder: mp (EtOAc/pet. ether) $202-204{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.39$ (ddd, $J=8.8,3.1$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 7.21 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.96 (ddd, J = 8.8, 3.1, 2.2 Hz, 2H, H-3', H-5'), 6.76 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.18 (br s, 2H, NH2), 3.76 (s, 3H, OCH3), 3.50 (s, 3H, NCH3); MS m/z 231.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 67.81; H, 6.13; N, 12.17. Found: C, 67.73; H, 6.24; N, 12.22\%.

## N-[5-(4-Methoxyphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S5). Prepared using Method C from S5b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 5}$ ( 191 mg , $69 \%$ ) as a white powder: mp (MeOH/DCM) 261-264 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 9.81$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$ ), 8.52 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 8.09 (br s, 1H, CONH), 8.06 (dd, J = 5.3, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.43 (ddd, $J=8.9,3.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}^{\prime \prime \prime}$ ), 7.33 (dd, J = 7.9, 1.3Hz, 1H, H-7'), 7.12 (d, J = 2.3 Hz, 1H, H-4"), 7.00 (dd, J = 7.9, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 6.95 (ddd, J = 8.9, 3.0, 2.1 Hz, 2H, H-3'", H-5'"), 4.60 (tt, $J=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.38 (br d, $J=13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 3.86$, (s, 3H, 4"'-OCH 3 ), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.10$ (br dd, $J=$ $12.5,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.31 (dq, $J=12.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.99 (br dd, $J=$ 12.1, $2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS $\mathrm{m} / \mathrm{z} 475.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 62.44 ; \mathrm{H}, 5.75 ; \mathrm{N}, 17.13$. Found: C, $62.51 ; \mathrm{H}, 5.60 ; \mathrm{N}, 17.31 \%$.

SN34428 N-[5-(4-Methylphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S6).


5-(4-Methylphenyl)-1-methyl-3-nitro-2(1H)-pyridinone (S6a). Prepared using Method A from S1a and 4-methylphenylboronic acid. The crude solid was purified by column chromatography, eluting with 50\% EtOAc/pet. ether, to give nitropyridinone S6a ( 242 mg , $74 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) 250-252 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.58$ (d, J = 2.7 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.86$ (d, J=2.7 Hz, 1H, H-4), 7.32 (br d, J=8.3 Hz, 2H, H-2', H-6'), 7.27 (br $\left.\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 3.76$ (s, 3H, NCH3 ), 2.40 (s, 3H, 4'-CH3); MS m/z 215.4 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 63.93; H, 4.95; N, 11.47. Found: C, 64.06; H, 4.92; N, 11.41\%.

3-Amino-5-(4-methylphenyl)-1-methyl-2(1H)-pyridinone (S6b). Prepared using Method B from S6a. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S6b (166 mg, 90\%) as a purple oil: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 7.36$ (br d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}^{\prime}, \mathrm{H}-6^{\prime}\right), 7.27$ (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.20 (br d, J = $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 6.78$ (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.19 (br s, 2H, NH2), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, 4^{\prime}-\mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 215.5\left(\mathrm{MH}^{+}, 100 \%\right)$.

## N-[5-(4-Methylphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S6). Prepared using Method C from S6b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 6}(137 \mathrm{mg}$, $42 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{DCM}) 267-270{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.41$ (br s, 1H, CONH), 8.53 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 8.07 (br s, 1H, CONH), 8.04 (dd, J = 5.3, 1.2 Hz, 1H, H-5'), 7.39 (br d, J = $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}\right), 7.32$ (dd, $\left.J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 7.21$ (br d, J $\left.=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 7.15\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 6.98(\mathrm{dd}, J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6$ '), 4.61 (tt, $J=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.38 (br d, J = $12.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.70 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 3.10 (br dd, $J=12.5,11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.38 (s, $3 \mathrm{H}, 4{ }^{\prime \prime}-\mathrm{CH}_{3}$ ), 2.30 (dq, $J=12.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.98 (br d, J = $12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 459.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}$ : C, 65.49; H, 5.72; N, 18.33. Found: C, 65.54; H, 5.75; N, 18.27\%.SN34434 N-[5-(4-Hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S7).


5-(4-Hydroxyphenyl)-1-methyl-3-nitro-2(1H)-pyridinone (S7a). Prepared using Method A from S1a and 4-hydroxyphenylboronic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give nitropyridinone S7a ( $266 \mathrm{mg}, 82 \%$ ) as an orange powder: mp (EtOAc/pet. ether) $256-257{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 9.62$ (s, $1 \mathrm{H}, \mathrm{OH}$ ), $8.60(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 8.54(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.46$ (ddd, J = 8.6, $\left.3.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.84$ (ddd, J = 8.6, 3.0, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 3.63 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z $247.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 58.54; H, 4.09; N, 11.38. Found: C, 58.79 ; H, 4.04; N, 11.26\%.

3-Amino-5-(4-hydroxyphenyl)-1-methyl-2(1H)-pyridinone (S7b). Prepared using Method B from S7a. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S7b ( $217 \mathrm{mg}, 98 \%$ ) as a white powder: mp $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 231-232{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 9.41$ (s, 1H, OH), 7.25 (ddd, J = 8.6, 3.0, 2.0 Hz, 2H, H-2', H-6'), 7.15 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.78 (ddd, J = 8.6, 3.0, $3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 6.72 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.15 (br s, 2H, $\left.\mathrm{NH}_{2}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; MS m/z $217.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ : C, 61.26; H, 5.14; N, 11.29. Found: C, 61.16; H, 5.14; N, 11.88\%.

## N-[5-(4-Hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S7). Prepared using Method C using S7b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-6 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 7}$ (206 mg, $83 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{DCM}) 234-238{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$ ), 9.50 (br s, 1H, OH), 8.31 (d, J=2.4 Hz, 1H, H-6"), 8.07 (br s, 1H, CONH), 7.90 (dd, $\left.J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.57-7.61$ (m, 2H, H-7', H-4"), 7.34 (ddd, J = 8.7, 2.9, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}$ ", H-6"'), 6.98 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 6.83 (ddd, J = 8.7, 2.9, 2.1 Hz, 2H, H-3'", H-5'"), 4.43 (tt, J = 12.2, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.17 (br d, J = $13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-6), 3.58$ (s, 3H, NCH3), 3.04 (br t, $J=12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.25 (dq, $J=12.5,4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.80 (br d, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z $461.5\left(\mathrm{MH}^{+}, 100 \%\right)$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 461.1932$. Found 461.1943 ( -2.5 ppm ).SN34439 N-[5-(3-Methoxyphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S8).


1-Methyl-5-(3-methoxyphenyl)-3-nitro-2(1H)-pyridinone (S8a). Prepared using Method A from S1a and 3-methoxyphenylboronic acid. The crude solid was purified by
column chromatography, eluting with 50\% EtOAc/pet. ether, to give nitropyridinone S8a ( $386 \mathrm{mg}, 86 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $182-184{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.59$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.89(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.38$ (dd, $J=8.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime}$ ), 7.00 (ddd, J = 7.6, 1.7, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), $6.92-6.96$ (m, 2H, H-2', H-4'), 3.87 (s, 3H, $\mathrm{OCH}_{3}$ ), 3.77 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z $261.5\left(\mathrm{MH}^{+}, 100 \%\right.$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 60.00; H, 4.65; N, 10.76. Found: C, 60.26; H, 4.64; N, 10.79\%.

3-Amino-1-methyl-5-(3-methoxyphenyl)-2(1H)-pyridinone (S8b). Prepared using Method B from S8a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S8b (292 mg, 91\%) as a gum: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 7.34(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.30(\mathrm{dd}, J=8.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.04 (ddd, $\left.J=7.7,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.01\left(\mathrm{dd}, J=2.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.84$ (ddd, J = 8.2, 2.5, $\left.1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 6.80(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.19$ (br s, 2H, NH2), 3.79 (s, 3H, OCH3), 3.51 (s, 3H, NCH3); MS m/z 231.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 67.81; H, 6.13; N, 12.17. Found: C, 67.92; H, 6.37; N, 12.03\%.

N-[5-(3-Methoxyphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S8). Prepared using Method C from S8b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 8}(145 \mathrm{mg}$, $44 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{DCM}) 283-286{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [ $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 11.55$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$ ), 8.37 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "$ ), 8.08 (br s, 1H, CONH), 7.90 (dd, $J=5.2$, $\left.1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.78$ (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 7.59 (dd, J = 7.9, 1.2 Hz, 1H, H-7'), 7.36 ( $\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime \prime}$ ), 7.10 (br d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}$ ), 7.08 (dd, J = 2.4, 1.7 Hz, 1H, H-2'"), 6.98 (dd, J = 7.9, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), 6.90 (ddd, J = 8.2, 2.4, 1.6 Hz, 1H, H-4'"), 4.43 ( $\mathrm{tt}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.18 (br d, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.61 (s, 3H, NCH3), 3.05 (br t, $J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.25 (dq, $J=12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-3, H-5), 1.81 (br d, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 475.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ : C, 60.97; H, 5.73; N, 17.06. Found: C, 61.06; H, 5.45; N, 16.92\%.

SN34440 N-[5-(3-Hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S9).


1-Methyl-5-(3-hydroxyphenyl)-3-nitro-2(1H)-pyridinone (S9a). Prepared using Method A from S1a and 3-hydroxyphenylboronic acid. The crude solid was purified by column chromatography, eluting with a gradient of $80-100 \%$ EtOAc/pet. ether, to give nitropyridinone S9a (244 mg, 64\%) as an orange powder: mp (EtOAc/pet. ether) 272$275{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 9.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.61-8.63$ (m, 2H, H-4, H-6), 7.25 (t, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime}\right), 7.06$ (ddd, $\left.J=7.7,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.00(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2'), 6.77 (ddd, J = 8.0, 2.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), 3.65 (s, 3H, NCH3); MS m/z 268.6 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 58.54; H, 4.09; N, 11.38. Found: C, 58.81; H, 4.79; N, 11.27\%.

3-Amino-1-methyl-5-(3-hydroxyphenyl)-2(1H)-pyridinone (S9b). Prepared using Method B from S9a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S9b ( $95 \mathrm{mg}, 97 \%$ ) as a gum: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 9.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.24$ (d, J = $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.17$ (d, J=7.9 Hz, 1H, H5'), 6.89 (ddd, J = 7.7, 1.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.84 (d, J = 2.0 Hz, 1H, H-2'), 6.74 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.67 (ddd, J = 8.0, 2.4, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 5.21 (br s, 2H, NH2), 3.50 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ); MS m/z $268.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 66.65; H, 5.59; N, 12.96. Found: C, 66.42; H, 5.68 ; N, 12.87\%.

## N-[5-(3-Hydroxyphenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S9). Prepared using Method $\mathbf{C}$ from S9b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-6 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea S 9 ( 32 mg , $20 \%$ ) as a pink powder: mp (MeOH/DCM) 189-192 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.58$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$ ), $9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 8.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH})$, 7.90 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '$ ), 7.70 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "$ ), 7.59 (dd, $J=7.9,1.1$ Hz, 1H, H-7'), 7.23 (t, J = 7.9 Hz, 1H, H-5'"), 6.95-7.00 (m, 2H, H-6', H-4'"), 6.93 (t, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}$ ), 6.70-6.74 (m, 1H, H-6'"), 4.44 (tt, J = 12.5, 4.0 Hz, 1H, H-4), 4.18 (br d, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.05$ (br dd, $J=12.5,12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 2, H-6), 2.25 (dq, J = 12.5, 4.0 Hz, 2H, H-3, H-5), 1.80 (br d, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 461.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 60.96 ; \mathrm{H}, 5.73$; N, 17.06. Found: C, 60.69; H, 5.34 ; N, 16.65\%.SN34442 N-[5-(4-Fluorophenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S10).



1-Methyl-5-(4-fluorophenyl)-3-nitro-2(1H)-pyridinone (S10a). Prepared using Method A from S1a and 4-fluorophenylboronic acid. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give nitropyridinone S10a (291 $\mathrm{mg}, 43 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $280-282{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.54$ (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.84 (d, J = 2.7 Hz, 1H, H-4), 7.37-7.42 (m, 2H, H-2', H-6'), 7.14-7.20 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 3.77 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$ ); MS m/z $249.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{3}$ : C, 58.07; H, 3.65; N, 11.29. Found: C, 58.42; H, 3.47; N, 11.34\%.

3-Amino-1-methyl-5-(4-fluorophenyl)-2(1H)-pyridinone (S10b). Prepared using Method B from S10a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S10b ( $148 \mathrm{mg}, 84 \%$ ) as a tan powder: mp (EtOAc/pet. ether) $140-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 7.47-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 2', H-6'), 7.30 (d, J = 2.4 Hz, 1H, H-6), 7.20-7.26 (m, 2H, H-3', H-5'), 6.76 (d, J = 2.4 Hz , 1H, H-4), 5.23 (br s, 2H, NH2), 3.51 (s, 3H, NCH3); MS m/z 219.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FN} 2 \mathrm{O}$ : C, 66.05; H, 5.08; N, 12.84. Found: C, 66.08; H, 4.95; N, 12.86\%.

N-[5-(4-Fluorophenyl)-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S10). Prepared using Method C using S10b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 1 0} \mathbf{( 7 7 \mathrm { mg } \text { , }}$ $26 \%$ ) as a cream powder: mp (MeOH/DCM) 268-271 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 11.56$ (br s, 1H, CONH), 8.34 (d, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 8.10$ (s, 1H, CONH), 7.90 (dd, J = 5.2, 1.2 Hz, 1H, H-5'), 7.74 (d, J = 2.4 Hz, 1H, H-4"), $7.54-7.60$ (m, 3H, H-7', H-2'", H-6'"), 7.28 (ddd, J = 8.8, 2.2, 2.0 Hz, 2H, H-3'", H-5'"), 6.98 (dd, J=7.8, 5.2 Hz, 1H, H-6'), 4.44 (tt, J $=12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.18$ (br d, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH} 3$ ), 3.05 (br dd, $J=12.5,11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.25 (dq, $J=12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.80 (br d, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z $463.6\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FN}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{EtOAc}: \mathrm{C}, 61.98 ; \mathrm{H}, 5.20$; N, 17.34. Found: C, $61.88 ; \mathrm{H}, 5.19 ; \mathrm{N}, 17.16 \%$.

SN34491 1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S11).


1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S11). Prepared using Method D from 3-cyclopentylpropanoic acid and piperidine S1d. The crude solid was purified by column chromatography, eluting with EtOAc, to give amide S11 (234 mg, 95\%) as a white foam: mp 112-115 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.54$ (s, 1H, CONH), 7.89 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.55 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.98 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.58\left(\mathrm{br} \mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6\right.$ '), $4.41(\mathrm{tt}, J=$ $\left.12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.01$ (br d, J = $\left.12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 3.15$ (br dd, J = 12.6, 11.8 Hz, 1H, H-2', H-6'), 2.62 (br dd, J=12.6, 11.8 Hz, 1H, H-2', H-6'), 2.37 (t, J = 7.9 Hz, 2H, $\mathrm{COCH}_{2}$ ), 2.20 (dq, $\left.J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.04$ (dq, J = 12.4, 4.0 Hz, 1H, H-3', $\left.\mathrm{H}-5^{\prime}\right), 1.70-1.80\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.46-1.58\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.05-1.12(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ ); MS m/z $343.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 66.64; H, 7.65; N, 16.36. Found: C, 66.24; H, 7.87; N, 16.04\%.

SN34496 1-(1-(3-Cyclohexylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S12).


1-(1-(3-Cyclohexylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (12). Prepared using Method D from S1d and 3-cyclohexylpropanoic acid. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give amide S12 (286 mg, 95\%) as a tan foam: mp 200-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta 11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 7.89$ (dd, $\left.J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.55$ (dd, J = 7.8, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.98 (dd, J = 7.8, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.57 (br d, J = $13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-$ $6^{\prime}$ ), 4.41 (tt, $\left.J=12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.02$ (br d, $\left.J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 3.15$ (br dd, $\left.J=12.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 2.62$ (br dd, $\left.J=12.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime}-6^{\prime}\right), 2.37$ (dd, J = 8.0, 7.7 Hz, 2H, COCH2), 2.19 (dq, J = 12.5, 4.0 Hz, 1H, H-3', H-5'), 2.04 (dq, J $\left.=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.62-1.80\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{CH}, 2 \times \mathrm{CH}_{2}\right.$ ), 1.38-1.43 (m,
$\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.10-1.28\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 0.85-0.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 357.2\left(\mathrm{MH}^{+}\right.$, 100\%). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 67.39; H, 7.92; N, 15.72. Found: C, 65.52; H, 8.07; N, 15.63\%.

SN34498 1-(1-(3-Phenylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S13).


1-(1-(3-Phenylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S13). Prepared using Method D from S1d and 3-phenylpropanoic acid. The crude solid was purified by column chromatography, eluting with a gradient (0-5\%) of $\mathrm{MeOH} / \mathrm{DCM}$, to give amide $\mathbf{S 1 3}$ (286 mg, $95 \%$ ) as a white powder: $\mathrm{mp} 257-260{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{3}\right)_{2} \mathrm{SO}\right] \delta 11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 7.90$ (dd, $\left.J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.50$ (dd, J = 7.9, 1.2 Hz, 1H, H-7), 7.25-7.30 (m, 4H, H-2", H-3", H-5", H-6"), 7.16-7.21 (m, 1H, H4"), 6.99 (dd, J = 7.9, 5.2 Hz, 1H, H-6), 4.59 (br d, J = $13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 4.41 (tt, J $\left.=12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.02\left(\mathrm{br} \mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.10(\mathrm{brt}, \mathrm{J}=12.4 \mathrm{~Hz}$, 1H, H-2', H-6'), $2.86\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ ), 2.60-2.75 (m, 3H, CH $, ~ H-2 ', H-6$ '), 2.12 (dq, $J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime}$ '), 2.02 (dq, $\left.J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.73$ (br d, J $\left.=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$; MS m/z 351.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 68.55; H, 6.33; N, 15.99. Found: C, 68.20; H, 6.36; N, 15.88\%.

SN34499 1-(1-Propionylpiperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S14).


1-(1-Propionylpiperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one
(S14). Prepared using Method D from S1d and propionic acid. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give pyridinone $\mathbf{S 1 4}(91 \mathrm{mg}, 24 \%)$ as a cream powder: mp $187-190^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 11.55(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.89 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.57$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.98 (dd, $J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.58$ (br d, $\left.J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right), 4.41$ (tt, J = 12.2, 4.0 Hz, 1H, H-4'), 4.02 (br d, J = 15.3 Hz, 1H, H-2', H-6'), 3.10 (br dd, J = 12.8, 11.7 Hz, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.63$ (br dd, J = 12.6, 11.5 Hz, 1H, H-2', H-6'), 2.38 (dt, J = 7.4, 2.6 Hz, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.21 (dq, J = 12.5, 4.0 Hz, 1H, H-3', H-5'), 2.05 (dq, J = 12.5, 4.2 Hz, 1H, H-3', H-5'), 1.73 (br dd, $\left.J=12.4,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.01\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ); MS m/z 275.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 61.30; H, 6.61; N, 20.42. Found: C, 61.61; H, 6.77; N, 20.19\%.

SN34807 N-(Furan-2-ylmethyl)-4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidine-1-carboxamide (S15) was obtained from Enamine.

SN34816 1-[1-(3-Cyclopentylpropanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2one (S16).


1-[1-(3-Cyclopentylpropanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S16). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and 3 -cyclopentylpropanoic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S16 ( $633 \mathrm{mg}, 89 \%$ ) as a cream powder: mp (EtOAc/pet. ether) $166-168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [ $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 9.23$ (s, 1 H , CONH), 7.05-7.12 (m, 4H, H-4, H-5, H-6, H-7), 4.90 (br d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-\mathrm{6}^{\prime}$ ), 4.55 (tt, J = 12.4, 4.2 Hz, 1H, H-4'), 4.07 (br d, J= $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 3.20 (br dd, J $=12.9,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.68 (br dd, J = 12.9, $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.43 (dd, $J=7.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}$ ), 2.32 (dq, $J=12.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 1.80 (br dd, $J=$ $\left.12.9,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.76-1.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.60-1.73$ (m, 2H, CH2), 1.58$1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.10-1.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 342.4\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 70.35; H, 7.97; N, 12.31. Found: C, 70.32; H, 7.71; N, 12.22\%.

SN34817 N-(5-(3-Chlorophenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S17).



5-(3-Chlorophenyl)-1-methyl-3-nitropyridin-2(1H)-one (S17a). Prepared using Method A from S1a and 3-chlorophenylboronic acid. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give nitropyridinone S17a ( $351 \mathrm{mg}, 72 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $189-191{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.77$ (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $8.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.80\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.65$ (ddd, $\left.J=7.8,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-44^{\prime}\right), 7.49\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.42$ (ddd, J=7.9, 2.0, $\left.1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 3.65$ (s, 3H, NCH3); MS m/z $265.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
3-Amino-5-(3-chlorophenyl)-1-methylpyridin-2(1H)-one (S17b). Prepared using Method B from S17a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aminopyridinone S17b (223 mg, 74\%) as a gum: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] 8 7.53-7.56 (m, 1H, H-4), 7.41-7.45 (m, 3H, H-2', H-4', H-5'), 7.32 (dt, $\left.J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.81(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.23\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.51(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{NCH}_{3}$ ); MS m/z 235.2 (MH ${ }^{+}, 100 \%$ ).

N-(5-(3-Chlorophenyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S17). Prepared using Method C from S17b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of MeOH/DCM, to give urea S17 ( 96 mg , $48 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{EtOAc}) 271-274^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (br s, 1H, CONH), 8.37 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}$ ), 8.10 (br s, 1H, CONH), 7.89 (dd, $J=5.2$, 1.2 Hz, 1H, H-5'), 7.87 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ ), 7.61 (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}$ ), 7.58 (dd,
$\left.J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 7.51$ (dd, $\left.J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}\right), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime \prime \prime}$ ), 7.38 (dt, J = 7.5, 1.8 Hz, 1H, H-6'"), 6.69 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 4.43 (tt, J = 12.2, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.18 (br d, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.61 (s, 3H, NCH3), 3.05 (br dd, $J=12.5,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.24 (dq, $J=12.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.80 (br d, J = $11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS $\mathrm{m} / \mathrm{z} 479.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{CIN}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{EtOAc}: \mathrm{C}, 59.94 ; \mathrm{H}, 5.03 ; \mathrm{N}, 16.78$. Found: C, $59.96 ; \mathrm{H}, 4.91$; N, 17.10\%.

SN34848 N-(1-Methyl-2-oxo-5-(3-(trifluoromethyl)phenyl)-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S18).


1-Methyl-3-nitro-5-(3-(trifluoromethyl)phenyl)pyridin-2(1H)-one (S18a). Prepared using Method A from S1a and 3-trifluoromethylphenylboronic acid. The crude solid was purified by column chromatography, eluting with $60 \%$ EtOAc/pet. ether, to give nitropyridinone S18a (473 mg, 86\%) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 8.84$ (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 8.80 (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 8.07 (br s, 1H, H-2'), 7.97-8.01 (m, 1H, H-4'), 7.67-7.73 (m, 2H, H-5', H-6'), 3.65 (s, 3H, NCH3); MS m/z 265.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

3-Amino-1-methyl-5-(3-(trifluoromethyl)phenyl)pyridin-2(1H)-one (S18b). Prepared using Method B from S18a. The crude solid was purified by column chromatography, eluting with $60 \%$ EtOAc/pet. ether, to give aminopyridinone S18b ( $249 \mathrm{mg}, 93 \%$ ) as a gum: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 7.77-7.82$ (m, 2H, H-2', H-4'), 7.60-7.67 (m, 2H, H-5', H-6'), 7.49 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $6.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.26$ (br s, 2H, NH2), 3.53 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 269.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(1-Methyl-2-oxo-5-(3-(trifluoromethyl)phenyl)-1,2-dihydropyridin-3-yl)-4-(2-oxo-

 2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S18). Prepared using Method C from S18b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea S18 (110 $\mathrm{mg}, 57 \%$ ) as a white powder: mp (MeOH/EtOAc) 273-276 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ 11.56 (br s, 1H, CONH), 8.40 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 8.11 (br s, 1H, CONH), 7.95 (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 7.90$ (dd, J = 5.2, 1.2 Hz, 1H, H-5'), 7.82-7.86 (m, 2H, H-2'", H-4'"), 7.65-7.72 (m, 2H, H-5'", H-6'"), 7.58 (dd, J = 7.9, 1.2 Hz, 1H, H-7'), 6.98 (dd, J = 7.8, 5.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 4.43 (tt, J = 12.3, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.20 (br d, J = $13.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.05$ (br dd, $J=12.8,11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $2.24(\mathrm{dq}, J=12.5,4.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.80 (br d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 513.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}$ : C, 58.59; H, 4.52; N, 16.40. Found: C, 58.76; H, 4.63; N, 16.00\%.SN34849 N-(1-Methyl-2-oxo-5-(4-(trifluoromethyl)phenyl)-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S19).


1-Methyl-3-nitro-5-(4-(trifluoromethyl)phenyl)pyridin-2(1H)-one (S19a). Prepared using Method A from S1a and 4-trifluoromethylphenylboronic acid. The crude solid was purified by column chromatography, eluting with $60 \%$ EtOAc/pet. ether, to give nitropyridinone S19a ( $450 \mathrm{mg}, 82 \%$ ) as a yellow solid; ${ }^{1} \mathrm{H}$ NMR $\delta 8.81$ (br s, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ 6), 7.91 (br d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 7.82 (br d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ ), 3.67 (s, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; MS m/z $299.2\left(\mathrm{MH}^{+}, 100 \%\right)$.

3-Amino-1-methyl-5-(4-(trifluoromethyl)phenyl)pyridin-2(1H)-one (S19b). Prepared using Method B from S19a. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S19b (277 $\mathrm{mg}, 85 \%$ ) as a gum: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] 87.74$ (br d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3{ }^{\prime}, \mathrm{H}-5^{\prime}\right), 7.70(\mathrm{br}$ $\left.\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.29 (br s, 2H, NH2), 3.53 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 269.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

N-(1-Methyl-2-oxo-5-(4-(trifluoromethyl)phenyl)-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide
(S19).
Prepared using Method C from S19b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 1 9}$ (101 $\mathrm{mg}, 52 \%$ ) as a white powder: mp (EtOAc) $279-282{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$ ), $8.44\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 8.11$ (br s, 1H, CONH), 7.93 (d, J=2.5 Hz, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.89$ (dd, J = 5.2, 1.2 Hz, 1H, H-5'), 7.81 (br d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}$ ), 7.77 (br d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}$ ), 7.58 (dd, J = 7.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ '), 6.98 (dd, J = $\left.7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.45(\mathrm{tt}, J=12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.20$ (br d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 2, H-6), 3.63 (s, 3H, NCH3), 3.05 (br dd, $J=12.4,11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.25 (dq, $J=$ $12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.80 (br d, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 513.3 ( $\mathrm{MH}^{+}$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{EtOAc}: \mathrm{C}, 58.42 ; \mathrm{H}, 4.71$; N, 15.72. Found: C, 58.50; H, 4.72; N, 15.72\%.

SN34857 4-(1H-Indol-3-yl)-N-(2-methylphenyl)piperidine-1-carboxamide (S20) was obtained from Enamine.

SN34860 3-(3-(2-Oxo-2,3-dihydro-1 H-benzo[d]imidazol-1-yl)propyl)-1,3-diazaspiro[4.4]nonane-2,4-dione (S21) was obtained from Enamine.

SN34927 1-(3-(5-Oxo-4-phenyl-4,5-dihydro-1H-tetrazol-1-yl)propyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S22) was obtained from Enamine.

SN34929 1-(4-(Benzofuran-2-carbonyl)piperazin-1-yl)-2-cyclopentylethan-1-one (S23) was obtained from Enamine.

SN34931 (R)-N-(1,1-Dioxidotetrahydrothiophen-3-yl)-2-(4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidin-1-yl)acetamide (S24) was obtained from Enamine.

SN34964 N-(Furan-2-ylmethyl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S25).


N-(Furan-2-ylmethyl)-4-(2-oxo-2,3-dihydro-1 H -imidazo[4,5-b]pyridin-1-
yl)piperidine-1-carboxamide (S25). Prepared using Method C from S1d and furan-2ylmethanamine. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of MeOH/EtOAc, to give urea $\mathbf{S 2 5}$ ( $60 \mathrm{mg}, 44 \%$ ) as a white powder: mp (EtOAc) 242-245 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.50$ (s, 1H, CONH), 7.89 (dd, $J=5.2,1.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.54$ (dd, J = 1.8, $\left.0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.44$ (dd, J = 7.8, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right)$, 7.08 (t, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}$ ), 6.98 (dd, $\left.J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.38$ (dd, J = 3.1, 1.8 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.20$ (dd, J = 3.1, $\left.0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 4.36$ (tt, J = 12.3, 4.0 Hz, 1H, H-4), 4.24 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 4.13 (br d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.82 (br dd, $J=$ $12.5,11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.10 (dq, $J=12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.68 (br d, $J=10.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z 342.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}: \mathrm{C}, 59.81 ; \mathrm{H}$, 5.61; N, 20.52. Found: C, 59.79; H, 5.61; N, 20.39\%.

SN34983 1-(1-(Thiophen-3-ylsulfonyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S26).


1-(1-(Thiophen-3-ylsulfonyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S26). Thiophene-3-sulfonyl chloride ( $100 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) was added to a stirred solution of piperidine S1d (209 $\mathrm{mg}, 0.82 \mathrm{mmol}$ ) dry pyridine ( 10 mL ) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the residue suspended in ice-cold water and stirred vigorously for 1 h . The resulting precipitate was filtered and washed with water ( 2 mL ). The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / E t \mathrm{AAc}$, to give sulfonamide $\mathbf{S 2 6}$ $(68 \mathrm{mg}, 34 \%)$ as a white powder: mp (EtOAc) $309-311^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.53$ (s, 1H, CONH), 8.30 (dd, J = 3.0, 1.3 Hz, 1H, H-2"), 7.85-7.90 (m, 2H, H-5', H-5"), 7.377.42 (m, 2H, H-7', H-4"), 6.96 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 4.22 (tt, J = 12.2, 4.0 Hz, 1H, $\mathrm{H}-4$ ), 3.82 (br d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.54 (br dd, $J=12.4,10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.30 (dq, J = 12.5, 4.0 Hz, 2H, H-3, H-5), 1.77 (br d, J = $12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z $365.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$ : C, $49.43 ; \mathrm{H}, 4.43$; $\mathrm{N}, 15.37$. Found: C , 49.43; H, 4.44; N, 15.37\%.

SN34988 N-(5-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S27).



5-Benzyl-1-methyl-3-nitropyridin-2(1H)-one (S27a). Prepared using Method A from S1a and benzylboronic acid pinacol ester The crude solid was purified by column chromatography, eluting with $60 \%$ EtOAc/pet. ether, to give nitropyridinone S27a ( 85 mg , 19\%) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 8.30(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 8.23$ (d, $\mathrm{J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.32 (br d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime}$ ), 7.26-7.31 (m, 2H, H-3', H-5'), 3.79 (s, 2H, CH2), 3.55 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 245.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

3-Amino-5-benzyl-1-methylpyridin-2(1H)-one (S27b). Prepared using Method B from S27a The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give aminopyridinone S27b (108 mg, 82\%) as a tan powder: mp (EtOAc/pet. ether) $160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD) $\left.)_{2} \mathrm{SO}\right] \delta 7.28$ (br dd, $J=7.5$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime}$ ), 7.16-7.22 (m, 3H, H-2', H-4', H-6'), 7.82 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.23 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.31 (br s, 2H, NH2), 3.56 (s, 2H, CH2), 3.41 (s, 3H, NCH3); MS m/z 215.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$.

N -(5-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S27). Prepared using Method C using S27b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 2 7 ( 1 3 9 \mathrm { mg } , 9 8 \% \text { ) as a white }}$ powder: mp (EtOAc) $244-247{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.55$ (s, 1H, CONH), 8.01 (s, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.88 (dd, $\left.J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.84$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 7.55 (dd, $\left.J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 7.31$ (br dd, $J=7.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3{ }^{\prime \prime \prime}, \mathrm{H}-5{ }^{\prime \prime \prime}$ ), 7.27 (d, J = 2.3 Hz, 1H, H-4"), 7.18-7.25 (m, 3H, H-2'", H-4'", H-6'"), 6.96 (dd, J = 7.9, 5.2 Hz, 1H, H-6'), 4.00 (tt, $J=12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.10$ (br d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.69 (s, 2H, $\mathrm{CH}_{2}$ ), 3.50 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 3.00 (br dd, J = $12.5,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.19 (dq, J = 12.5, $4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.75 (br d, J = $10.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z 495.3 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 459.2139$. Found 459.2152 ( -2.7 ppm ).

SN34989 1-(1-(2,5-Dimethylfuran-3-carbonyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S28).



1-(1-(2,5-Dimethylfuran-3-carbonyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S28). $\mathrm{NEt}_{3}(0.80 \mathrm{~mL}, 5.71 \mathrm{mmol})$ was added dropwise to a stirred suspension of 2,5-dimethylfuran-3-carboxylic acid ( $200 \mathrm{mg}, 1.43 \mathrm{mmol}$ ), EDCI ( 301 mg , 1.57 mmol ), HOBT ( $212 \mathrm{mg}, 1.57 \mathrm{mmol}$ ) and S1d ( $400 \mathrm{mg}, 1.57 \mathrm{mmol}$ ) in dry DCM ( 50 mL ) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with DCM ( 50 mL ), washed with water $(3 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and then dried and the
solvent evaporated. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give carboxamide $\mathbf{S 2 8}$ ( $261 \mathrm{mg}, 54 \%$ ) as a white powder: mp (EtOAc) $262-265{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.50$ (s, 1H, CONH), 7.90 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.61$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.98 (dd, $J=7.8,5.2 \mathrm{~Hz}$, 1H, H-6), 6.17 (s, 1H, H-4"), 4.50 (br s, 1H, H-2', H-6'), 4.45 (tt, J = 12.2, 4.0 Hz, 1H, H4'), 4.00 (br s, 1H, H-2', H-6'), 3.13 (br s, 1H, H-2', H-6'), 2.80 (br s, 1H, H-2', H-6'), 2.29 (s, 3H, CH3), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17\left(\mathrm{dq}, \mathrm{J}=12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.77$ (br d, J= $\left.11.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}\right)$; MS m/z $341.2\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$ $\mathrm{m} / \mathrm{z} 341.1608$. Found 341.1614 (-1.9 ppm).

SN35136 4-(3H-Imidazo[4,5-b]pyridin-3-yl)-N-(2-methylphenyl)piperidine-1-carboxamide (S29) was obtained from ChemDiv.

SN35138 4-(1H-Indol-3-yl)-N-phenyl-3,6-dihydropyridine-1(2H)-carboxamide (S30) was obtained from ChemDiv.

SN35139 N-(5-Chloro-2-methoxyphenyl)-4-(morpholinomethyl)piperidine-1carboxamide (S31) was obtained from ChemDiv.

SN35145 1-[1-(3-Cyclohexylpropanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2one (S32).


1-[1-(3-Cyclohexylpropanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S32). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and cyclohexylpropionic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S32 ( $460 \mathrm{mg}, 90 \%$ ) as a white foam: mp $77-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}$, H-7), 6.95-7.00 (m, 3H, H-4, H-5, H-6), 4.58 (br d, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6$ '), 4.40 (tt, J $\left.=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.00$ (br d, J = 12.9 Hz, 1H, H-2', H-6'), 3.14 (br dd, J = 12.7, $\left.11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.63$ (br dd, J = 12.7, $11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 2.37 (dt, J = 7.5, $2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$ ), 2.25 (dq, $\left.J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.10$ (dq, $J=12.4,4.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 1.58-1.74 (m, 7H, H-3', H-5', CH, $2 \times \mathrm{CH}_{2}$ ), 1.42 (dt, J = 7.5, 7.4 Hz , $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 1.10-1.24 (m, 4H, $2 \times \mathrm{CH}_{2}$ ), 0.84-0.92 (m, 2H, CH2); MS m/z $356.4\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 70.95; H, 8.22; N, 11.82. Found: C, 70.70; H, 8.26; N, 11.53\%.

SN35147 1-[1-(Cyclopentylacetyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S33).


1-[1-(3-Cyclopentylacetyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S33). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one and cyclopentylacetic acid. The crude solid was purified by column chromatography, eluting
with EtOAc, to give benzimidazolone $\mathbf{S 3 3}$ ( $502 \mathrm{mg}, 74 \%$ ) as a white powder: mp (EtOAc/pet. ether) $173-175{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.84$ (s, 1H, CONH), 7.17-7.22 (m, 1H, H-7), 6.92-6.98 (m, 3H, H-4, H-5, H-6), 4.57 (br d, J = $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 4.39 (tt, $\left.J=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.02\left(\mathrm{br} \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.14$ (br dd, J $\left.=12.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right), 2.63$ (br dd, J = 12.9, 11.7 Hz, 1H, H-2', H-6'), 2.39 (d, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$ ), 2.06-2.31 (m, 3H, H-3', H-5', CH), 1.67-1.82 (m, 4, H-3', H-5', $\mathrm{CH}_{2}$ ), 1.56-1.63 (m, 2H, CH 2 ), 1.45-1.54 (m, 2H, CH2), 1.08-1.20 (m, 2H, CH2); MS m/z 328.4 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, $69.70 ; \mathrm{H}, 7.70 ; \mathrm{N}, 12.83$. Found: C , 69.76; H, 7.74; N, 12.71\%.

SN35148 1-[1-(Cyclohexylacetyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S34).


1-[1-(3-Cyclohexylacetyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S34). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one and cyclohexylacetic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone $\mathbf{S 3 4}$ ( $658 \mathrm{mg}, 93 \%$ ) as a white foam: mp (EtOAc/pet. ether) $85-88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$, 6.95-6.98 (m, 3H, H-4, H-5, H-6), 4.58 (br d, $\left.J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 4.40$ (tt, $J=$ $\left.12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.02$ (br d, $\left.J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 3.15$ (br dd, $J=12.7,11.7$ Hz, 1H, H-2', H-6'), 2.62 (br dd, J = 12.6, 11.0 Hz, 1H, H-2', H-6'), 2.16-2.30 (m, 3H, H$3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{COCH}_{2}$ ), 2.10 (dq, J = 12.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), $1.57-1.75$ (m, 7H, CH, $3 \times$ $\left.\mathrm{CH}_{2}\right), 1.10-1.24\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 0.90-1.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 342.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{EtOAc}: \mathrm{C}, 69.39 ; \mathrm{H}, 8.04 ; \mathrm{N}, 11.56$. Found: C, 69.50; H, 7.98; N, 11.93\%.

SN35149 1-[1-(Cyclopentylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S35).


1-[1-(Cyclopentylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one
(S35). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and cyclopentanecarboxlic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S35 (593 mg, 94\%) as a white foam: mp (EtOAc/pet. ether) $91-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.84$ (s, 1H, CONH), 7.17-7.21 (m, 1H, H-7), 6.95-7.00 (m, 3H, H-4, H-5, H-6), 4.59 (br d, J = $13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2', H-6'), 4.41 (tt, J = 12.2, 4.1 Hz, 1H, H-4'), 4.13 (br d, J = $\left.13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right), 3.15$ (br dd, J = 12.9, 12.2 Hz, 1H, H-2', H-6'), 3.00-3.07 (m, 1H, COCH), 2.65 (br dd, J = 13.0, $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.23 (dq, $\left.J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.11$ (dq, J = 12.7, 4.1 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.50-1.83$ (m, 10H, H-3', H-5', $4 \times \mathrm{CH}_{2}$ ); MS m/z 314.4 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 8 \mathrm{EtOAc}: \mathrm{C}, 68.36$; $\mathrm{H}, 7.47$; $\mathrm{N}, 12.83$. Found: C, 68.65; H, 7.70; N, 12.87\%.

SN35150 1-[1-(Cyclohexylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S36).


1-[1-(Cyclohexylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S36). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one and cyclohexylcarboxylic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone $\mathbf{S 3 6}(560 \mathrm{mg}, 83 \%)$ as a white powder: mp (EtOAc/pet. ether) 200-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.84$ (s, 1H, CONH), 7.16-7.20 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$ ), $6.95-7.00$ (m, 3H, H-4, H-5, H-6), 4.58 (br d, J $=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-\mathrm{6}^{\prime}$ ), 4.40 (tt, J = 12.2, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 4.09 (br d, J=12.1 Hz, 1H, H-2', H-6'), 3.15 (br dd, J $\left.=12.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.57-2.67$ (m, 2H, H-2', H-6', COCH), 2.23 (dq, J = 12.2, $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.09$ (dq, J = 12.2, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), $1.60-1.79$ ( $\mathrm{m}, 8 \mathrm{H}, \mathrm{H}-$ $3^{\prime}, \mathrm{H}-5^{\prime}, 3 \times \mathrm{CH}_{2}$ ), $1.25-1.44\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$; MS $\mathrm{m} / \mathrm{z} 328.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 69.70; H, 7.70; N, 12.83. Found: C, 69.96; H, 7.71; N, 13.01\%.

SN35155 1-[1-(4-Methylpentanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S37).


1-[1-(4-Methylpentanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S37). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one and 4-methylpentanoic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone $\mathbf{S 3 7}$ ( $292 \mathrm{mg}, 90 \%$ ) as a white powder: mp (EtOAc/pet. ether) $168-170{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [ $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.84$ (s, 1H, CONH), 7.18-7.23 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$ ), $6.95-7.00$ (m, 3H, H-4, H-5, H-6), 4.58 (br d, J = $13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-\mathrm{C}^{\prime}$ ), 4.40 (tt, J = 12.2, 4.1 Hz, 1H, H-4'), 4.02 (br d, J= $\left.13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.16$ (br dd, J $\left.=12.7,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.63$ (br dd, J = 12.8, $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.36 (dd, $J=8.0,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$ ), 2.27 (dq, $\left.J=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.10(\mathrm{dq}, J=12.2$, $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.64-1.74$ (m, 2H, H-3', H-5'), 1.56 (sept, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), 1.41 (dt, $\left.J=7.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 316.5\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 68.54; H, 7.99; N, 13.32. Found: C, 68.67; H, 8.10; N, 13.38\%.

SN35156 1-[1-(Tetrahydro-2H-pyran-4-ylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S38).


1-[1-(Tetrahydro-2H-pyran-4-ylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S38). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro2 H -benzimidazol-2-one and tetrahydropyrancarboxylic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone $\mathbf{S 3 8}(21 \mathrm{mg}$, $6 \%$ ) as a tan gum: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.84$ (s, 1H, CONH), 7.18-7.22 (m, 1H, H-7), $6.95-7.00$ (m, 3H, H-4, H-5, H-6), 4.58 (br d, J = $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 4.41 (tt, J =
12.2, $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}\right), 4.15$ (br d, J = $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 3.80-3.90 (m, 2H, CH2O), 3.40 (br dd, $J=13.4,11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.18 (br dd, $\left.J=13.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$, 2.85-2.89 (m, 1H, COCH), 2.63 (br t, J = 12.4 Hz, 1H, H-2', H-6'), 2.23 (dq, J = 12.2, 4.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 2.10 (dq, J = 12.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 1.65-1.80 (m, 2H, H-3', H$\left.5^{\prime}\right), 1.52-1.60\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 330.4\left(\mathrm{MH}^{+}, 100 \%\right)$.

SN35157 1-[1-(Cyclopropylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S39).


1-[1-(Cyclopropylcarbonyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S39). Cyclopropanecarbonyl chloride ( $100 \mu \mathrm{~L} 1.10 \mathrm{mmol}$ ) was added dropwise to a stirred solution of 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one ( $218 \mathrm{mg}, 1.00$ mmol ) and $\mathrm{iPr}_{2} \mathrm{NEt}(209 \mu \mathrm{~L}, 1.20 \mathrm{mmol})$ in dry $\mathrm{DCM}(10 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ and the solution was stirred for 16 h . The mixture was diluted with DCM $(50 \mathrm{~mL})$, washed sequentially with saturated aqueous $\mathrm{KHCO}_{3}$ solution ( 30 mL ), 1 M HCl solution ( 30 mL ), water ( 30 mL ), and brine $(30 \mathrm{~mL})$ and then dried and the solvent evaporated. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S39 ( 203 mg , $71 \%$ ) as a tan gum: mp (EtOAc/pet. ether) $207-209{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{3}\right)_{2} \mathrm{SO}\right] 10.84$ (s, 1H, CONH), 7.18-7.22 (m, 1H, H-7), 6.96-7.01 (m, 3H, H-4, H-5, H-6), 4.56 (br d, J = $\left.13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 4.35-4.50$ (m, 2H, H-2', H-6', H-4'), 3.17-3.25 (m, 1H, H-2', H$6^{\prime}$ ), 2.65-2.70 (m, 1H, H-2', H-6'), 2.25-2.35 (m, 1H, H-3', H-5'), 2.10-2.20 (m, 1H, H-3', H-5'), 2.04 (p, J = 6.3 Hz, 1H, COCH), 1.64-1.73 (m, 2H, H-3', H-5'), 0.68-0.72 (m, 4H, 2 $\left.\times \mathrm{CH}_{2}\right)$; MS m/z $286.3\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 67.35; H, 6.71; N, 14.73. Found: C, 67.25; H, 6.74; N, 14.67\%.

SN35160 1-[1-(4-Cyclohexylbutanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one (S40).


1-[1-(4-Cyclohexylbutanoyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazol-2-one
(S40). Prepared using Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and cyclohexylbutanoic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S40 (467 mg, 97\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.84$ (s, 1H, CONH), 7.17-7.21 (m, 1H, H-7), 6.946.99 (m, 3H, H-4, H-5, H-6), 4.58 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 4.40 (tt, J = 12.2, 4.1 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 4.00\left(\mathrm{br} \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.15$ (br dd, $J=12.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}$, H-2', H-6'), 2.63 (br dd, $\left.J=12.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right), 2.33(\mathrm{dt}, J=8.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{COCH}_{2}$ ), 2.24 (dq, $\left.J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} \mathbf{S}^{\prime}\right), 2.10$ (dq, J = 12.4, 4.2 Hz, 1H, H-3', H-5'), 1.60-1.76 (m, 7H, H-3', H-5', CH, $2 \times \mathrm{CH}_{2}$ ), 1.53 (br pent, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 1.10-1.27 (m, 6H, $3 \times \mathrm{CH}_{2}$ ), 0.81-0.90 (m, 2H, CH2); MS m/z $370.6\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 71.51; H, 8.46; N, 11.37. Found: C, 71.36; H, 8.68; N, 11.20\%.

SN35174 1-[1-(3-Cyclopentylpropanoyl)-4-piperidinyl]-1 H -benzimidazole (S41).

tert-Butyl 4-(2-Nitroanilino)-1-piperidinecarboxylate (S41a). Prepared using Method E from 2 -fluoronitrobenzene and tert-butyl 4 -aminopiperidine-1-carboxylate. The residue was purified by column chromatography, eluting with $20 \% \mathrm{EtOAc} /$ pet. ether, to give carbamate S41a ( $9.10 \mathrm{~g}, 99 \%$ ) as a white powder: mp (EtOAc/pet. ether) $75-77^{\circ} \mathrm{C}$ (lit. ${ }^{2}$ mp 88.5-89 ${ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR $\delta 8.19$ (dd, $\left.J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 8.10$ (br d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $7.40-7.57$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 6.87 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), 6.66 (ddd, $J=8.6,7.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.03 (br d, J = $11.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.60-3.70 (m, 1H, H-4), 3.06 (br t, J $=11.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.10-2.10 (m, 2H, H-3, H-5), 1.50-1.62 (m, 2H, H-3, H-5), 1.48 [s, 9H, C(CH3)3]; MS m/z 222.4 ( $\mathrm{MH}^{+}-\mathrm{CO}_{2}$ tBu, 100\%).
tert-Butyl 4-(1H-Benzimidazol-1-yl)-1-piperidinecarboxylate (S41b). A mixture of carbamate S41a ( $1.05 \mathrm{~g}, 3.27 \mathrm{mmol})$, $\mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}), \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{3}(3.6 \mathrm{~mL}, 32.7 \mathrm{mmol})$ and PPTS ( $82 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) in EtOAc ( 50 mL ) was stirred under $\mathrm{H}_{2}(50 \mathrm{psi})$ for 6 h . The mixture was filtered through a pad of diatomaceous earth and the pad was washed with EtOAc ( 50 mL ). The solvent was evaporated and the residue was purified by column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ pet. ether, to give carbamate S41b ( 0.47 g , $47 \%$ ) as a colourless gum; ${ }^{1} \mathrm{H}$ NMR $\delta 7.97$ (s, 1H, H-2'), $7.80-7.84$ (m, 1H, H-5'), 7.407.43 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{6}^{\prime}$ ), 7.26-7.38 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}^{\prime} \mathrm{7}^{\prime}$ ), 4.30-4.39 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-6$ ), 2.93 (brt, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 2.18$ (br d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 2.02 (dq, $J=14.4$, $4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.50\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right) 3\right]$; MS m/z $302.4\left(\mathrm{MH}^{+}, 100 \%\right)$.

1-(4-Piperidinyl)-1 H-benzimidazole Hydrochloride (S41c). Prepared using Method F from carbamate S41b to give piperidine hydrochloride S41c ( $370 \mathrm{mg}, 100 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH}) 295-298{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) 2 SO$] \delta 9.62$ (s, 1H, H-2), 9.39-9.46 (m, $2 \mathrm{H}, \mathrm{NH} \cdot \mathrm{HCl}), 8.20-8.24$ (m, 1H, H-5), 7.86-7.90 (m, 1H, H-6), 7.58-7.64 (m, 2H, H-4, H7), 5.03 (tt, J=11.8, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 3.48 (br d, $\left.J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.01-3.10$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathrm{G}^{\prime}$ ), 2.44 (dq, J = 12.4, $\left.4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.33$ (br d, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}$, H-3', H-5'); MS m/z 202.4 ( $\mathrm{MH}^{+}, 100 \%$ ).

1-[1-(3-Cyclopentylpropanoyl)-4-piperidinyl]-1H-benzimidazole (S41). Prepared using Method D using S41c and 3 -cyclopentylpropanoic acid. The crude solid was purified by column chromatography, eluting with a gradient ( $0-20 \%$ ) of $\mathrm{MeOH} / \mathrm{EtOAc}$, to give benzimidazole S41 ( $175 \mathrm{mg}, 46 \%$ ) as a white foam: ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ SO] 88.34 ( s , 1H, H-2), 7.63-7.69 (m, 2H, H-4, H-7), 7.26 (ddd, J=7.8, 7.2, 1.2 Hz, 1H, H-5), 7.20 (ddd, $J=8.0,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.57-4.70$ (m, 3H, H-2', H-4', H-6'), 4.05 (br d, J = 13.2 Hz , $2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 3.23 (br dd, $J=12.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 2.73 (br dd, $J=12.5,11.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.35-2.39$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{COCH}$ ), 1.92-2.10 (m, 3H, H-3', H-5', CH2), 1.86 (dq, J = 12.2, 4.2 Hz, 1H, H-3', H-5'), 1.70-1.79 (m, 3H, CH, CH2), 1.45-1.60 (m, 6H, $3 \times$ $\mathrm{CH}_{2}$ ); MS m/z $326.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} \cdot 1 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 72.94 ; \mathrm{H}, 8.46$; $\mathrm{N}, 12.60$. Found: $\mathrm{C}, 72.96 ; \mathrm{H}, 8.53$; $\mathrm{N}, 12.84 \%$.

SN35175 N-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)benzamide (S42).

tert-Butyl 4-Benzamidopiperidine-1-carboxylate (S42a). Prepared using Method D from benzoic acid and tert-butyl 4-aminopiperidine-1-carboxylate. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give carbamate S42a ( $175 \mathrm{mg}, 46 \%$ ) as a white powder: mp (EtOAc/pet. ether) $169-171{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta$ 7.75 (br d, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.50\left(\mathrm{tt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.44$ (br dd, $J=$ 7.6, $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} 3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}$ ), 5.98 (br d, J = 7.5 Hz, 1H, CONH), 4.05-4.19 (m, 3H, H-2, H4, H-6), 2.92 (br t, J = $12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.00-2.07 (m, 2H, H-3, H-5), 1.48 [s, 9H, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.40 (dq, J = 11.9, $3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z $305.2\left(\mathrm{MH}^{+}, 20 \%\right), 205.2$ $\left(\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{tBu}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 67.08 ; H, 7.95; N, 9.20. Found: C, 67.25; H, 8.06; N, 9.27\%.

N-(Piperidin-4-yl)benzamide Hydrochloride (S42b). Prepared using Method F from carbamate S42a ( $2.69 \mathrm{~g}, 8.84 \mathrm{mmol}$ ) to give piperidine hydrochloride S42b ( $1.92 \mathrm{~g}, 90 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH}) 281-283{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 9.62$ (br s, 2 H , $\mathrm{NH} \cdot \mathrm{HCl}), 8.52(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}), 7.87\left(\mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.52(\mathrm{tt}$, $\left.J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.46$ (br dd, J = 7.6, $\left.7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} \mathrm{F}^{\prime}\right), 4.01-4.09$ (m, 1H, $\mathrm{H}-4), 3.29$ (br dt, $J=13.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.97 (ddd, $J=13.1,12.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-6$ ), 1.96 (br dd, $J=13.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.74-1.86 (m, 2H, H-3, H-5); MS $\mathrm{m} / \mathrm{z} 205.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClN} 2 \mathrm{O}: \mathrm{C}, 59.87 ; \mathrm{H}, 7.12 ; \mathrm{N}, 11.64$. Found: C, 59.93; H, 7.17; N, 11.69\%.

N-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)benzamide (S42). Prepared using Method D using S42b and cyclopentylpropionic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzamide S42 ( $461 \mathrm{mg}, 97 \%$ ) as a white powder: mp (EtOAc) 168-170 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 8.27$ (br d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, CONH), 7.83 (br d, J = 7.0 Hz, 2H, H-2', H-6'), 7.51 (tt, J = 7.3, 1.3 Hz, 1H, H-4'), 7.45 (br dd, $J=7.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5{ }^{\prime}$ ), 4.35 (br d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 4.01 (ddt, $J=$ $11.2,7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.87$ (br d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.10 (br t, $J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.66 (br dt, $J=12.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.31 (dt, $J=8.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{COCH}_{2}$ ), 1.86 (br d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.70-1.78 (m, 3H, CH, CH2), 1.42-1.60 ( $\mathrm{m}, 7 \mathrm{H}, 3 \times \mathrm{CH}_{2}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.36 (dq, J = 12.0, $3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.02-1.12 (m, 2H, $\mathrm{CH}_{2}$ ); MS $\mathrm{m} / \mathrm{z} 329.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ : $\mathrm{C}, 73.14 ; \mathrm{H}, 8.59 ; \mathrm{N}, 8.53$. Found: C, 73.20; H, 8.84; N, 8.65\%.

SN35177 1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-4-phenyl-1,3-dihydro-2H-imidazol-2-one (S43).


1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-4-phenyl-1,3-dihydro-2H-imidazol-2one (S43). Prepared using Method D from 4-phenyl-1-(piperidin-4-yl)-1,3-dihydro-2H-imidazol-2-one and 3-cyclopentanecarboxylic acid. The crude solid was purified by
column chromatograhy, eluting with EtOAc, to give imidazolone S43 (447 mg, 94\%) as a white powder: mp (EtOAc) 191-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.69$ (br s, 1H, CONH), 7.50 (br d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$ ), 7.32 (br dd, J=8.1, 7.6 Hz, 2H, H-3", H-5"), 7.147.20 (m, 2H, H-5', H-4"), 4.53 (br d, J = $13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 4.10 (tt, J = 11.9, 4.1 Hz, $1 \mathrm{H}, \mathrm{H}-4$ ), 3.98 (br d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.12 (br dd, $J=12.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$, H-6), 2.60 (br dd, $J=12.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.33 (dt, $J=8.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$ ), $1.70-1.85\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.45-1.62\left(\mathrm{~m}, 7 \mathrm{H}, 3 \times \mathrm{CH}_{2}, \mathrm{CH}\right), 1.03-1.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; MS m/z $368.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 71.90 ; \mathrm{H}, 7.95 ; \mathrm{N}, 11.43$. Found: C, 71.80; H, 8.07; N, 11.47\%.

SN35179 3-Cyclopentyl-1-(4-(2-(trifluoromethyl)-1H-benzo[d]imidazol-1-yl)piperidin-1-yl)propan-1-one (S44).

tert-Butyl 4-((2-Aminophenyl)amino)piperidine-1-carboxylate (S44a). Prepared using Method B from S41a. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give aniline S44a (348 mg, 90\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 6.80$ (br ddd, $J=7.8,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}$ ), 6.75 (br ddd, $J=7.8,7.4,1.6 \mathrm{~Hz}$, 1H, H-5'), 6.65-6.68 (m, 2H, H-3', H-6'), 3.90-4.06 (m, 2H, H-2, H-6), 3.20-3.43 (m, 4H, $\mathrm{H}-4, \mathrm{NH}, \mathrm{NH}_{2}$ ), 2.95 (br t, J = $11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 1.99-2.08 (m, 2H, H-3, H-5), 1.47 [s, 9H, C(CH3)3], 1.33-1.43 (m, 2H, H-3, H-5), MS m/z 192.1 ( $\left.\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{tBu}, 100 \%\right)$.

1-(Piperidin-4-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole Trifluoroacetate (S44a). A mixture of tert-butyl 4-((2-aminophenyl)amino)piperidine-1-carboxylate ( $344 \mathrm{mg}, 1.18$ mmol ) and trifluoroacetic acid ( 3 mL ) in DCM ( 10 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered through a pad of diatomaceous earth and the pad was washed with EtOAc ( 50 mL ). The solvent was evaporated and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered to give benzimidazole S44a ( $338 \mathrm{mg}, 75 \%$ ) as a colourless solid: mp ( $\mathrm{Et}_{2} \mathrm{O}$ ) 265 ${ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] 88.71 (br s, 1H, NH), 8.56 (br s, 1H, NH), 8.07 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.87$ (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.50 (ddd, $J=8.3,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.42 (ddd, $J=8.1,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.88 (tt, $\left.J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 3.50(\mathrm{br} \mathrm{d}, \mathrm{J}$ $\left.=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.36$ (br dd, J = 12.0, 11.2 Hz, 2H, H-2', H-6'), 2.70 (dq, J = 13.0, 3.9 Hz, 2H, H-3', H-5'), 2.10 (br d, J = 11.2 Hz, 2H, H-3', H-5'); MS m/z 265.2 ( $\mathrm{MH}^{+}$, 100\%).

## 3-Cyclopentyl-1-(4-(2-(trifluoromethyl)-1H-benzo[d]imidazol-1-yl)piperidin-1-

 yl)propan-1-one (S44). Prepared using Method D from S44a and 3cyclopentanecarboxylic acid. The crude solid was purified by column chromatography, eluting with a gradient (25-30\%) of EtOAc/pet. ether, to give amide S44 (318 mg, 80\%) as a clear oil: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 7.81-7.86$ (m, 2H, H-4", H-7"), 7.42 (ddd, J = 8.0, $7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ ), 7.36 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H, H-6"), 4.60-4.73 (m, 2H, H-2', H-4', H-6'), 4.07 (br d, J = $\left.13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.23$ (br dd, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-$ $6^{\prime}$ ), 2.70-2.78 (m, 1H, H-2', H-6'), 2.40 (br dd, $J=7.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$ ), 2.21 (dq, J = 12.2, $\left.4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.92$ (br t, J = $\left.12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.70-1.81$ (m, 3H, $\mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} \mathrm{S}^{\prime}, \mathrm{CH}_{2}$ ), 1.50-1.60 (m,5H, CH, $2 \times \mathrm{CH}_{2}$ ), 1.44-1.48 (m, 2H, CH2), 1.05-1.13 (m,$2 \mathrm{H}, \mathrm{CH}_{2}$ ); MS m/z 394.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 64.11$; H, 6.66; N, 10.68. Found: C, 64.38; H, 6.87; N, 10.56\%.

SN35190 1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-3-phenylurea (S45).

tert-Butyl 4-(3-phenylureido)piperidine-1-carboxylate (S45a). Phenyl isocyanate ( $0.59 \mathrm{~mL}, 5.39 \mathrm{mmol}$ ) was added dropwise to a stirred solution of tert-butyl 4-aminopiperidine-1-carboxylate ( $1.08 \mathrm{~g}, 5.39 \mathrm{mmol}$ ) in dry THF $(25 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ and the mixture was stirred for 48 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 20 mL ) and the mixture was diluted with EtOAc ( 100 mL ), washed sequentially with dilute citric acid solution $(2 \times 50 \mathrm{~mL})$, water ( 50 mL ), and brine ( 50 mL ) and then dried and the solvent evaporated. The crude solid was purified by column chromatography, eluting with a gradient ( $30-50 \%$ ) of EtOAc/pet. ether, to give carbamate S45a (1.635 g, 95\%) as a white powder: mp (EtOAc/pet. ether) $184-186{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta$ 7.26-7.34 (m, 4H, H-2', H-3', H-5', H-6'), 7.09 (tt, J = 7.0, 1.6 Hz, 1H, H-4'), 6.51 (s, 1H CONH), 4.78 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}$ ), 4.00 (br s, 2H, H-2, H-6), 3.84 (dq, J = 10.9, 4.0 Hz, 1H, H-4), 2.87 (br dd, J = 12.4, 11.9 Hz, 2H, H-2, H-6), 1.94 (br dd, J = 12.5, 2.6 Hz, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.45$ [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.25$ (dq, J = 11.9, $4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); MS m/z $320.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, 63.93; H, 7.89; N, 13.16. Found: C, 64.18; H, 8.10; N, 13.24\%.

1-Phenyl-3-(piperidin-4-yl)urea Hydrochloride (S45b). Prepared using Method F from carbamate S45a to give piperidine hydrochloride S45b (1.13 g, 100\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 8.76$ (br s, $\left.2 \mathrm{H}, \mathrm{NH} \cdot \mathrm{HCl}\right), 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 7.37$ (br d, J=8.0 Hz, 2H, H-2', H-6'), 7.20 (br dd, J = 8.0, $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 6.87 (br t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 6.78 (d, J = 7.5 Hz, 1H, CONH), 3.71-3.80 (m, 1H, H-4), 3.24 (br d, J = 12.6 Hz , 2H, H-2, H-6), 2.94-3.04 (m, 2H, H-2, H-6), 1.93-1.99 (m, 2H, H-3, H-5), 1.55-1.65 (m, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z 220.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 54.26$; H, 7.71; N, 14.60. Found: C, 54.42; H, 7.26; N, 14.60\%.

1-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-3-phenylurea (S45). Prepared using Method D from S45b and 3-cyclopentanecarboxylic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give urea S45 (386 mg, 66\%) as white crystals: mp (EtOAc) 179-180 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 8.31$ (s, 1H, CONH), 7.37 (dd, J $=8.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 7.20$ (dd, J = 8.6, $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 6.89$ (tt, J = 7.3, 1.1 Hz, 1H, H-4), 6.16 (d, J = 7.6 Hz, 1H, CONH), 4.17 (br d, J = $\left.13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$, 3.76 (br d, J = 14.1 Hz, 1H, H-2', H-6'), 3.65-3.70 (m, 1H, H-4'), 3.14 (br t, J = 11.3 Hz , $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.76 (brt, $\left.J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.30$ (dd, $J=7.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{COCH}_{2}$ ), 1.68-1.85 (m, 5H, H-3', H-5', CH, CH2), 1.43-1.60 (m, 6H, $3 \times \mathrm{CH}_{2}$ ), 1.28 (dq, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime}$ ), 1.19 (br dq, $\left.J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.03-1.10$ (m, 2H, CH2); MS m/z 344.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 69.94; H, 8.51; N, 12.23. Found: C, 69.73; H, 8.70; N, 12.26\%.

SN35199 3-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-3,4-dihydroquinazolin-2(1H)-one (S46).


3-(1-(3-Cyclopentylpropanoyl)piperidin-4-yl)-3,4-dihydroquinazolin-2(1H)-one
(S46). Prepared using Method D using 3-(piperidin-4-yl)-3,4-dihydroquinazolin-2(1H)one and 3 -cyclopentanecarboxylic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give amide S46 ( $485 \mathrm{mg}, 76 \%$ ) as white powder: mp (EtOAc) 191-193 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2} \mathrm{SO}$ ] $\delta 9.21$ (s, 1H, CONH), 7.08-7.13 (m, 2H, $\mathrm{H}-7, \mathrm{H}-8), 6.85$ (dt, J = 7.4, 1.1 Hz, 1H, H-6), 6.76 (d, J = 7.5 Hz, 1H, H-5), 4.52 (br d, J = $\left.12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 4.36$ (tt, J = 11.4, 4.4 Hz, 1H, H-4'), 4.28 (s, 2H, H-4), 3.95 (br d, $\left.J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.07$ (br dd, $\left.J=12.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.55$ (br dd, $J$ $\left.=12.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 2.33$ (br dt, J = 7.6, $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}$ ), 1.68-1.78 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ ), 1.44-1.64 (m, 9H, CH, $\left.2 \times \mathrm{CH}_{2}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.02-1.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; MS $\mathrm{m} / \mathrm{z} 356.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 70.95 ; \mathrm{H}, 8.22 ; \mathrm{N}, 11.82$. Found: C, 70.85; H, 8.26; N, 11.90\%.

SN35326 1-(1-(3-Phenylpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2one (S47).


1-(1-(3-PhenyIpropanoyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S47). Prepared using Method D using 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and 3-phenylpropionic acid. The crude solid was purified by column chromatography, eluting with EtOAc, to give benzimidazolone S47 ( $496 \mathrm{mg}, 86 \%$ ) as a white powder: mp $178-180^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.84$ (s, 1H, CONH), 7.32 (br t, J=7.3 Hz, 2H, H-3", H-5"), 7.207.28 (m, 3H, H-2", H-4", H-6"), 7.02-7.12 (m, 4H, H-4, H-5, H-6, H-7), 4.90 (br d, J = 13.2 Hz, 1H, H-2', H-6'), 4.51 (tt, J = 12.2, $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.98$ (br d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$, H-6'), 3.11 (br t, J = $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.99-3.06 (m, 1H, H-2', H-6'), 2.63-2.78 (m, 3H, $\left.\mathrm{COCH}_{2}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.27$ (dq, J = 12.6, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 2.10 (dq, J=12.5, 4.3 Hz , 1H, H-3', H-5'), 1.87 (br dd, J= 13.2, $\left.12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$; MS m/z 350.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 72.18; H, 6.63; N, 12.03. Found: C, 71.93; H, 6.74; N, 11.95\%.

SN35352 N-(1-Benzyl-2-oxo-1,2-dihydro-3-pyridinyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S48).



S48a


S48b


1-Benzyl-3-nitro-2(1H)-pyridinone (S48a). Prepared using Method E from benzyl bromide and 3 -nitro-2(1H)-pyridinone. The crude solid was purified by column chromatography, eluting with $60 \%$ EtOAc/pet. ether, to give nitropyridinone S48a ( 1.69 g , $97 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $96-99^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 86-88{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR $\delta 8.30$ (dd, $J=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.66$ (dd, $J=6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.32-7.41$ ( m ,

5H, H-2', H-3', H-4', H-5', H-6'), 6.28 (dd, J = 7.6, 6.7 Hz, 1H, H-5), 5.24 (s, 2H, CH2); MS m/z 231.4 (MH $\left.{ }^{+}, 100 \%\right)$.

3-Amino-1-benzyl-2(1H)-pyridinone (S48b). Prepared by Method G from nitropyridinone S48a. The crude solid was purified by column chromatography, eluting with $60 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give aminopyridinone S48b ( $1.33 \mathrm{~g}, 92 \%$ ) as green crystals: mp (EtOAc/pet. ether) $124-125^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.27-7.35$ (m, $5 \mathrm{H}, \mathrm{H}-\mathbf{2}^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-$ $\left.4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right), 6.73$ (dd, $\left.J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.05$ (dd, $\left.J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.05$ (d, J = 7.0 Hz, 1H, H-5), 4.24 (br s, 2H, NH2), 5.17 (s, 2H, CH2); MS m/z $201.4\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.98 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.99$. Found: C, 72.13; H, 6.16; N, 14.07\%.

N-(1-Benzyl-2-oxo-1,2-dihydro-3-pyridinyl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S48). Prepared using Method C from S48b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-10 \%$ ) of $\mathrm{MeOH} / E t O A c$, to give urea $\mathbf{S 4 8}$ ( $60 \mathrm{mg}, 13 \%$ ) as a white powder: mp (MeOH/EtOAc) 218-219 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 9.52$ (br s, 1H, CONH), 8.16 (dd, $J=$ $7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}$ ), 8.07 (br s, 1H, CONH), $7.25-7.38$ (m, 6H, H-7', H-2"', H-3"', H-4"', H-5"', H-6"'), 6.96-7.01 (m, 2H, H-6', H-4"), 6.29 (t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}$ ), 5.19 (s, 2H, $\mathrm{CH}_{2}$ ), 4.58 (tt, $J=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.36 (br d, J = $13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.06 (br $\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.27 (dq, $J=12.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.95 (dd, $J=12.2$, 2.2 Hz, 2H, H-3, H-5); MS m/z 445.7 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{CH}_{3} \mathrm{OH}$ : C, 63.90; H, 5.69; N, 18.25. Found: C, 64.24; H, 5.63; N, 18.02\%.

SN35356 N-(1-Benzyl-2-oxo-1,2-dihydro-3-pyridinyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-1-piperidinecarboxamide (S49).


Methyl (3-Nitro-2-oxo-1(2H)-pyridinyl)acetate (S49a). Prepared using Method E from methyl bromoacetate and 3 -nitro-2(1H)-pyridinone. The crude solid was purified by column chromatography, eluting with EtOAc, to give nitropyridinone S49a ( $0.56 \mathrm{~g}, 37 \%$ ) as a tan powder: mp (EtOAc/pet. ether) $96-98{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.40$ (dd, $J=7.7,2.1 \mathrm{~Hz}, 1$ H, H-4'), 7.63 (dd, J = 6.6, 2.1 Hz, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.37$ (dd, J=7.7, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 4.78 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.82 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ); MS m/z $213.4\left(\mathrm{MH}^{+}, 100 \%\right.$ ). Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}$ : C, 45.29; H, 3.80; N, 13.20. Found: C, 44.50; H, 3.78; N, 12.94\%.

Methyl (3-Amino-2-oxo-1(2H)-pyridinyl)acetate (S49b). Prepared by Method B using S49a. The crude solid was purified by column chromatography, eluting with $70 \%$ EtOAc/pet. ether, to give aminopyridinone S49b ( $306 \mathrm{mg}, 78 \%$ ) as a green oil which was used directly: ${ }^{1} \mathrm{H}$ NMR $\delta 6.65$ (dd, $\left.J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.54$ (dd, $J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 6.10(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 4.67 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ); MS m/z 183.4 (MH ${ }^{+}, 100 \%$ ).

Methyl (3-(Benzylamino)-2-oxo-1(2H)-pyridinyl)acetate (S49c). Prepared using Method E from benzyl bromide and 3-aminopyridinone S49b. The crude solid was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give benzylaminopyridinone S49c ( $238 \mathrm{mg}, 53 \%$ ) as a white powder: mp (EtOAc/pet. ether) $130-131^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.36$ (m, 4H, H-2', H-3', H-5', H-6'), $7.24-7.28$ (m, 1H, H-4'), 6.57 (dd, $J=6.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.16$ (dd, $J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.12$ (dd, $J=7.3$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 5.44 (br s, 1H, NH), 4.67 (s, 2H, CH2N), 4.32 (s, 2H, CH2N), 3.79 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ); MS m/z $273.4\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 66.16; H, 5.92; N, 10.29. Found: C, 66.32; H, 5.98; N, 10.38\%.
(3-(Benzylamino)-2-oxo-1(2H)-pyridinyl)acetic Acid (S49d). Prepared using Method J from ester S49c to give acid S49d (171 mg, 83\%) as a white powder: mp ( $\mathrm{H}_{2} \mathrm{O}$ ) 190$191^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 12.92\left(\mathrm{br} s, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.30-7.36$ (m, 4H, H-2", H-3", H5", H-6"), 7.18-7.26 (m, 1H, H-4"), 6.84 (dd, J = 6.7, 1.8 Hz, 1H, H-6'), 6.00-6.08 (m, 3H, H-4', H-5', NH), 4.60 (s, 2H, H-2), 4.28 (d, J = $6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ); MS m/z 259.4 ( $\mathrm{MH}^{+}$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 65.11; H, 5.46; N, 10.85. Found: C, 64.95; H, 5.47; N, 10.65\%.

1-\{1-[(3-(Benzylamino)-2-oxo-1(2H)-pyridinyl)acetyl]-4-piperidinyl\}-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S49). Prepared by Method D using S49d and S1d. The crude solid was recrystallised to give pyridinone S49 ( $216 \mathrm{mg}, 76 \%$ ) as a pale blue powder: mp (EtOAc) $258-260{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.57$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.89 (dd, J = 5.2, 1.2 Hz, 1H, H-5), 7.61 (dd, J = 7.8, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.28-7.36 (m, 4H, H2"', H-3"', H-5"', H-6"'), 7.20-7.24 (m, 1H, H-4"'), 6.98 (dd, J = 7.8, 5.2 Hz, 1H, H-6), 6.81 (dd, $\left.J=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 6.10$ (dd, $J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "$ ), $6.05(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5 "), 5.94(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}), 4.86\left(2 \times \mathrm{d}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.44-$ 4.53 (m, 2H, H-4', H-2', H-6'), $4.30\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.10(\mathrm{br} \mathrm{d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-2', H-6'), 3.28 (br t, J = $12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{2}^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.75 (br t, J = $12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ ), 2.35 (dq, J = 12.5, 3.9 Hz, 1H, H-3', H-5'), 2.08 (dd, J = 12.3, 4.0 Hz, 1H, H-3', H-5'), 1.731.85 (m, 2H, H-3', H-5'); MS m/z 459.7 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}$ : C, 65.49; H, 5.72; N, 18.33. Found: C, 65.16; H, 5.69; N, 18.30\%.

SN35357 N-(1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamide (S50).


1-Benzyl-3-nitropyridin-2(1H)-one (S50a). Prepared using Method E from benzyl bromide and 3-nitro-2(1H)-pyridinone. The crude solid was purified by column chromatography, eluting with 60\% EtOAc/pet. ether, to give nitropyridinone S50a ( 1.69 g , $97 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $96-99{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 86-88{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR $\delta 8.30$ (dd, $J=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.66$ (dd, $J=6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $7.32-7.41$ (m, $\left.5 \mathrm{H}, \mathrm{H}_{\text {aryl }}\right), 6.28$ (dd, $\left.J=7.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} m / z 231.2\left(\mathrm{MH}^{+}\right.$, 100\%).

3-Amino-1-benzylpyridin-2(1H)-one (S50b). Prepared by Method G from nitropyridinone S50a. The crude solid was purified by column chromatography, eluting
with $70 \%$ EtOAc/pet. ether, to give aminopyridinone S50b ( $1.33 \mathrm{~g}, 92 \%$ ) as green crystals: mp (EtOAc/pet. ether) $124-125^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.27-7.35$ (m, 5H, Hary), 6.73 (dd, $J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.52(\mathrm{dd}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), 5.17 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 4.24 (s, 2H, $\mathrm{NH}_{2}$ ); MS m/z $231.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.98 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.99$. Found: C, 72.13; H, 6.16; N, 14.07\%.

N-(1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)-2-bromoacetamide (S50c). Prepared using Method I from 2-bromoacetyl bromide and 3-aminopyridinone S50b. The crude solid was purified by column chromatography, eluting with a gradient (50-100\%) of EtOAc/pet. ether, to give acetamide S50c ( $468 \mathrm{mg}, 63 \%$ ) as white plates: mp (EtOAc/pet. ether) $110-111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.29$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 8.33 (dd, $J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), $7.32-7.40$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}^{\prime \prime} \mathbf{4}^{\prime}, \mathrm{H}-5^{\prime \prime}$ ), 7.27-7.30 (m, 2H, H-2", H-6"), 6.07 (dd, J = 7.0, 1.8 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.25\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.19(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{N}), 3.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $321.1\left(\mathrm{MH}^{+}, 100 \%\right), 323.1\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$ : $\mathrm{C}, 52.36 ; \mathrm{H}, 4.08$; N, 8.72. Found: C, 52.99 ; H, 3.98; N, 8.72\%.

N-(1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamide (S50). Prepared using Method E from bromide S50c and piperidine S1d with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. The crude solid was purified by column chromatography, eluting with EtOAc, to give acetamide $\mathbf{S 5 0}$ ( $195 \mathrm{mg}, 65 \%$ ) as a white powder: mp (EtOAc) 231-234 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta 11.56$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 10.24 (br s, 1H, CONH), 8.24 (dd, J = 7.4, 1.8 Hz, 1H, H-4"'), 7.92 (dd, J = 5.2, 1.2 Hz, 1H, H$5^{\prime \prime}$ ), 7.77 (dd, J = 7.8, 5.2 Hz, 1H, H-7"), 7.56 (dd, J = 6.8, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime \prime}$ ), 7.26-7.38 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-2^{\prime \prime "}, \mathrm{H}-3^{" \prime \prime}, \mathrm{H}-4$ "", H-5"", H-6""), 6.98 (dd, J = 7.8, $\left.5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 "\right), 6.34$ (t, J = $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime \prime}\right), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.22-4.29$ (m, 1H, H-4'), 3.21 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$ ), 2.96 (br d, J = $9.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ ), 2.32-2.48 (m, 4H, H-2', H-3', H-5', H-6'), 1.70-1.78 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ); MS $\mathrm{m} / \mathrm{z} 459.3$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{EtOAc}$ : C , 64.99; H, 5.87; N, 17.49. Found: C, 64.85; H, 5.86; N, 17.23\%.

SN35362 1-\{1-[3-(4-Morpholinyl)propanoyl]-4-piperidinyl\}-1,3-dihydro-2H-benzimidazol-2-one (S51).


1-\{1-[3-(4-Morpholinyl)propanoyl]-4-piperidinyl\}-1,3-dihydro-2H-benzimidazol-2one (S51). Prepared by Method D from 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2one and 3-(4-morpholinyl)propanoic acid hydrochloride. The crude solid was purified by column chromatography, eluting with $5-10 \% \mathrm{MeOH} / \mathrm{DCM}$, to give benzimidazolone S51 ( $141 \mathrm{mg}, 29 \%$ ) as a tan powder: mp (EtOAc/pet. ether) $201-204{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.84$ (s, 1H, CONH), 7.19-7.23 (m, 1H, H-7), 6.95-6.99 (m, 3H, H-4, H-5, H-6), 4.57 (br d, J=12.9 Hz, 1H, H-2', H-6'), 4.41 (tt, $J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 4.03 (br d, $J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 3.57 (br s, 4H, $2 \times \mathrm{CH}_{2} \mathrm{O}$ ), 3.15 (br dd, $\mathrm{J}=12.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-$ $6^{\prime}$ ), 2.65 (br dd, J= 12.9, 11.1 Hz, 1H, H-2', H-6'), 2.54-2.59 (m, 4H, H-2", H-3"), 2.29 (dq, $\left.J=12.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}\right), 2.11$ (dq, $J=12.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 1.71 (br dd, $J$ $\left.=12.7,12.1 \mathrm{~Hz}, \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 359.5$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ : C, $60.05 ; \mathrm{H}, 6.95 ; \mathrm{N}, 14.49$. Found: C, $60.49 ; \mathrm{H}, 7.19 ; \mathrm{N}, 14.08 \%$.

SN35385 N-(1-Benzyl-2-oxo-1,2-dihydro-3-pyridinyl)-2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)-1-piperidinyl]acetamide (S52).



N-(1-Benzyl-2-oxo-1,2-dihydro-3-pyridinyl)-2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)-1-piperidinyl]acetamide (S52). Prepared by Method E from bromide $\mathbf{S 5 0 c}$ and piperidine $\mathbf{S 1 d}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. The crude solid was purified by column chromatography, eluting with EtOAc, to give acetamide S52 ( $275 \mathrm{mg}, 94 \%$ ) as a white powder: mp (EtOAc) 229-232 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.56$ (br s, 1H, CONH), 10.21 (br s, 1H, CONH), 8.25 (dd, $J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}$ ), 7.56 (dd, $J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6"'), 7.44-7.48 (m, 1H, H-7"), 7.32-7.39 (m, 4H, H-2"", H-3"", H-5"", H-6""), 7.27-7.31 (m, 1H, H-4""), 6.96-7.03 (m, 3H, H-4", H-5", H-6"), 6.33 (t, J = 7.1 Hz, 1H, H-5"'), 5.23 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 4.20-4.25 (m, 1H, H-4'), 3.21 (s, 2H, CH2N), 2.97 (br d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$, H-6'), 2.40-2.48 (m, 4H, H-2', H-3', H-5', H-6'), 1.68 (br d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ); MS $\mathrm{m} / \mathrm{z} 458.3\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 3 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 66.72 ; \mathrm{H}, 6.28$; N, 14.54. Found: C, 66.51; H, 5.95; N, 14.73\%.

SN35702 1-(1-(2-((1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)amino)acetyl)piperidin-4-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (S53).


Methyl 2-((1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)amino)acetate (S53a). Prepared using Method I from methyl bromoacetate and amine S50b. The crude oil was purified by column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ pet. ether, to give methyl ester S53a ( $168 \mathrm{mg}, 62 \%$ ) as a blue solid: mp $71-73^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.28-7.35$ (m, 5H, H-2", H-3", H4", H-5", H-6"), 6.67-6.71 (m, 1H, H-6'), 6.09-6.13 (m, 2H, H-4', H-5'), 5.56 (br t, J = 5.4 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 5.17 (s, 2H, CH2N), 3.90 (d, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; MS $\mathrm{m} / \mathrm{z} 273.5\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-((1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)amino)acetic acid (S53b). Prepared using Method J from acetate S53a to give the carboxylic acid S53b ( $226 \mathrm{mg}, 67 \%$ ) as a pale blue solid: mp $144-145^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 12.79$ (br s, $\left.1 \mathrm{H}, \mathrm{COOH}\right), 7.24-7.35(\mathrm{~m}$, 5H, H-2", H-3', H-4", H-5", H-6"), 7.00-7.04 (m, 1H, H-6'), 6.12-6.16 (m, 2H, H-4', H-5'), 5.63 (br s, 1H, NH), 5.12 (s, 2H, NCH2), 3.78 (s, 2H, H2-2); MS m/z $259.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 65.11; H, 5.46; N, 10.85. Found: C, 64.89; H, 5.49; N, 10.93\%

1-(1-(2-((1-Benzyl-2-oxo-1,2-dihydropyridin-3-yl)amino)acetyl)piperidin-4-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (S53). Prepared using Method D from S53b and S1d. The residue was purified by column chromatography, eluting with $4 \% \mathrm{MeOH} / \mathrm{DCM}$, followed by preparative HPLC [gradient (90-50-98\%) ammonium formate $\mathrm{pH} 3.45 / 90 \%$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ ] to give amide S 53 ( $82 \mathrm{mg}, 31 \%$ ) as a dark green powder: $\mathrm{mp} 143{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\delta 8.03$ (dd, J = 7.0, 1.2 Hz, 1H, H-5), 7.25-7.33 (m, 5H, H-2"', H-3"',

H-4"', H-5"', H-6"'), 7.23 (dd, J=7.0, 1.2 Hz, 1H, H-7), 6.94 (dd, J=7.0, 1.2 Hz, 1H, H6), 6.71 (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 6.21$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "), 6.14$ (t, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}), 5.96$ (br s, 1H, NH), 5.14-5.20 (m, 2H, NCH2), 4.89 (br d, J = 12.7 Hz , 1H, H-2' or H-6'), 4.58-4.66 (m, 1H, H-4'), 3.90-4.06 (m,3H, H-2' or H-6', $\mathrm{COCH}_{2}$ ), 3.25 (br t, J = 12.7 Hz, 1H, H2-2' or H2-6'), 2.76 (br t, J = 12.7 Hz, 1H, H2-2' or H2-6'), 2.172.27 (m, 2H, H2-3' or H2-5'), 1.96 (br t, J=12.0 Hz, 2H, H2-3' or H2-5'); ${ }^{13} \mathrm{C}$ NMR $\delta 167.0$ $\left(\mathrm{COCH}_{2}\right), 157.7$ (C-2"), 153.4 (C-2), 143.2 (C-3a), 140.3 (C-5), 138.6 (C-3"), 136.7 (C1"'), 128.9 (C-3"', C-5"'), 128.2 (C-2"', C-6"'), 128.0 (C-4"'), 123.5 (C-6"), 123.3 (C-7a), 117.1 (C-6), 115.5 (C-7), 107.3 (C-5"), 107.0 (C-4"), 52.4 ( $\mathrm{NCH}_{2}$ ), 50.4 (C-4'), 45.6 $\left(\mathrm{COCH}_{2}\right), 44.4$ (C-2' or C-6'), 42.0 (C-2' or C-6'), 30.0 (C-3' or C-5'), 29.3 (C-3' or C-5'); MS m/z 460.0 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H] 459.2144 (calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3}$, 459.2139).

SN35737 N-(1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamide (S54).


1-(2-Methoxyethyl)-3-nitropyridin-2(1H)-one (S54a). ${ }^{4}$ Prepared by Method E from 2bromoethyl methyl ether and 2-hydroxy-3-nitropyridine with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. The crude residue was purified by column chromatography, eluting with $60 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give pyridone S54a ( $0.50 \mathrm{~g}, 71 \%$ ) as yellow needles: $\mathrm{mp} 59-60{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.34$ (dd, $\mathrm{J}=$ 7.7, 2.2 Hz, H-4), 7.75 (dd, $J=6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.27 (dd, $J=7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 4.24-4.26 (m, 2H, CH2-1'), 3.69-3.71 (m, 2H, CH2-2'), 3.32 (s, 3H, OMe-4'); MS m/z 199.5 ( $\mathrm{MH}^{+}, 100 \%$ ).

3-Amino-1-(2-methoxyethyl)pyridin-2(1H)-one (S54b). ${ }^{4}$ Prepared using Method B from S54a to give the amine S54b ( $697 \mathrm{mg}, 97 \%$ ) as a clear yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.78$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.54$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 4.27$ (br s, 2H, NH2), 4.16 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1^{\prime}$ ), 3.69 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ ), 3.32 (s, 3H, OMe-4'); MS m/z $169.5\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-Bromo-N-(1-(2-methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)acetamide (S54c). Prepared using Method I from 2-bromoacetyl bromide and amine S54b. The residue was purified by column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ pet. ether, give the amide S54c (276 mg, 86\%) as an orange solid: mp 99-100 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.26$ (br s, 1H, NH), 8.34 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.11$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.23$ (t, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 4.18$ (t, J = $5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1$ '), 3.99 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.69 (t, J = $5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ ), 3.32 (s, 3H, OMe-4'); MS m/z $291.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot 0.05 \mathrm{H}_{2} \mathrm{O}$ : C, 41.40; H, 4.86; N, 9.66. Found: C, 40.95; H, 4.44; N, 9.35\%.

N-(1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)-2-(4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamide (S54). Prepared using Method E from bromide $\mathbf{S 5 4 c}$ and piperidine $\mathbf{S 1 d}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ at $20^{\circ} \mathrm{C}$. The residue was purified by column chromatography, eluting with $75 \%$ acetone/EtOAc, to give a cream coloured precipitate. The precipitate was washed with EtOAc $(2 \times 5 \mathrm{~mL})$ and dried under vacuum
to give the amide S54 (244 mg, 48\%) as a white solid: mp 181-182 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.33$ (br s, 1H, NH), 9.20 (br s, 1H, NH-3), 8.39 (dd, J = 7.1, 1.8 Hz, 1H, H-4"), 8.05 (dd, J = $5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.88$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.10 (dd, $J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-6"), 7.05 (dd, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.23 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}), 4.51-4.57$ (m, $1 \mathrm{H}, \mathrm{H}-4$ '), 4.22 (t, J = 5.2 Hz, 2H, H2-1"'), 3.74 (t, J = 5.2 Hz, 2H, H2-2"'), 3.35 (s, 3H, OMe-4'"), 3.24 (s, 2H, CH2CO), 3.02-3.07 (m, 2H, H2-2', H2-6'), 2.47-2.59 (m, 4H, H-2', H-3', H-5', H-6'), 1.90-1.95 (m, 2H, H2-3', H2-5'); ${ }^{13} \mathrm{C}$ NMR ס 169.6 ( $\mathrm{CH}_{2} \mathrm{CO}$ ), 157.6 (C2"), 153.8 (C-2), 143.5 (C-3a), 140.1 (C-5), 131.8 (C-6"), 129.0 (C-3"), 123.4 (C-7a), 122.4 (C-4"), 117.1 (C-6), 117.0 (C-6), 106.1 (C-5"), 70.3 (C-2"'), 61.9 ( $\mathrm{CH}_{2} \mathrm{CO}$ ), 59.2 (C-4"'), 53.4 (C-2', C-6'), 50.1 (C-1"'), 49.4 (C-4'), 29.7 (C-3', C-5'); MS m/z 427.9 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4}$ : C, 59.14; H, 6.14; N, 19.71. Found: C, 58.97; H, 6.14; N, 19.82\%.

SN35765 1-(1-(2-((1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)amino)acetyl)piperidin-4-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (S55).


Methyl 2-((1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)amino)acetate (S55a). Prepared using Method I from methyl bromoacetate and amine S54b. The crude residue was purified by column chromatrography, eluting with 60-90\% EtOAc/pet. ether, to give methyl ester S55a (187 mg, 25\%) as a blue oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.75$ (dd, $J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 6.07-6.14 (m, 2H, H-5, H-4), 5.48 (br t, J = 5.9 Hz, 1H, NH), 4.14 (t, J = 5.2 Hz, 2H, $\mathrm{H}_{2}-1$ '), 3.90 (d, J=5.9 Hz, 2H, CH2NH), 3.77 (s, 3H, COOMe), 3.69 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-$ 2'), 3.32 (s, 3H, OMe-4'); MS m/z $241.5\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-((1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)amino)acetic Acid (S55b). Prepared using Method J from methyl ester S55a to give acid S55b (103 mg, 98\%) as a blue solid: ${ }^{1} \mathrm{H}$ NMR $\delta 6.79$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.22 (dd, $J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), $6.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.16\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1\right), 3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.69$ (t, J = 5.1 Hz, 2H, H2-2'), 3.32 (s, 3H, OMe-4'); MS m/z 227.5 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 227.1020$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}, 227.1026$ ).

1-(1-(2-((1-(2-Methoxyethyl)-2-oxo-1,2-dihydropyridin-3-yl)amino)acetyl)piperidin-4-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (S55). Prepared using Method D from acid S55b and piperidine S1d. The resulting dark green residue was purified by column chromatography, eluting with $25 \% \mathrm{MeOH} / E t O A c$, to give a green residue, which was triturated with pet. ether to give the amide $\mathbf{S 5 5}$ ( $27 \mathrm{mg}, 9 \%$ ) as a light green solid: mp $213-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.32$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.04 (d, J = $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.22 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.97$ (dd, J = 7.9, 5.3 Hz, 1H, H-6), 6.77 (dd, J = 6.7, 1.2 Hz, 1H, H-6"), 6.22 (d, J = 6.7 Hz, 1H, H-4"), 6.12 (t, J = 6.7 Hz, 1H, H-5"), 5.86 (br t, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$ ), 4.90 (br d, J = 13.0 Hz, 1H, H-2' or H-6'), 4.57-4.65 (m, 1H, H-4'), 4.15 (t, J = $\left.4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1{ }^{\prime \prime} \mathrm{\prime}\right), 3.90-4.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or $\left.\mathrm{H}-6{ }^{\prime}, \mathrm{COCH}_{2}\right), 3.70\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-\right.$ 2'"), 3.32 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}-4{ }^{\prime \prime}$ ), 3.25 (br t, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 2.77 (br t, J=12.7 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-\mathrm{Z}^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.17-2.27 (m, 2H, H2-3' or H2-5'), 1.98 (br t, J = $11.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-$ 3' or $\mathrm{H}_{2}-5$ '); ${ }^{13} \mathrm{C}$ NMR $\delta 167.1\left(\mathrm{COCH}_{2}\right), 157.6$ (C-2"), 153.1 (C-2), 143.0 (C-3a), 140.7
(C-5), 138.3 (C-3"), 125.3 (C-6"), 123.2 (C-7a), 117.2 (C-6), 115.4 (C-7), 107.3 (C-5"), 106.4 (C-4"), 70.7 (C-2'"), 59.1 (C-4'"), 50.4 (C-4'), 49.9 (C-1'"), 45.6 (COCH2), 44.4 (C2' or C-6'), 42.0 (C-2' or C-6'), 30.0 (C-3' or C-5'), 29.3 (C-3' or C-5'); (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{Na}]^{+} 449.1912$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{276} \mathrm{~N}_{6} \mathrm{NaO}_{4}, 449.1921$ ).

SN35766 N-(5-(3-Methoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S56).


N-(5-(3-Methoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S56). Prepared using Method C from S1d and S58. The crude residue was purified by column chromatography, eluting with $10-20 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 5 6}$ ( $68 \mathrm{mg}, 54 \%$ ) as an off-white solid: mp $268-271^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.62$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.10 (d, J = 2.1 Hz , H-4"), 8.03-8.04 (m, 2H, H-5, CONH), 7.31 (dd, J = 7.9, 1.0 Hz, 1H, H-7), 7.24 (t, J = 8.0 Hz, 1H, H-5'"), 6.97 (dd, J = 7.9, 5.1 Hz, 1H, H-6), 6.77-6.81 (m, 2H, H-4"', H-6"'), 6.74 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}$ '), 6.67 (d, $\left.J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 5.60$ (tt, $J=12.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.34 (br d, $J=12.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or H-6'), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}-3^{\prime \prime}{ }^{\prime}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57(\mathrm{~s}, 3 \mathrm{H}$, Me-1"), 3.02-3.08 (m, 2H, H2-2' or H2-6'), 2.26 (qd, $J=12.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.94-1.97 (m, 2H, H2-3' or H2-5'); ${ }^{13} \mathrm{C}$ NMR $\delta 160.0$ (C-3'"), 157.4 (C-2"), 154.1 (CONH), 153.2 (C-2), 143.1 (C-3a), 141.3 (C-1"'), 140.5 (C-5), 130.1 (C-3"), 129.8 (C-5"'), 127.2 (C-6"), 123.3 (C-7a), 121.7 (C-4"), 121.3 (C-6"'), 120.1 (C-5"), 117.1 (C-6), 115.6 (C-7), 114.9 (C-2"'), 111.8 (C-4'"), 55.4 (OMe-3"'), 50.5 (C-4'), 44.0 (C-2', C-6'), 38.7 (CH2), 37.9 (Me-1"), 29.5 (C-3', C-5'); MS m/z 490.2 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.5 \mathrm{MeOH}: \mathrm{C}, 63.08 ; \mathrm{H}, 5.99$; N, 16.66. Found: C, $63.25 ; \mathrm{H}, 5.77$; N, 16.45\%.

SN35767 5-(3-Methoxybenzyl)-1-methyl-3-nitropyridin-2(1H)-one (S57).


1-Ethyl-3-nitro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2(1H)-one (S57a). Bromide S1a ( $500 \mathrm{mg}, 2.15 \mathrm{mmol}$ ), B2Pin2 ( $599 \mathrm{mg}, 2.36 \mathrm{mmol}$ ) and KOAc ( 1.28 $\mathrm{g}, 13.09 \mathrm{mmol}$ ) were suspended in DMSO $(25 \mathrm{~mL})$. The reaction mixture was purged with dry $\mathrm{N}_{2}$ (gas bubbling through solution) for 10 min before addition of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$. DCM ( 88 $\mathrm{mg}, 0.11 \mathrm{mmol}$ ). The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 1 h while being continuously purged with dry $\mathrm{N}_{2}$. The resulting cooled mixture was diluted with EtOAc $(100 \mathrm{~mL})$ and partitioned with water ( 200 mL ). The aqueous layer was extracted with more EtOAc ( $4 \times 100 \mathrm{~mL}$ ). The organic fractions were dried and concentrated under vacuum to give a dark brown residue. The residue was triturated with $25 \%$ EtOAc/pet. ether and filtered through a pad of diatomaceous earth. The filtrate was concentrated and dried under vacuum to give the boronate ester S57a ( 577 mg ) as a light brown solid, which was used in the next step without further purification: mp 211-214 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.58$ (d, $\mathrm{J}=$
$2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 8.07$ (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.70 (s, $3 \mathrm{H}, \mathrm{Me}-1$ ), 1.34 (s, 12H, $\mathrm{H}_{3}-\mathrm{Q}^{\prime}$, $\mathrm{H}_{3}-5$ ').

5-(3-Methoxybenzyl)-1-methyl-3-nitropyridin-2(1H)-one (S57). Prepared using Method A from S57a and 3-methoxybenzyl bromide with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right) 4$. The crude material was purified by column chromatography, eluting with 10-20\% EtOAc/DCM, to give the pyridone S57 (130 mg, 23\%) as a yellow solid: mp 88-89 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.17$ (d, J = 2.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.43(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.83 (dd, J = $\left.7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.75$ (dd, J=7.9, 1.3 Hz, 1H, H-6'), 6.69 (m, 1H, H-2'), 3.81 (s, 3H, OMe-3'), 3.77 (s, 2H, CH2), 3.64 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 160.3$ (C-3'), 154.3 (C-2), 142.9 (C-6), 139.8 (C-4), 139.6 (C-1'), 138.5 (C-3), 130.4 (C-5'), 121.1 (C-6'), 116.6 (C-5), 115.0 (C-2'), 112.3 (C-4'), 55.4 (OMe-3'), 39.0 (Me-1), $37.4\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 275.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 61.31; H, 5.14; N, 10.21. Found: C, 61.23; H, 5.29; N, 10.07\%.

SN35768 3-Amino-5-(3-methoxybenzyl)-1-methylpyridin-2(1H)-one (S58).


3-Amino-5-(3-methoxybenzyl)-1-methylpyridin-2(1H)-one (S58). Prepared using Method B from S57. The residue was triturated with diethyl ether to obtain the amine S58 ( 92 mg , quant.) as a tan powder: mp $101-103^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.22(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5'), 6.77 (dd, J = 8.1, $\left.2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4 ', \mathrm{H}^{\prime} \mathrm{G}^{\prime}\right), 6.71$ (t, J = 2.2 Hz, 1H, H-2'), 6.52-6.53 (m, $1 \mathrm{H}, \mathrm{H}-6$ ), 6.36 (d, J = $2.2 \mathrm{~Hz}, \mathrm{H}-4$ ), 4.15 (s, 2H, NH2), 3.79 (s, 3H, OMe-3'), 3.60 (s, 2H, $\mathrm{CH}_{2}$ ), 3.54 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 159.9$ (C-3'), 157.5 (C-2), 141.7 (C-1'), 137.4 (C-3), 129.6 (C-5'), 124.1 (C-6), 121.2 (C-6'), 119.3 (C-5), 114.8 (C-2'), 114.0 (C-4), 111.6 (C$4^{\prime}$ ), 55.3 (OMe-3'), $38.3\left(\mathrm{CH}_{2}\right), 37.5$ (Me-1); MS m/z 245.6 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.38 ; \mathrm{H}, 6.76$; N, 11.06. Found: C, 66.28; H, 6.36; N,10.95\%.

SN35769 1-(1-(2-(2-Oxo-3-(propylamino)pyridin-1(2H)-yl)acetyl)piperidin-4-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one (S59).


Methyl 2-(3-Nitro-2-oxopyridin-1(2H)-yl)acetate (S59a). Prepared using Method E from methylbromoacetate and 2-hydroxy-3-nitropyridine. The crude residue was purified by column chromatography, eluting with 60-100\% EtOAc/pet. ether, to give ester S59a (1.15 $\mathrm{g}, 76 \%)$ as an orange solid: ${ }^{1} \mathrm{H}$ NMR $\delta 8.41$ (dd, $J=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.64 (dd, $J=6.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (dd, J = 7.6, 6.7 Hz, 1H), 4.79 (s, 2H), 3.84 (s, 3H); MS m/z 213.5 ( $\mathrm{MH}^{+}$, 100\%).
Methyl 2-(3-Amino-2-oxopyridin-1(2H)-yl)acetate (S59b). Prepared using Method B from S59a to give amine S59b (383 mg, 88\%) as a yellow-green oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.66$ (dd,
$J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}$, 2H), 4.21 (br s, 2H), 3.78 (s, 3H); MS m/z 183.5 ( $\mathrm{MH}^{+}, 100 \%$ ).

Methyl 2-(2-Oxo-3-(propylamino)pyridin-1(2H)-yl)acetate (S59c). To a solution of the amine S59b ( $158 \mathrm{mg}, 0.87 \mathrm{mmol}$ ) in DCM $(10 \mathrm{~mL})$ was added propionaldehyde $(94 \mu \mathrm{~L}$, 1.30 mmol ). The resulting mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 4 h under $\mathrm{N}_{2}$ before addition of $\mathrm{NaBH}(\mathrm{OAc})_{3}(202 \mathrm{mg}, 0.95 \mathrm{mmol})$, which was left to stir 17 h at $20^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. The reaction mixture was diluted with EtOAc ( 50 mL ), washed with $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ and brine ( 50 mL ), dried and concentrated under reduced pressure to give a crude blue oil. The crude residue was purified by column chromatography, eluting with 30-40\% EtOAc/pet. ether, to give ester S59c (145 mg, 75\%) as a blue solid: mp $60-61{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.55$ (m, 1H, H-6), 6.16 (m, 2H, H-4, H-5), 4.96 (br s, 1H, NH), 4.65 (s, 2H, $\mathrm{CH}_{2} \mathrm{CO}$ ), 3.76 (s, 3H, OMe), 3.02 (td, $\left.J=7.1,5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1{ }^{\prime}\right), 1.66$ (qt, $J=7.4,7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right), 0.99\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3}-3 \mathrm{l}\right)$; MS $\mathrm{m} / \mathrm{z} 225.5\left(\mathrm{MH}^{+}, 100 \%\right)$.

2-(2-Oxo-3-(propylamino)pyridin-1(2H)-yl)acetic Acid (S59d). Prepared using Method J from methyl ester S59c to give the acid S59d (105 mg, 92\%) as a grey solid: mp 148$150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.62$ (dd, J = 6.0, 2.2 Hz, 1H, H-6), 6.31 (m, 2H, H-4, H-5), 4.70 (s, 2H, $\mathrm{CH}_{2} \mathrm{CO}$ ), 3.05 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1{ }^{\prime}$ ), 1.68 (qt, $J=7.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ '), $1.01(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{2}-3$ '); MS m/z 211.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.08 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 56.74; H, 6.74; N, 13.23. Found: C, 57.21; H, 6.79; N, 12.73\%.

## 1-(1-(2-(2-Oxo-3-(propylamino)pyridin-1(2H)-yl)acetyl)piperidin-4-yl)-1H-

 imidazo[4,5-b]pyridin-2(3H)-one (S59). Prepared using Method D from S59d and S1d. The crude green oil was purified by column chromatography, eluting with 6-10\% $\mathrm{MeOH} / \mathrm{EtOAc}$, which was triturated with $10 \% \mathrm{EtOAc} /$ pet. ether to give the amide S59 (34 $\mathrm{mg}, 17 \%$ ) as a light blue powder: mp $188-191^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.15$ (br s, 1H, NH-3), 8.02 (dd, $J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.44$ (dd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.98 (dd, $J=7.7,5.1$ Hz, 1H, H-6), 6.71 (dd, J = 6.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 6.21-6.26$ (m, 2H, H-4", H-5"), 5.12 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCH}_{2}$ ), 4.93 (t, $J=5.3 \mathrm{~Hz}, \mathrm{NHCH}_{2}$ ), 4.82 (br d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-1^{\prime}$ or H-6'), 4.59-4.66 (m, 1H, H-4'), 4.51 (d, J = $14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCH}_{2}$ ), 4.20 (br d, J = 11.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-1^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.30 (br t, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-1^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.04 (td, $J=7.4,5.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-1^{\prime \prime} \mathrm{\prime}$ ), 2.76 (br t, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-1$ ' or H2-6'), 2.34-2.42 (m, 1H, H2-3' or H2$5^{\prime}$ ), 2.17-2.26 (m, 1H, H2-3' or H2-5'), 1.90-1.98 (m, 2H, H2-3' or H2-5'), 1.68 (qt, J = 7.5, $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2{ }^{\prime \prime \prime}\right), 1.01$ (t, J = $\left.7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.8\left(\mathrm{COCH}_{2}\right), 157.7(\mathrm{C}-$ 2"), 153.3 (C-2), 143.1 (C-3a), 140.6 (C-5), 139.0 (C-3"), 123.2 (C-7a), 123.1 (C-6"), 117.1 (C-6), 116.0 (C-7), 107.9 (C-5"), 106.5 (C-4"), 50.1 (C-4'), $49.9\left(\mathrm{COCH}_{2}\right), 45.3$ (C-2' or 6'), 45.2 (C-1'"), 42.4 (C-2' or 6'), 29.7 (C-3' or C-5'), 29.2 (C-3' or C-5'), 22.3 (C-2"'), 11.9 (C-3"'); MS m/z 411.9 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H]+ 411.2126 (calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3}, 411.2139$ ).SN35770 N-(5-(2,3-Difluorobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S60).




5-(2,3-Difluorobenzyl)-1-methyl-3-nitropyridin-2(1H)-one (60a). Prepared using Method A from S1a and 2,3-difluorophenylboronic acid. The crude mixture was purified by column chromatography, eluting with $10-20 \% \mathrm{EtOAc} / \mathrm{DCM}$. Further column chromatography, eluting with EtOAc, gave $\mathbf{S 6 0 a}(0.022 \mathrm{~g}, 12 \%)$ as a yellow powder: mp $151-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.19(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.58(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.06-$ 7.15 (m, 2H, H-4', H-5'), 6.95-6.99 (m, 1H, H-6'), 3.85 (s, 2H, CH2), 3.66 (s, 3H, Me-1); MS m/z $281.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 55.72 ; \mathrm{H}, 3.60 ; \mathrm{N}, 10.00$. Found: C, 55.98; H, 3.62; N, 9.73\%.

3-Amino-5-(2,3-difluorobenzyl)-1-methylpyridin-2(1H)-one (S60b). Prepared using Method B from S60a. The crude product which was purified by column chromatography, eluting with EtOAc. Amine S60b ( 35 mg , quant.) was obtained as a tan powder: mp 130$134{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\delta 6.98-7.08$ (m, 2H, H-4', H-5'), 6.89-6.92 (m, 1H, H-6'), 6.56 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.38 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.19 (br s, 2H, NH2), 3.67 (s, 2H, $\mathrm{CH}_{2}$ ), 3.54 (s, $3 \mathrm{H}, \mathrm{Me}-1$ ); MS m/z $251.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot 0.15 \mathrm{EtOAc}: \mathrm{C}, 54.88 ; \mathrm{H}, 4.42 ; \mathrm{N}, 9.62$. Found: C, $55.28 ; \mathrm{H}, 4.36 ; \mathrm{N}, 9.62 \%$.

N-(5-(2,3-Difluorobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S60). Prepared using Method C . The crude mixture was purified by column chromarography, eluting with $10 \% \mathrm{MeOH} / E t O A c$, to give urea S60 ( $86 \mathrm{mg}, 64 \%$ ) an off-white solid: mp $241-243^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.89$ (br s, 1H, NH-3), 8.11 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), $8.04-8.05$ (m, 2H, H-5, CONH), 7.30 (dd, J = 7.9, 1.2 Hz, 1H, H-7), 7.02-7.09 (m, 2H, H-4"', H-5"'), 6.96-7.00 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-6^{\prime \prime}$ ), 6.75 (d, J = $\left.1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 4.59$ (tt, J = 12.5, 4.1 Hz, 1H, H-4'), 4.34 (br d, J = $13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6^{\prime}$ ), 3.79 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.59 (s, $3 \mathrm{H}, \mathrm{Me}-1{ }^{\prime \prime}$ ), 3.06 (br t, J=12.7 Hz, 2H, H2-2' or $\mathrm{H}_{2}-6$ '), 2.27 (qd, $J=12.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.96 (br dd, J=12.7, 2.1 Hz, 2H, H2-3' or H2-5'); ${ }^{3} \mathrm{C}$ NMR $\delta 157.3$ (C-2"), 154.1 (CONH), 153.3 (C-2), 150.8 (dd, J = 248.4, $13.3 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime \prime \prime}$ ), 149.1 (dd, J=247.0, $12.8 \mathrm{~Hz}, \mathrm{C}-2{ }^{\prime \prime}$ ), 143.2 (C-3a), 140.5 (C-5), 130.3 (C-3"), 129.3 (C-1"'), 127.3 (C-6"), 125.5 (C-6"'), 124.4 (C-5"'), 123.3 (C-7a), 121.2 (C-4"), 118.2 (C-5"), 117.1 (C-6), 115.9 (C-4'"), 50.5 (C-4'), 44.0 (C2', C-6'), 38.0 ( $\mathrm{Me}-1{ }^{\prime \prime}$ ), 31.6 ( $\mathrm{CH}_{2}$ ), 29.5 (C-3', C-5'); MS m/z 496.1 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}: \mathrm{C}, 60.72 ; \mathrm{H}, 4.89 ; \mathrm{N}, 17.00$. Found: C, $60.44 ; \mathrm{H}, 4.90 ; \mathrm{N}, 16.83 \%$.

SN35771 N-(5-(4-Carbomethoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S61).


5-(4-Carbomethoxybenzyl)-1-methyl-3-nitropyridin-2(1H)-one (S61a). Prepared using Method A from S1a and (4-(methoxycarbonyl)benzyl)boronic acid. The crude mixture was purified by column chromatography, eluting with 10-20\% EtOAc/DCM, to give a yellow residue which was purified by column chromatography, eluting with EtOAc, to give S61a ( $164 \mathrm{mg}, 22 \%$ ) as a yellow powder: mp 164-167 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.15$ ( $\mathrm{d}, \mathrm{J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 8.01-8.04$ (m, 2H, H-3', H-5'), 7.45 (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.24 (obsc., 2H, H-2', H-6'), 3.93 (s, 3H, OMe), 3.86 (s, 2H, CH2), 3.65 (s, 3H, Me-1); MS m/z 303.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 59.60 ; \mathrm{H}, 4.67 ; \mathrm{N}, 9.27$. Found: C, 59.75; H, 4.64; N, 9.20\%.

3-Amino-5-(4-carbomethoxybenzyl)-1-methyIpyridin-2(1H)-one (S61b). Prepared using Method B from S61a. The crude product which was purified by column chromatography, eluting with ( $0-2 \%$ ) MeOH/EtOAc, to give amine S61b ( $111 \mathrm{mg}, 87 \%$ ) as an off-white solid: mp 170-172 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.96-7.99$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 7.24 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 6.51-6.52 (m, 1H, H-6), 6.32 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.18 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}-3$ ), 3.91 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 3.68 (s, 2H, CH2), 3.54 (s, 3H, Me-1); MS m/z 273.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 66.16; $\mathrm{H}, 5.92 ; \mathrm{N}, 10.29$. Found: C, 66.24; H, 5.91; N, 10.32\%.

## N -(5-(4-Carbomethoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-

 2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S61). Prepared using Method C from S61b and S1d. The product was washed with EtOAc (2 $\times 3 \mathrm{~mL}$ ) and dried under vacuum to give urea $\mathbf{S 6 1}$ ( $144 \mathrm{mg}, 84 \%$ ) as an off-white solid: mp 245-248 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.0$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.08 (d, J = $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}\right), 8.04-$ 8.05 (m, 2H, H-5, CONH), 7.97-8.00 (m, 2H, H-3"', H-5"'), 7.27-7.31 (m, 3H, H-7, H-2"', H-6"'), 6.97 (dd, J = 7.9, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.68 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 4.59 (tt, J = 12.7, $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.33$ (br d, J=12.7 Hz, 1H, H2-2' or $\mathrm{H}_{2}-6^{\prime}$ ), 3.91 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 3.79 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.58 (s, 3H, Me-1"), 3.05 (br t, $J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.26 ( $\mathrm{qd}, \mathrm{J}=$ 12.7, $4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.95 (dd, $J=12.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR б 167.1 (COOMe), 157.3 (C-2"), 154.0 (CONH), 153.4 (C-2), 145.0 (C-1"'), 143.2 (C-3a), 140.5 (C-5), 130.3 (C-3"), 130.2 (C-3'", C-5"'), 128.9 (C-2"', C-6"'), 128.7 (C-4"'), 127.2 (C-6"), 123.3 (C-7a), 121.4 (C-4"), 119.4 (C-5"), 117.1 (C-6), 115.5 (C-7), 52.2 (OMe), 50.5 (C-4'), 43.9 (C-2', C-6'), 38.6 ( $\mathrm{CH}_{2}$ ), 37.9 (Me-1"), 29.5 (C-3', C-5'); (+)-HRESIMS $\mathrm{m} / \mathrm{z} \quad[\mathrm{M}+\mathrm{Na}]^{+} 539.2008$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{NaO}_{5}, 539.2013$ ). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 0.55 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.78 ; \mathrm{H}, 5.46 ; \mathrm{N}, 16.27$. Found: C, 61.51; H, $5.41 ; \mathrm{N}, 15.82 \%$.SN35774 N-(5-(3-Cyanobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S62).


5-(3-Cyanobenzyl)-1-methyl-3-nitropyridin-2(1H)-one (S62a). Prepared using Method A from S1a and 3 -cyanobenzylboronic acid. The crude mixture was purified by column chromatography, eluting with $10-12 \%$ EtOAc/DCM, to give $\mathbf{S 6 2 a}(41 \mathrm{mg}, 6 \%)$ as a yellow powder: mp 187-190 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.12(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.60-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$

4'), 7.47-7.52 (m, 3H, H-6, H-2', H-5'), 7.42-7.44 (m, 1H, H-6'), 3.85 (s, 2H, CH ${ }^{2}$ ), 3.67 (3H, s, Me-1); MS m/z 270.5 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, 62.45; H, 4.12; N, 15.61. Found: C, 62.35; H, 4.19; N, 15.41\%.
3-Amino-5-(3-cyanobenzyl)-1-methylpyridin-2(1H)-one (S62b). Prepared using Method B from S62a. The crude product which was purified by column chromatography, eluting with EtOAc, to give amine S62b ( $24 \mathrm{mg}, 69 \%$ ) as an off-white solid: mp 161-164 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.51-7.54$ (m, 1H, H-4'), 7.47 (d, J = $\left.0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right), 7.39-7.44$ (m, 2H, H-5', H-6'), 6.53 (m, 1H, H-6), 6.27 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.22 (br s, 2H, NH2-3), 3.66 (s, 2H, CH2), $3.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-1)$; MS m/z $240.6\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.24 ; \mathrm{H}, 5.72$; N, 16.80. Found: C, 66.84; H, 5.32; N, 16.75\%.

## N-(5-(3-Cyanobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S62). Prepared using Method C from S62b and S1d. The crude mixture was purified by column chromatography, eluting with $10 \% \mathrm{MeOH} / E t O A c$. The product was concentrated under reduced pressure, redissolved in DCM ( 1 mL ), and triturated in diethyl ether ( 20 mL ). The product was filtered and dried under vacuum to give urea $\mathbf{S 6 2}$ ( $34 \mathrm{mg}, 65 \%$ ) as an offwhite solid: mp 210-212 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 11.03$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.05-8.07 (m, 3H, H-5, CONH, H-4"), 7.53 (ddd, J = 7.4, 1.5, 1.5 Hz, 1H, H-4"'), 7.40-7.48 (m, 3H, H-2"', H-5"', H-6"'), 7.30 (dd, J = 7.9, 1.2 Hz, 1H, H-7), 6.97 (dd, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.74 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 4.60$ (tt, J = 12.3, 4.4 Hz, 1H, H-4'), 4.34 (br d, J = 12.3, 2H, H2-2' or $\mathrm{H}_{2}-6^{\prime}$ ), 3.78 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.62 (s, $3 \mathrm{H}, \mathrm{Me}-1^{\prime \prime}$ ), 3.06 (brt, J = $12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-\mathrm{2}^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.28 (qd, $J=12.3,4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.96 (d, $J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR $\delta 157.3$ (C-2"), 154.0 (CONH), 153.7 (C-2), 143.5 (C-3a), 141.3 (C-1"'), 140.2 (C-5), 133.3 (C-2"'), 132.2 (C-6"'), 130.5 (C-3", C-4"'), 129.6 (C-5"'), 127.3 (C-6"), 123.3 (C-7a), 121.0 (C-4"), 118.8 (CN-3"'), 118.5 (C-5"), 116.8 (C-6), 115.4 (C-7), 112.8 (C-3"'), 50.3 (C-4'), 43.9 (C-2', C-6'), 38.0 (Me-1", $\mathrm{CH}_{2}$ ), 29.4 (C-3', C-5'); MS m/z 485.2 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.99 ; \mathrm{H}, 5.27 ; \mathrm{N}, 20.09$. Found: C, 64.16; H, 5.19; N, 19.91\%.SN35775 N-(5-(4-Methoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S63).


5-(4-Methoxy)-1-methyl-3-nitropyridin-2(1H)-one (S63a). Prepared using Method A from S1a and 4-methoxybenzylboronic acid. The crude mixture was purified by column chromatography, eluting with 5-10\% EtOAc/DCM, to give pyridone S63a ( $22 \mathrm{mg}, 4 \%$ ) as a yellow powder: mp $169-171^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.15$ (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.44 (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.02-7.14$ (m, 2H, H-2', H-6'), 6.86-6.90 (m, 2H, H-3', H-5'), 3.81 (s, 3H, OMe-4'), 3.75 (s, 2H, CH2), 3.63 (s, 3H, Me-1); MS m/z 275.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 60.12; H, 5.26; N, 10.02. Found: C, 60.49; H, 5.18; N, 9.63\%.
3-Amino-5-(4-methoxybenzyl)-1-methylpyridin-2(1H)-one (S63b). Prepared using Method B from S63a. The product was purified by column chromatography, eluting with $1 \% \mathrm{MeOH} / E t O A c$, to give amine S63b (52 mg, 85\%) as an off-white solid: mp 130-131
${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.06-7.10$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~L}, \mathrm{H}-6$ '), 6.82-6.86 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ ', H-5'), 6.49 ( $\mathrm{m}, 1 \mathrm{H}$, $\mathrm{H}-6$ ), 6.35 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.15 (br s, NH2-3), 3.79 (s, $3 \mathrm{H}, \mathrm{OMe}-4$ ), 3.57 ( $\mathrm{s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), 3.53 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-1$ ); MS $\mathrm{m} / \mathrm{z} 245.6$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$, 68.83; H, 6.60; N, 11.47. Found: C, 68.54; H, 6.73; N, 11.35\%.

N-(5-(4-Methoxybenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H -imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S63). Prepared using Method C from S63a and S1d. The crude mixture was purified by column chromatography, eluting with $10 \% \mathrm{MeOH} / E t \mathrm{Ac}$, to give urea $\mathbf{S 6 3}(39 \mathrm{mg}, 45 \%$ ) as an off-white solid: mp 234-237 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.24$ (s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.09 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4$ "), 8.05 (dd, $J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 8.03 (s, 1H, CONH), 7.30 (dd, $J=7.9,1.3 \mathrm{~Hz}$, 1H, H-7), 7.11-7.14 (m, 2H, H-2"', H-6"'), 6.97 (dd, J = 7.9, 5.3 Hz, 1H, H-6), 6.84-6.87 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{l'}$ ', H-5'"), 6.64-6.65 (m, 1H, H-6"), 4.60 (tt, J = 12.6, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.34 (d, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}-4{ }^{\prime \prime}\right)$ ), 3.68 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}$ ), 3.57 (s, 3 H , $\left.\mathrm{Me}-1^{\prime \prime}\right), 3.05\left(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right.$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.26 ( $\mathrm{dq}, \mathrm{J}=12.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.95 (dd, $\mathrm{J}=12.07,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR $\delta 158.4$ (C-4"'), 157.3 (C2"), 154.1 (CONH), 153.5 (C-2), 143.3 (C-3a), 140.4 (C-5), 131.7 (C-1"'), 130.1 (C-3"), 129.9 (C-2"'), 126.9 (C-6"), 123.3 (C-7a), 121.7 (C-4"), 120.8 (C-5"), 117.0 (C-6), 115.5 (C-7), 114.3 (C-3'"), 55.4 ( $\mathrm{OMe}-4{ }^{\prime \prime \prime}$ ), 50.4 (C-4'), 44.0 (C-2', $\mathrm{C}-6$ '), 37.9 ( $\mathrm{CH}_{2}$ ), 37.8 ( $\mathrm{Me}-$ $1^{\prime \prime}$ ), 29.5 (C-3', C-5'); MS m/z $490.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ : C, 63.34; H, 5.83; N, 17.04. Found: C, 63.19; H, 5.63; N, 16.84\%.

SN36205 (Z)-3-((2,5-Dimethyl-1-phenyl-1 H-pyrrol-3-yl)methylene)indolin-2-one (S64).

(Z)-3-((2,5-Dimethyl-1-phenyl-1H-pyrrol-3-yl)methylene)indolin-2-one Prepared using Method N indolin-2-one and 2,5-dimethyl-1-phenyl-1H-pyrrole-3carbaldehyde. The resulting crystals were filtered and dried to give indoline S64 $\mathbf{( 2 9 5 \mathrm { mg } \text { , }}$ $62 \%$ ) as yellow plates: mp (EtOH) $213-216^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.08$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.89 (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.82 ( s, $1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$ ), $7.45-7.55$ (m, $3 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-4^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}$ ), $7.23-$ 7.27 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$, H-5"'), 7.18 (dt, J = 7.7, 1.1 Hz, 1 H, H-5), 7.03 (dt, J=7.6, 1.1 Hz, 1 $\mathrm{H}, \mathrm{H}-6$ ), 6.90 (brd, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.63 (s, $1 \mathrm{H}, \mathrm{H}-1$ '), 2.21 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.09 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right)$; MS $\mathrm{m} / \mathrm{z} 315.2$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 80.23 ; \mathrm{H}, 5.77$; N, 8.99. Found: C, 80.25; H, 5.92; N, 8.89\%.

SN36206 N-(5-(3-Fluorobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H -imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S65).






5-(3-Fluorobenzyl)-1-methyl-3-nitropyridin-2(1H)-one (S65a). Prepared using Method A from S1a and 3 -fluorobenzylboronic acid. The crude mixture was purified by column chromatography, eluting with 5-10\% EtOAc/DCM, to give pyridone S65a ( $133 \mathrm{mg}, 19 \%$ ) as a yellow powder: mp $110-111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.15(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.45(\mathrm{~d}, \mathrm{~J}$
$=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $7.30-7.36$ (ddd, J = 6.0, 6.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}), 6.95-7.02$ (m, 2H, H4', H-6'), 6.87 (ddd, J = 9.5, 2.0, $1.9 \mathrm{~Hz}, \mathrm{H}-2$ '), 3.80 (s, 2H, CH2), 3.65 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 163.3$ (d, Jcf = $246.0 \mathrm{~Hz}, \mathrm{C}-3 '), 154.3$ (C-2), 143.0 (C-6), 140.5 (d, JcF = 7.1 Hz , C-1'), 139.7 (C-4), 138.6 (C-3), 130.9 (d, JCF $\left.=8.5 \mathrm{~Hz}, \mathrm{C}-5^{\prime}\right), 124.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=2.6 \mathrm{~Hz}, \mathrm{C}-6{ }^{\prime}\right)$, 115.9 (C-5), 115.8 (d, JCF $=21.6 \mathrm{~Hz}, \mathrm{C}-2 '), 114.5\left(\mathrm{~d}, J_{C F}=20.9 \mathrm{~Hz}, \mathrm{C}-4\right.$ '), 39.0 (Me-1), 37.1 (d, JCF $=1.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ ); MS m/z $263.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C}$, 59.54; H, 4.23; N, 10.68. Found: C, 59.77; H, 4.17; N, 10.72\%.

3-Amino-5-(3-fluorobenzyl)-1-methylpyridin-2(1H)-one (S65b). Prepared using Method B from S65a to give the amine S65b (93 mg, quant.) as an off-white solid which was used without further purification: mp 113-115 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime}$ ), 6.85-6.96 (m, 3H, H-2', H-4', H-6'), 6.53 (m, 1H, H-6), 6.33 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.20 (br s, 2H, NH2-3), 3.62 (s, 2H, CH2), 3.54 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 163.1$ (d, JcF = $244.7 \mathrm{~Hz}, \mathrm{C}-3$ ), 157.6 (C-2), 142.7 (d, JcF $=7.1 \mathrm{~Hz}, \mathrm{C}-1 '), 137.6$ (C-3), 130.1 (d, JcF = 8.5 Hz, C-5'), 124.5 (d, Jcf = $2.9 \mathrm{~Hz}, \mathrm{C}-6 ')$, 124.2 (C-6), 118.8 (C-5), 115.7 (d, Jcf = 20.9 Hz , C-2'), 113.8 (C-4), 113.5 (d, JcF = $20.8 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}), 38.1\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{Me}-1)$; MS m/z 233.6 $\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN} \mathrm{N}_{2} \mathrm{O} \cdot 0.45 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.96 ; \mathrm{H}, 5.83 ; \mathrm{N}, 11.65$. Found: C, 64.74; H, 5.45; N, 11.43\%.

## N-(5-(3-Fluorobenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-

 dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S65). Prepared using Method $\mathbf{C}$ from S65b and S1d. The crude mixture was purified by column chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 6 5}$ ( $109 \mathrm{mg}, 76 \%$ ) as an off-white solid: mp $240-242{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.77$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.08 (d, J = 2.2 Hz , 1H, H-4"), 8.05-8.06 (m, 2H, H-5, CONH), 7.25-7.32 (m, 2H, H-7, H-5"'), 6.88-7.01 (m, 4H, H-6, H-2"', H-4"', H-6"'), 6.70 (d, J = 2.2 Hz, 1H, H-6"), 4.61 (tt, J = 12.7, 4.1 Hz, 1H, H-4'), 4.34 (d, J = $12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or H2-6'), 3.74 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.59 (s, 3H, Me-1), 3.06 ( $\mathrm{t}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-\mathrm{Z}^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.27 (qd, $J=12.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or H2-5'), 1.96 (dd, $J=12.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5$ '); ${ }^{13} \mathrm{C}$ NMR $\delta 163.1$ (d, JCF $\left.=246.2 \mathrm{~Hz}, \mathrm{C}-3 " '\right), 157.3$ (C-2"), 154.0 (CONH), 153.6 (C-2), 143.5 (C-3a), 142.2 (d, JCF = 7.1 Hz, C-1"'), 140.3 (C5), 130.3 (C-3"), 130.3 (d, JCF = $6.5 \mathrm{~Hz}, \mathrm{C}-5 " '$ ), 127.2 (C-6"), 124.5 (d, JCF $=2.9 \mathrm{~Hz}, \mathrm{C}-$ 6"'), 123.3 (C-7a), 121.4 (C-4"), 119.5 (C-5"), 116.9 (C-6), 115.7 (d, JcF = 21.4 Hz, C-2"'), 115.5 (C-7), 113.6 (d, JcF $\left.=21.2 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime \prime}\right), 50.4$ (C-4'), 43.9 (C-2', C-6'), 38.3 (d, JcF = $1.2 \mathrm{~Hz}, \mathrm{CH}_{2}$ ), 37.9 (Me-1"), 29.5 (C-3', C-5'); MS m/z 478.1 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS $\mathrm{m} / \mathrm{z} \quad[\mathrm{M}+\mathrm{H}]^{+} 477.2049$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{FN}_{6} \mathrm{O}_{3}, 477.2045$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FN}_{6} \mathrm{O}_{3} \cdot 0.5 \mathrm{EtOAc} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.54 ; \mathrm{H}, 5.85$; N, 15.95. Found: C, 61.69; H, 5.66 ; N, 15.77\%.SN36207 (E)-3-((2,5-Dimethyl-1-phenyl-1H-pyrrol-3-yl)methylene)indolin-2-one (S66). The mother liquor from $\mathbf{S 6 4}$ was purified by chromatography, eluting with a gradient (30$50 \%$ ) of EtOAc/pet. ether, to give the E-isomer $\mathbf{S 6 6}$ ( $128 \mathrm{mg}, 27 \%$ ) as a tan gum: ${ }^{1} \mathrm{H}$ NMR $\delta 7.93$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.70 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ "), 7.58 (s, $1 \mathrm{H}, \mathrm{H}-1$ '), $7.45-7.54$ (m, $4 \mathrm{H}, \mathrm{H}-4$, H-2"', H-4"', H-6"'), 7.20-7.24 (m, 2 H, H-3'", H-5"'), 7.13 (dt, J = 7.6, 1.0 Hz, 1 H, H-5), 7.00 (dt, J = 7.6, 1.0 Hz, 1 H, H-6), 6.85 (d, J = 7.6 Hz, $1 \mathrm{H}, \mathrm{H}-7$ ), 2.24 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ); MS m/z 315.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

SN36227 (Z)-3-((2,5-Dimethyl-1-phenyl-1H-pyrrol-3-yl)methylene)-5-fluoroindolin-2-one (S67).

(Z)-3-((2,5-Dimethyl-1-phenyl-1H-pyrrol-3-yl)methylene)-5-fluoroindolin-2-one
(S67). Prepared using Method N 5 -fluoroindolin-2-one and 2,5-dimethyl-1-phenyl-1 H -pyrrole-3-carbaldehyde. The resulting crystals were filtered and dried to give indoline $\mathbf{S 6 7}$ ( $57 \mathrm{mg}, 10 \%$ ) as a yellow solid: mp (EtOH) $238-241{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.71$ (s, $1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}$ ), 7.67 (br s, 1H, CONH), 7.45-7.55 (m, 4H, H-4", H-2"', H-4"', H-6"'), 7.21 (ddd, J = 6.8, $2.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}$, H-5"'), 7.17 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.82 (ddd, $J=8.8,8.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.74 (dd, J = 8.4, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 2.251 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.05 (s, 3 H , $\mathrm{CH}_{3}$ ); MS m/z 333.2 (MH ${ }^{+}, 100 \%$ ).

SN36228 (E)-3-((2,5-Dimethyl-1-phenyl-1H-pyrrol-3-yl)methylene)indolin-2-one (S68).
The mother liquor from $\mathbf{S 6 7}$ was purified by chromatography, eluting with a gradient ( $20-$ $50 \%$ ) of EtOAc/pet. ether, to give the $E$-isomer $\mathbf{S 6 8}(74 \mathrm{mg}, 12 \%)$ as an orange powder: ${ }^{1} \mathrm{H}$ NMR $\delta 8.00$ (br s, 1H, CONH), 7.85 (s, 1H, H-1'), 7.81 (dd, J=9.6, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.45-7.55$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-4{ }^{\prime \prime \prime}, \mathrm{H}-\mathrm{C}^{\prime \prime \prime}$ ), 7.21 (ddd, J = 6.9, 2.5, 1.6 Hz, 2H, H-3"', H-5"'), 6.81 (ddd, $J=8.9,8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.75(\mathrm{dd}, J=8.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.58(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-4$ "), 2.24 (s, 3H, CH3 3 ), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ); MS m/z 333.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

SN36230 N-(5-(3-Methylbenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S69).



1-Methyl-5-(3-methylbenzyl)-3-nitropyridin-2(1H)-one (S69a). Prepared using Method A from S1a and 3-methylbenzylboronic acid. The crude mixture was purified by column chromatography, eluting with $5 \%$ EtOAc/DCM, and the residue was repurified by column chromatography eluting with EtOActo give pyridone S69a ( $250 \mathrm{mg}, 38 \%$ ) as a yellow powder: mp $147-150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.16$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.44(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6$ ), 7.22-7.25 (m, 1H, H-5'), 7.10 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 6.95-6.97 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{2}^{\prime}, \mathrm{H}-$ $6^{\prime}$ ), 3.76 (s, 2H, CH2), 3.64 (s, 3H, Me-1), 2.35 (s, 3H, Me-3'); MS m/z 259.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 65.11; H, 5.46; N, 10.85. Found: C, 65.22; H, 5.39; N, 10.94\%.

3-Amino-1-methyl-5-(3-methylbenzyl)-pyridin-2(1H)-one (S69b). Prepared using Method B from S69a. The resulting residue was purified by column chromatography, eluting with EtOAc, to give amine S69b ( 193 mg , quant.) as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.16-$ 7.20 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.02 (d, J = $7.36 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 6.95-6.97 (m, 2H, H-2', H-6'), 6.50 ( m , $1 \mathrm{H}, \mathrm{H}-6$ ), 6.35 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.20 (br s, 2H, NH2-3), 3.57 (s, 2H, CH2), 3.51 (s, $3 \mathrm{H}, \mathrm{Me}-1$ ), 2.31 (s, 3H, Me-3'); MS m/z 229.6 ( $\mathrm{MH}^{+}, 100 \%$ ).

N-(5-(3-Methylbenzyl)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S69). Prepared using Method $\mathbf{C}$ from S69b and S1d. The crude mixture was purified by column chromatography, eluting with $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 6 9}$ ( $78.9 \mathrm{mg}, 60 \%$ ) as a white solid: mp 207-210 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.28$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.09 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4 "), 8.03 (br s, 1H, CONH), 8.01 (dd, $J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.30 (dd, $J=7.9,1.3 \mathrm{~Hz}$, 1H, H-7), 7.20 (m, 1H, H-5"'), 7.05 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}$ '), 6.96-7.02 (m, 3H, H-6, H2"', H-4"'), 6.67 (m, 1H, H-6"), 4.57 (tt, J = 13.1, 3.5 Hz, 1H, H-4'), 4.34 (d, J = 13.1 Hz, $2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.70 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.57 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-1^{\prime \prime}$ ), 3.05 (td, J=13.1,3.5 Hz, 2H, $\mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6^{\prime}$ ), 2.34 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-\mathbf{3}^{\prime \prime}$ '), 2.26 (qd, $J=13.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or H2-5'), 1.95 (dd, J = 13.1, $3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5$ '); ${ }^{13} \mathrm{C}$ NMR $\delta 157.3$ (C-2"), 154.1 (CONH), 153.4 (C-2), 143.3 (C-3a), 140.5 (C-5), 139.6 (C-1"'), 138.5 (C-3"'), 130.1 (C-3"), 129.7 (C-2"'), 128.7 (C-5"'), 127.5 (C-6"'), 127.1 (C-6"), 125.9 (C-4"'), 123.3 (C-7a), 121.8 (C-4"), 120.5 (C-5"), 117.0 (C-6), 115.6 (C-7), 50.4 (C-4'), 44.0 (C-2', C-6'), 38.6 ( $\mathrm{CH}_{2}$ ), 37.9 ( $\mathrm{Me}-1{ }^{\prime \prime}$ ), 29.5 (C-3', C-5'), 21.6 (Me-3"'); MS m/z 474.1 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.46$; H, 6.02; N, 17.62. Found: C, 65.61; H, 5.95 ; N, 17.46\%.

SN36266 N-Benzyl-1-methyl-6-oxo-5-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-1,6-dihydropyridine-3-carboxamide (S70).


5-(N-Benzylcarboxamide)-3-nitropyridin-2(1H)-one (S70a). 6-Hydroxy-5-nitronicotinic acid $(500 \mathrm{mg}, 0.27 \mathrm{mmol})$ and CDI ( $528 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) were stirred together in DMF (5 mL ) at $60^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and benzyl amine ( 227 $\mu \mathrm{L}, 0.33 \mathrm{mmol}$ ) was added. The reaction mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 17 h . The resulting mixture was diluted with EtOAc ( 50 mL ), washed with water ( 50 mL ) and brine ( 50 mL ), dried and concentrated to a yellow gum. The crude material was triturated in EtOAc, filtered, and washed with EtOAc to obtain the amide S70a (301 mg, 41\%) as a yellow powder: mp 288-291 ${ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\delta 13.24(\mathrm{NH}-1), 9.06(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{CONH}), 8.90$ (d, J = 2.6 Hz, 1H, H-4), 8.44 (d, J = 2.6 Hz, 1H, H-6), 7.27-7.36 (m, 4H, H-2', H-3', H-5', H-6'), 7.23-7.27 (m, 1H, H-4'), 4.45 (d, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR ס 161.9 (CONH), 154.3 (C-2), 144.0 (C-6), 139.1 (C-1'), 137.8 (C-4), 136.9 (C-3), 128.3 (C-3', C-5'), 127.4 (C-2', C-6'), 126.9 (C-4'), 110.9 (C-5), 42.7 ( $\mathrm{CH}_{2}$ ); MS m/z 272.5 ([M-H]', 100\%). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ : C, 57.14 ; H, 4.06; N, 15.38. Found: C, 57.16 ; H, 3.98; N, 15.24\%.

5-(N-Benzylcarboxamide)-1-methyl-3-nitropyridin-2(1H)-one (S70b). Prepared using Method E from methyl iodide and amide S70a at $20^{\circ} \mathrm{C}$. The crude material was triturated in EtOAc, filtered and washed with MeOH and EtOAc to obtain methyl pyridone S70b (182 mg, 98\%) as a yellow powder: mp 204-206 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.06(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, CONH), 8.93 (d, J = 2.6 Hz, 1H, H-4), 8.86 (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.31-7.36 (m, 4H, H2', H-3', H-5', H-6'), 7.23-7.29 (m, 1H, H-4'), 4.47 (d, J = 5.7 Hz, 1H, CH2), 3.62 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 161.9$ (CONH), 154.0 (C-2), 148.4 (C-6), 139.1 (C-1'), 136.2 (C-4),
136.1 (C-3), 128.3 (C-3', C-5'), 127.5 (C-2', C-6'), 126.9 (C-4'), 109.9 (C-5), $42.8\left(\mathrm{CH}_{2}\right)$, 38.6 (Me-1); MS m/z 286.5 ([M-H]-, 100\%). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ : C, 58.53; H, 4.56; N, 14.63. Found: C, 58.58; H, 4.61; N, 14.72\%.

3-Amino-5-( $N$-Benzylcarboxamide)-1-methyl-pyridin-2(1H)-one (S70c). Prepared by Method B from S70b to give amine S70c (121 mg, 99\%) as a light brown solid: mp 189$191^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.49$ (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.28-7.40 (m, 5H, H-2', H-3', H-4', H-5', $\mathrm{H}-6$ '), 6.73 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}), 4.56\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.29 (s, 2H, NH2-3), 3.60 (s, 3H, Me-1); ${ }^{13} \mathrm{C}$ NMR $\delta 165.0$ (CONH), 158.4 (C-2), 138.1 (C1'), 136.9 (C-3), 129.0 (C-3', C-5'), 128.6 (C-6), 128.1 (C-2', C-6'), 127.9 (C-4'), 114.1 (C5), 108.3 (C-4), $44.2\left(\mathrm{CH}_{2}\right), 38.1$ (Me-1); MS m/z $258.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.23 ; \mathrm{H}, 5.97$; N, 16.05. Found: C, 64.04; H, 5.73; N, 15.87\%.

N-Benzyl-1-methyl-6-oxo-5-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-1,6-dihydropyridine-3-carboxamide (S70). Prepared using Method C from S70c and S1d. The resulting solid was washed in $10 \% \mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum to obtain urea $\mathbf{S 7 0}(156 \mathrm{mg}, 81 \%)$ as an off-white powder: mp $194-197{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.89$ (br s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 8.46 (d, $\left.J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "\right), 8.02$ (dd, J $=5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 7.25-7.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-$ 2", H-3", H-4", H-5", H-6", H-7), 6.96 (dd, J = 7.9, 5.3 Hz, 1H, H-6), 6.81 (t, J = 5.8 Hz , $1 \mathrm{H}, \mathrm{CONH}$ ), 4.61 (d, J = 5.8 Hz, 2H, CH2), 4.55 (tt, J=13.5, 4.2 Hz, 1H, H-4'), 4.32 (br d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6{ }^{\prime}$ ), 3.68 (s, $3 \mathrm{H}, \mathrm{Me}-1{ }^{\prime}$ ), 3.06 (brt, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-\mathbf{2}^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.28 (qd, $J=13.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.96 (br d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.3$ (CONH-5"), 158.2 (C-2"), 154.1 (CONH), 153.4 (C-2), 143.2 (C3a), 140.6 (C-5), 138.2 (C-1"'), 133.2 (C-6"), 129.3 (C-3"), 128.9 (C-2"', C-6"'), 128.1 (C3"', C-5"'), 127.7 (C-4"'), 123.3 (C-7a), 117.1 (C-6), 115.6 (C-4"), 115.3 (C-7), 113.7 (C5"), 50.4 (C-4'), $44.2\left(\mathrm{CH}_{2}\right), 44.0\left(\mathrm{C}-2^{\prime}, \mathrm{C}^{\prime} 6^{\prime}\right), 38.5\left(\mathrm{Me}-1^{\prime \prime}\right), 29.4$ (C-3', C-5'); (+)-HRESIMS $\mathrm{m} / \mathrm{z} \quad[\mathrm{M}+\mathrm{H}]^{+} \quad 502.2185$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{4}, 502.2197$ ). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 0.1 \mathrm{EtOAc}: \mathrm{C}, 59.52 ; \mathrm{H}, 5.24$; N, 18.54. Found: C, 60.01 ; H, $5.55 ; \mathrm{N}, 18.15 \%$.

SN36317 tert-Butyl Benzyl(1-methyl-2-oxo-3-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-1,2-dihydropyridin-4-yl)carbamate (S71).


4-Chloro-1-methyl-3-nitropyridin-2(1H)-one (S71a). Prepared using Method E from methyl iodide and 4-chloro-3-nitro-2-pyridone at $20{ }^{\circ} \mathrm{C}$. The resulting residue was dissolved in EtOAc ( 5 mL ) and triturated with pet. ether ( 50 mL ) to give pyridone S71a ( $440 \mathrm{mg}, 81 \%$ ) as a yellow solid: mp $101-10 \mathrm{~B}^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.42(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 6.33 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.63 (s, 3H, Me-1); MS m/z 189.4 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{3}$ : C, 38.22; H, 2.67; N, 14.86. Found: C, 38.48; H, 2.71; N, 14.88\%.

4-(Benzylamino)-1-methyl-3-nitropyridin-2(1H)-one (S71b). To a solution of chloride S71a (134 mg, 0.71 mmol ) in DMSO ( 5 mL ) was added $\mathrm{Et}_{3} \mathrm{~N}(981 \mu \mathrm{~L}, 7.08 \mathrm{mmol})$ and benzylamine ( $50 \mu \mathrm{~L}, 0.71 \mathrm{mmol}$ ). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 18 h . The
cooled reaction mixture was diluted with water ( 50 mL ) and extracted with EtOAc (2 $\times 50$ mL ). The combined organic fractions were washed with water ( 100 mL ) and brine (100 mL ), dried and concentrated in vacuo to obtain a brown residue. The crude mixture was purified by column chromatography, eluting with $1-2 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give amine $\mathbf{~} \mathbf{~ 7 1 1 b}$ ( $128 \mathrm{mg}, 73 \%$ ) as a yellow solid: mp $160-163{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.43$ (br s, 1H, NH-4), 7.287.41 (m, 5H, H-2', H-3', H-4', H-5', H-6'), 7.21 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 5.79 (d, J = 7.8 Hz , $1 \mathrm{H}, \mathrm{H}-5), 4.57$ (d, J = $7.82 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.45 (s, 3H, Me-1); MS m/z $260.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, 60.22; H, 5.05; N, 16.21. Found: C, 60.49; H, 5.02; N, 16.04\%.

4-(tert-Butyl-benzylcarbamate)-1-methyl-3-nitropyridin-2(1H)-one (S71c). Prepared using Method K from amine S71b. The crude mixture was purified by column chromatography, eluting with EtOAc, to give pyridone S71c ( $96 \mathrm{mg}, 35 \%$ ) as a yellow solid: mp 123-126 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.28-7.35$ (m, 6H, H-6, H-2', H-3', H-4', H-5', H-6'), 5.88 (d, J = 7.4 Hz, H-6), 4.79 (br s, 2H, CH2), 3.57 (s, 3H, Me-1), 1.43 (s, 9H, tBu); ${ }^{13} \mathrm{C}$ NMR б 155.8 (C-2), 152.3 (CO), 146.5 (C-1'), 139.8 (C-6), 137.2 (C-3), 136.9 (C-4), 128.9 (C3', C-5'), 128.0 (C-4'), 127.8 (C-2', C-6'), 104.5 (C-5'), 83.7 (Boc), 52.9 ( $\mathrm{CH}_{2}$ ), 38.3 ( $\mathrm{Me}-$ 1), 28.0 (Boc); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 382.1374$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{5}, 382.1373$ ); Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 60.16; H, 5.89; N, 11.69. Found: C, 60.44; H, 5.92; N, 11.60\%.

3-Amino-4-(tert-butyl-benzylcarbamate)-1-methyl-pyridin-2(1H)-one
(S71d).
Prepared by Method B from S71c. The crude material was purified by column chromatography, eluting in EtOAc, to give amine S71d (158 mg, 52\%) as an off-white solid: mp 201-204 º C; ${ }^{1} \mathrm{H}$ NMR ס 7.23-7.30 (m, 5H, H-2', H-3', H-4', H-5', H-6'), 6.57 (br d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 5.81 (br s, 1H, H-5), 4.68 (br s, 2H, CH2), 4.20 (br s, 2H, NH-2), 3.52 (s, 3H, Me-1), 1.43 (s, 9H, tBu); (+)-HRESIMS m/z [M+H] 330.1819 (calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}, 330.1812$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.28 ; \mathrm{H}, 7.06 ; \mathrm{N}, 12.69$. Found: C, 65.28; H, 7.22; N, 12.57\%.
tert-Butyl Benzyl-(1-methyl-2-oxo-3-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-1,2-dihydropyridin-4-yl)carbamate (S71). Prepared using Method C from S71d and S1d. The crude material was purified by column chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 7 1}$ ( $137 \mathrm{mg}, 78 \%$ ) as an off-white solid: mp $168-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.74$ (s, 1H, NH-3), 8.02 (dd, $J=5.2,1.2 \mathrm{~Hz}$, 1H, H-5), 7.56 (dd, J = 7.9, 1.2 Hz, 1H, H-7), 7.24-7.34 (m, 5H, H-2"', H-3'", H-4"', H-5"', H-6"'), 6.96-7.02 (m, 2H, H-6, H-6"), 6.83 (s, 1H, CONH), 6.02 (d, J = 7.2 Hz, 1H, H-5"), 4.76 (br s, 2H, CH2 $\left.), 4.62(\mathrm{tt}, J=12.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 4.31\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right.$ or $\mathrm{H}_{2}-6$ '), 3.55 (s, 3H, Me-1), 3.01 (t, $J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 2.35 (qd, $J=12.7$, $4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5^{\prime}$ ), 1.90 (dd, J = 12.7, $2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5$ '), 1.42 (s, 9 H , tBu); ${ }^{13} \mathrm{C}$ NMR $\delta 160.7$ (C-2"), 154.5 (CONH), 153.6 (C-2), 153.5 (CO-Boc), 143.2 (C-3a), 142.4 (C-4"), 140.3 (C-5), 138.7 (C-6"'), 132.6 (C-6"), 128.6 (C-2"', C-4"'), 127.4 (C-3"', C-5"'), 124.5 (C-3"), 123.3 (C-7a), 117.2 (C-6), 116.4 (C-7), 106.6 (C-5"), 81.6 (tBu), 51.9 $\left(\mathrm{CH}_{2}\right), 50.3$ (C-4'), 44.6 (C-2', C-6'), 37.7 (Me-1"), 29.3 (C-3', C-5'), 28.3 (tBu); MS m/z $575.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.84 ; \mathrm{H}, 6.23 ; \mathrm{N}, 16.83$. Found: C, 61.86; H, 6.22; N, 16.65\%.

SN36318 N-(4-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S72).


4-Benzyl-1-methyl-3-nitropyridin-2(1H)-one (S72a). Prepared using Method A from S71a and benzylboronic acid pinacol ester. The crude residue was purified by column chromatography, eluting with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give pyridone $\mathbf{S 7 2 a}(153 \mathrm{mg}, 59 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.22-7.36$ (m, 4H, H-6, H-3', H-4', H-5'), 7.16-7.20 (m, 2H, H2', H-6'), 5.97 (d, J = 7.1 Hz, 1H, H-5), 3.82 (s, 2H, CH2), 3.56 (s, 3H, Me-1); MS m/z $245.5\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 245.0922$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$, 245.0921).

3-Amino-4-benzyl-1-methylpyridin-2(1H)-one (S72b). Prepared using Method B from S72a. The crude residue was purified by column chromatography, eluting in EtOAc, followed by trituration in diethyl ether of the residue to give amine $\mathbf{S 7 2 b}$ ( $109 \mathrm{mg}, 91 \%$ ) as an off-white solid: mp 109-111 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.21-7.34$ (m, 3H, H-3', H-4', H-5'), 7.167.20 (m, 2H, H-2', H-6'), 6.70 (d, J = 7.0 Hz, 1H, H-6), 5.95 (d, J = 7.0 Hz, 1H, H-5), 4.12 (s, 2H, NH2-3), 3.76 (s, 2H, CH2), 3.57 (s, 3H, Me-1); MS m/z $215.5\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.27$; H, 6.62; $\mathrm{N}, 12.97$. Found: C, 72.29; H, 6.47; N, 13.00\%.

## N -(4-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-

 imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S72). Prepared using Method C from S72b and S1d. The resulting white precipitate was filtered and washed with diethyl ether to give urea S72 (94 mg, 63\%) as an off-white solid: mp 271-274 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.54$ (s, 1H, NH-3), 7.87 (dd, J = 5.2, 1.3 Hz, 1H, H-5), 7.79 (s, 1H, CONH), 7.58 (d, J = 7.9 Hz, 1H, H-7), 7.45 (d, J = $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "$ ), $7.24-7.32$ (m, 4H, H-2"', H3"', H-5"', H-6"'), 7.18-7.23 (m, 1H, H-4"'), 6.84 (dd, J = 7.9, 5.2 Hz, 1H, H-6), 5.88 (d, J $\left.=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}^{\prime}\right), 4.42-4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{\prime}), 4.24\left(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right.$ or H2-6'), 3.79 (s, 2H, CH2), 3.44 (s, 3H, Me-1"), 2.95 (t, J = $12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or H2-6'), 2.26 (qd, J = 12.7, $4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5$ '), 1.71 (dd, $J=12.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ ס 160.2 (C-2"), 156.6 (CONH), 153.0 (C-2), 146.9 (C-4"), 143.5 (C-3a), 139.6 (C-5), 139.0 (C-1"'), 135.4 (C-6"), 129.2 (C-2"', C-6"'), 128.4 (C-3"', C-5"'), 126.6 (C-3"), 126.3 (C-4"'), 123.0 (C-7a), 116.3 (C-6), 114.9 (C-7), 106.1 (C-4"), 49.6 (C-4'), 44.0 (C$\left.2^{\prime}, \mathrm{C}-6^{\prime}\right), 36.8\left(\mathrm{Me}-1{ }^{\prime \prime}\right), 36.6\left(\mathrm{CH}_{2}\right), 28.5$ (C-3', C-5'); MS m/z $460.0\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$ : C, 63.25; H, 5.90; N, 17.70. Found: C, 63.20; H, 5.88; N, 17.56\%.SN36346 N-(4-(Benzylamino)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1 H -imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S73).


N-(4-(Benzylamino)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S73). Prepared using Method F from carbamate $\mathbf{S 7 1}$ to give a cream coloured residue. The crude material was purified by column chromatography, eluting with $10-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give urea $\mathbf{S 7 1}$ ( $24.4 \mathrm{mg}, 98 \%$ ) as an off-white solid: $\mathrm{mp} 228{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.54$ (s, 1H, NH-3), 7.89 (dd, J = 5.2, 1.1 Hz, 1H, H-5), 7.80 (d, J = 7.7 Hz, 1H, H-6"), 7.267.35 (m, 5H, H-7, H-2"', H-3"', H-5"' and H-6"'), 7.19-7.23 (m, 1H, H-4"'), 6.96 (dd, J = $7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.38(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-4 \mathrm{C}), 5.72$ (d, J=7.7 Hz, 1H, H-5"), 4.47 ( $\mathrm{tt}, J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), $4.42\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.29 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-1{ }^{\prime}$ ), 2.92 ( $\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-\mathrm{G}^{\prime}$ ), 2.29-2.37 (m, $2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.68 (d, $\mathrm{J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 157.2$, 153.0, 151.6, 143.4, 140.1, 139.6, 136.6, 128.6, 128.2 (2), 127.2, 126.6 (2), 123.0, 116.4, 115.4, 106.1, 94.3, 49.6, 45.1, 44.0 (2), 35.9, 28.3 (2); MS m/z 473.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.8 \mathrm{EtOAc} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.10 ; \mathrm{H}, 4.54 ; \mathrm{N}, 14.15$. Found: $\mathrm{C}, 45.79 ; \mathrm{H}$, 4.99; N, 14.60\%.

SN36371 N-(2-(Benzyloxy)pyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S74).


2-(Benzyloxy)-3-nitropyridine (S74a). 2-Hydroxy-3-nitropyridine ( $0.50 \mathrm{~g}, 3.57 \mathrm{mmol}$ ) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.08 \mathrm{~g}, 3.93 \mathrm{mmol})$ were stirred together in toluene ( 40 mL ). Benzyl bromide $(424 \mu \mathrm{~L}, 3.57 \mathrm{mmol})$ was added to the mixture, which was heated at $100^{\circ} \mathrm{C}$ for 5 h . An additional portion of benzyl bromide ( $127 \mu \mathrm{~L}, 1.07 \mathrm{mmol}$ ) was added to the reaction mixture and was allowed to stir at $20^{\circ} \mathrm{C}$ for another 66 h . The cooled reaction mixture was diluted with EtOAc ( 50 mL ), washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried and concentrated in vacuo. The crude residue was purified by column chromatography, eluting with $10-30 \%$ EtOAc/pet. ether, to give ether $\mathbf{S 7 4 a}(0.53 \mathrm{~g}, 64 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 8.40$ (dd, $J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 8.28 (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.47-$ 7.53 (m, 2H, H-2', H-6'), 7.35-7.41 (m, 2H, H-3', H-5'), 7.29-7.35 (m, 1H, H-4'), 7.05 (dd, $J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;(+)-\mathrm{HRESIMS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 253.0587$ (calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{3}, 253.0584$ ).

2-(Benzyloxy)pyridin-3-amine (S74b). Prepared using Method B from S74a using 5\% $\mathrm{Pt} / \mathrm{C}$ (sulfided) in $n$-butyl acetate. The residue was purified by column chromatography, eluting with 10-20\% EtOAc/pet. ether, to give amine S74b ( $434 \mathrm{mg}, 90 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.59$ (dd, J = 5.0, 1.6 Hz, 1H, H-6), 7.44-7.50 (m, 2H), 7.35-7.41 (m, 2H),
7.29-7.35 (m, 1H), 6.90 (dd, J = 7.5, 1.6 Hz, 1H, H-4), 6.74 (dd, J = 7.5, 5.0 Hz, 1H, H5), 5.42 (s, 2H), 3.79 (s, 2H); MS m/z 201.5 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H] ${ }^{+}$ 201.1017 (calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}, 201.1022$ ).

N-(2-(Benzyloxy)pyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-
yl)piperidine-1-carboxamide (S74). Prepared using Method C from S74b and S1d. The crude solid was purified by column chromatography, eluting with a gradient (25-100\%) of EtOAc/pet. ether, to give urea $\mathbf{S 7 4}(314 \mathrm{mg}, 41 \%)$ as a white solid: mp (EtOAc/pet. ether) $193-196{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.46$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 8.42 (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 8.05 (dd, J = 5.3, 1.3 Hz, 1H, H-5'), 7.82 (dd, $J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "$ ), $7.42-7.45$ (m, 2H, H2'", H-6"'), 7.30-7.38 (m, 4H, H-7', H-3'", H-4"', H-5'"), 7.17 (s, 1H, CONH), 7.98 (dd, J = $7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ ), 6.94 (dd, J = 7.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), 5.47 (s, 2H, CH2O), 4.58 (tt, J $=12.4,4.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4), 4.23(\mathrm{br} \mathrm{d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 3.04(\mathrm{dt}, J=13.7,2.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.27 (dq, $J=12.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.94 (dd, $J=12.1,2.3 \mathrm{~Hz}$, 2H, H-3, H-5); ${ }^{13} \mathrm{C}$ NMR $\delta$ 153.6, 153.0, 151.9, 142.8, 139.8, 138.3, 136.6, 128.1 (2), 127.7, 127.4 (2), 125.2, 123.4, 122.7, 117.3, 116.4, 114.9, 67.6, 49.8, 43.4 (2), 28.2 (2); MS m/z 445.2 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 445.1983$. Found 445.1985 ( -0.5 ppm ).

SN36527 N-(1-Methyl-2-oxo-4-phenoxy-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S75).


1-Methyl-3-nitro-4-phenoxypyridin-2(1H)-one (S75a). Prepared using Method E from S71a and phenol. The crude solid was purified by column chromatography, eluting with a gradient (5-90\%) of EtOAc/pet. ether, to give nitropyridinone S75a (349 mg, 80\%) as a yellow powder: mp (EtOAc/pet. ether) $174-176{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.46$ (m, 2H, H-3', H$5^{\prime}$ ), $7.28-7.33$ (m, 2H, H-6, H-4'), 7.10-7.14 (m, 2H, H-2', H-6'), $5.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 3.59 (s, 3H, NCH3); MS m/z 247.2 ( $\mathrm{M}^{\left.-\mathrm{H}^{-}, 100 \%\right) .}$

3-Amino-1-methyl-4-phenoxypyridin-2(1H)-one (S75b). Prepared using Method B from S75a. The crude solid was purified by column chromatography, eluting with 50\% EtOAc/pet. ether, to give aminopyridinone S75b (363 mg, 26\%) as a gum: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 7.31-7.37$ (m, 2H, H-3', H-5'), 7.12 (tt, J = 7.4, 1.0 Hz, 1H, H-4'), 6.99-7.03 (m, 2H, H-2', H-6'), 6.70 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 5.92 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.13 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.58 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z $214.2\left(\mathrm{M}-\mathrm{H}^{-}, 100 \%\right)$.

N-(1-Methyl-2-oxo-4-phenoxy-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S75). Prepared using Method C from S75b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 7 5}$ ( $139 \mathrm{mg}, 68 \%$ ) as a white powder: $\mathrm{mp}(\mathrm{MeOH} / \mathrm{EtOAc}) 270-273{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 11.52$ (br s, 1H, CONH), 7.86 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.71 (br s, 1H, CONH), 7.57 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ " ), 7.407.47 (m, 3H, H-7', H-3'", H-5'"), 7.22 (dt, J = 7.4, 1.0 Hz, 1H, H-4'"), 7.10-7.15 (m, 2H, H-

4'", H-6'"), 6.77 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 5.57 (d, J = 7.6 Hz, 1H, H-4"), 4.44 (tt, J = $12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.17$ (br d, J = $13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.46 (s, 3H, NCH3), 2.86 (br dd, $J=12.4,11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.15 (dq, $J=12.5,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.65 (br d, J = 9.6 Hz, 2H, H-3, H-5); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] ~ \delta 161.2,158.6,156.0,154.8,153.0$, 143.5, 139.5, 136.7, 130.0 (2), 124.5, 122.9, 119.9 (2), 116.5, 116.2, 114.8, 98.1, 49.6, 44.0 (2), 36.6, 28.4 (2); MS m/z 464.2 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ $\mathrm{m} / \mathrm{z} 461.1932$, found 461.1934. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{CH}_{3} \mathrm{OH}$ : C, 58.51; H, 5.01; N, 16.71. Found: C, 58.52; H, 5.14; N, 16.86\%.

SN36528 N-(1-Methyl-2-oxo-4-(phenylamino)-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S76).


1-Methyl-3-nitro-4-(phenylamino)pyridin-2(1H)-one (S76a). A mixture of S71a (174 $\mathrm{mg}, 0.92 \mathrm{mmol}$ ), aniline ( $86 \mathrm{mg}, 0.92 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(1.28 \mathrm{~mL}, 9.20 \mathrm{mmol})$ in DMSO (10 mL ) was stirred at $90^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to $20^{\circ} \mathrm{C}$, diluted with water ( 50 mL ) and extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The combined organic fraction was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried and the solvent evaporated. The crude solid was purified by column chromatography, eluting with a gradient (10-100\%) of EtOAc/pet. ether, to give nitropyridinone S76a (169 mg, 75\%) as a yellow powder: mp (EtOAc/pet. ether) $219-221{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 10.40$ (br s, 1H, NH), 7.44-7.50 (m, 2H, H-3', H-5'), 7.36 (tt, J = 7.4, $\left.1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.23-7.27$ (m, 2H, H-2', H-6'), 7.15 (d, J = 7.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 5.88 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.49 (s, 3H, NCH3); MS m/z 246.2 (M-H-, 100\%). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, 58.77; H, 4.52; N, 17.13. Found: C, 58.73; H, 4.44; N, 17.19\%.
tert-Butyl
(1-Methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yl)(phenyl)carbamate (S76b). Prepared using Method K from nitropyridinone S76a. The residue was purified by column chromatography, eluting with a gradient (25-80\%) of EtOAc/pet. ether, to give nitropyridinone S76b (169 mg, 75\%) as a yellow solid: mp (EtOAc/pet. ether) $161{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\delta 7.39$ (br dd, $\left.J=7.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.28-7.33$ (m, 4H, H-6, H-2', H-4', H-6'), 5.86 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.59 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 1.44 [s, 9H, C(CH3)3]; MS m/z $346.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 59.12; H, 5.55; N, 12.17. Found: C, 59.15; H, 5.60; N, 12.01\%.
tert-Butyl (3-Amino-1-methyl-2-oxo-1,2-dihydropyridin-4-yl)(phenyl)carbamate (S76c). Prepared by Method B from S76b ( $238 \mathrm{mg}, 0.69 \mathrm{mmol}$ ) to give aminopyridinone S76c ( $363 \mathrm{mg}, 26 \%$ ) as a white solid: mp $170-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.24-7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ $2^{\prime}, \mathrm{H}^{\prime} 3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ ), 7.17 (tt, J=7.1, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.66(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.00$
(d, J = 7.3 Hz, 1H, H-5), 4.31 (br s, 2H, NH2), 3.56 (s, 3H, NCH3), 1.47 [s, 9H, C(CH3)3]; MS m/z 316.2 ( $\mathrm{MH}^{+}$, 100\%).
tert-Butyl (1-Methyl-2-oxo-3-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-1,2-dihydropyridin-4-yl)(phenyl)carbamate (S76d). Prepared using Method C from S76c and S1d. The crude solid was purified by column chromatography, eluting with a gradient (0-10\%) of MeOH/EtOAc, to give urea S76d (225 $\mathrm{mg}, 89 \%$ ) as a white solid: mp (MeOH/EtOAc) $168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.15$ (br s, 1H, CONH), 8.02 (dd, $\left.J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.48\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 7.25-7.33$ (m, 4H, H2"', H-3"', H-5"', H-6"'), 7.20 (tt, J = 7.1, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}$ '), 7.00 (d, J = 7.5 Hz, 1H, H-7'), 6.93 (dd, $\left.J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 6.70$ (br s, 1H, CONH), 6.05 (br d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime \prime}$ ), 4.57 (tt, J = 12.5, 4.1 Hz, 1H, H-4), 4.17 (br d, J=13.5 Hz, 2H, H-2, H-6), 3.56 (s, 3H, $\mathrm{NCH}_{3}$ ), 2.90 (br dd, $J=12.4,12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $2.29(\mathrm{dq}, J=12.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-5), 1.86$ (br d, $J=12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5) 1.49$ [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; MS m/z $560.3\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ : C, 60.48; H, 5.81; N, 16.88. Found: C, 60.33; H, 5.83; N, 16.97\%.

N-(1-Methyl-2-oxo-4-phenoxy-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S76). Prepared using Method F from carbamate S76d to give urea $\mathbf{S 7 6}$ ( $97 \mathrm{mg}, 67 \%$ ) as a white solid: mp ( $\mathrm{MeOH} / \mathrm{EtOAc}$ ) $168-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.54$ (br s, 1H, CONH), 8.03 (br s, 1H, NH), 7.89 (dd, $\left.J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime}\right), 7.71$ (dd, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}$ ), 7.49 (br s, 1H, CONH), 7.42 (d, J = 7.6 Hz, 1H, H-6"), 7.33 (dd, J = 8.3, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}$ ), 7.10 (br d, J = 7.5 Hz, 2H, H-2"', H-6"'), 7.04 (brt, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}$ ), 6.92 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 6.10 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ "), 4.46 (tt, $J=12.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.25$ (br d, J = 13.6 Hz , $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.95$ (br t, $J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.29 (dq, J = $12.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.70$ (br d, J = $9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.{ }_{3}\right)_{2} \mathrm{SO}\right] \delta$ 160.3, 156.8, 153.0, 146.6, 143.5, 140.5, 139.6, 135.9, 129.2 (2), 123.0, 122.6, 121.3 (2), 116.4, 115.2, 110.4, 96.2, 49.6, 44.0 (2), 36.2, 28.4 (2); MS m/z 460.2 ( $\mathrm{MH}^{+}, 100 \%$ ). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 460.2092$, found 460.2089. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot \mathrm{HCl}: \mathrm{C}, 58.12 ; \mathrm{H}, 5.28 ; \mathrm{N}, 19.77$. Found: C, $57.90 ; \mathrm{H}, 5.69 ; \mathrm{N}, 19.40 \%$.

SN36551 N-(4-(Benzyloxy)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S77).


4-(Benzyloxy)-1-methyl-3-nitropyridin-2(1H)-one (S77a). Prepared using Method L from benzyl alcohol and chloride S71a. The crude solid was purified by column chromatography, eluting with a gradient (10-100\%) of EtOAc/pet. ether, to give nitropyridinone S77a (145 mg, 53\%) as an orange solid: mp (EtOAc/pet. ether) 166-167 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.42$ (m, 6H, H-6, H-2', H-3', H-4', H-5', H-6'), 6.08 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; MS m/z 261.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 60.00; H, 4.65; N, 10.76. Found: C, 59.95; H, 4.61; N, 10.78\%.

3-Amino-4-(benzyloxy)-1-methylpyridin-2(1H)-one (S77b). Prepared using Method G from nitropyridinone S77a to give aminopyridinone S77b (43 mg, 63\%) as a gum: ${ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.41$ (m, 5H, H-2', H-3', H-4', H-5', H-6'), 6.72 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.11 (d, J= $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 5.11 (s, 2H, CH2O), 3.99 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.55 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ); MS m/z $231.2\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 231.1128$, found 231.1124 .

N-(4-(Benzyloxy)-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S77). Prepared using Method C from S77b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{DCM}$, to give urea $\mathbf{S 7 7}$ ( $100 \mathrm{mg}, 66 \%$ ) as a white solid: mp (MeOH/EtOAc) 187-190 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 11.53$ (br s, 1H, CONH), 7.87 (dd, J = $\left.5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.59\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 7.57$ (dd, J=7.8, 1.4 Hz, 1H, H-7'), 7.44-7.50 (m, 3H, CONH, H-3'", H-5'"), 7.36 (dd, J=7.7, 7.2 Hz, 2H, H-2'", H-6'"), 7.28 (tt, $\left.J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}\right), 6.88$ (dd, J=7.8, 5.2 Hz, 1H, H-6'), 6.26 (d, J = 7.8 Hz, 1H, H5"), 5.22 (s, 2H, CH2O), 4.43 (tt, $J=12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.22 (br d, J = $13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-6$ ), 3.43 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 2.89 (br dd, $J=12.4,12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.23 (dq, J = $12.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.70$ (br d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.\mathrm{C}_{3}\right)_{2} \mathrm{SO}\right] \delta$ 161.0, 160.4, 156.2, 153.0, 143.5, 139.6, 136.9, 136.7, 128.4 (2), 127.7, 126.9 (2), 123.0, 116.3, 114.9, 113.3, 95.6, 69.5, 49.8, 44.0 (2), 36.5, 28.5 (2); MS m/z $475.2\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 475.2088$, found 475.2090.

SN36556 1-Methyl-6-oxo-5-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)- $N$-phenyl-1,6-dihydropyridine-3-carboxamide (S78).


5-Nitro-6-oxo-N-phenyl-1,6-dihydropyridine-3-carboxamide (S78a). A mixture of 5-nitro-6-oxo-1,6-dihydropyridine-3-carboxylic acid ( $1.00 \mathrm{~g}, 5.43 \mathrm{mmol}$ ), and CDI ( 1.06 g , 6.52 mmol ) in dry DMF was stirred at $60^{\circ} \mathrm{C}$ for 2 h . Aniline ( $0.60 \mathrm{~mL}, 6.52 \mathrm{mmol}$ ) was added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was cooled to $20^{\circ} \mathrm{C}$, diluted with water ( 80 mL ) and extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The combined organic fraction was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried and the solvent evaporated to give nitropyridinone S78a ( $1.02 \mathrm{~g}, 72 \%$ ) as a yellow powder: ${ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 13.36$ (br s, 1H, CONH), 10.23 (s, 1H, CONH), $8.95(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 8.60 (d, J = 2.7 Hz, 1H, H-4), 7.70 (br dd, J = 8.5, 1.0 Hz, 2H, H-2', H-6'), 7.34 (br t, J $\left.=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.11$ (tt, J = 7.4, 1.0 Hz, 1H, H-4'); MS m/z 258.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

1-Methyl-5-nitro-6-oxo-N-phenyl-1,6-dihydropyridine-3-carboxamide (S78b).
Prepared using Method E from methyl iodide and carboxamide S78a at $20^{\circ} \mathrm{C}$. The crude solid was purified by column chromatography, eluting with a gradient (25-100\%) of EtOAc/pet. ether, to give carboxamide S78b ( $927 \mathrm{mg}, 92 \%$ ) as a yellow powder: mp (EtOAc/pet. ether) $227-229{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 9.02(\mathrm{~d}, \mathrm{~J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 8.98(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.70$ (ddd, J = 8.5, 1.9, 1.1 Hz, 2H, H-2', H-6'), 7.37 (ddd, J = 8.5, $\left.7.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.13$ (tt, J = 7.4, 1.1 Hz, 1H, H-4'), 3.67 (s, 3H, NCH3); MS m/z $274.2\left(\mathrm{MH}^{+}, 100 \%\right)$.

5-Amino-1-methyl-6-oxo-N-phenyl-1,6-dihydropyridine-3-carboxamide
(S78c). Prepared using Method B from S78b. The crude solid was triturated with EtOAc to give aminopyridinone S78c (324 mg, quant.) as a yellow solid: mp (EtOAc) $172-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.52-7.59$ (m, 4H, H-4, CONH, H-2', H-6'), 7.37 (ddd, J = 8.5, 7.5, 1.8 Hz, 2H, H3', H-5'), 7.15 (tt, J = 7.4, 1.1 Hz, 1H, H-4'), 6.85 (d, J = 2.3 Hz, 1H, H-2), 4.37 (br s, 2H, $\mathrm{NH}_{2}$ ), 3.64 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 244.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

1-Methyl-6-oxo-5-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)-N-phenyl-1,6-dihydropyridine-3-carboxamide (S78). Prepared using Method C from S78c and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-10 \%$ ) of $\mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 7 8}$ ( $232 \mathrm{mg}, 49 \%$ ) as a white solid: mp (EtOAc) $286-290^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (s, 1H, CONH), 10.05 (s, 1H, CONH), 8.44 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 8.19 (d, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 8.05 (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 7.89 (dd, J = 5.2, 1.3 Hz, 1H, H-5'"), 7.69 (dd, J = 8.6, 1.1 Hz, 2H, H-2', H$6^{\prime}$ ), 7.57 (dd, J = 7.9, 1.2 Hz, 1H, H-7'"), 7.34 (ddd, $J=8.4,7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 7.08 (tt, $\left.J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.98\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}\right), 4.43(\mathrm{tt}, J=12.2,4.0$ Hz, 1H, H-4"), 4.18 (br d, J = $13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}^{\prime \prime} \mathrm{C}^{\prime \prime}$ ), 3.62 (s, 3H, NCH3), 3.04 (br dd, J = 12.5, 11.7 Hz, 2H, H-2", H-6"), 2.25 (dq, J = 12.5, 4.0 Hz, 2H, H-3", H-5"), 1.80 (br d, J $=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ", \mathrm{H}-5 ") ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 163.1,157.6,153.7,153.0,143.4$, 139.7, 139.1, 133.1, 128.7, 128.6 (2), 123.5, 123.2, 120.2 (2), 118.5, 116.4, 114.7, 113.4, 49.8, 43.4 (2), 37.8, 28.5 (2); MS m/z 488.2 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{4}$ $\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 488.2043$. Found 488.2042 (0.3 ppm).

SN36621 N-(6-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S79).


6-Benzyl-2-methoxy-3-nitropyridine (S79a). Prepared using Method A from 6-chloro-2-methoxy-3-nitropyridine and benzylboronic acid. The crude solid was purified by column chromatography, eluting with a gradient (5-50\%) of EtOAc/pet. ether, to give nitropyridine S79a ( $377 \mathrm{mg}, 68 \%$ ) as a yellow solid: mp (EtOAc/pet. ether) $73-76{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.19$ (d, J = 8.1 Hz, 1H), 7.24-7.35 (m obscured, 5 H ), 6.81 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.1 (s, 5 H ); MS $\mathrm{m} / \mathrm{z} 245.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 63.93; H, 4.95; N, 11.47. Found: C, 64.10; H, 4.90; N, 11.49\%.

6-Benzyl-3-nitropyridin-2(1H)-one (S79b). TMSCI ( $189 \mu \mathrm{~L}, 1.49 \mathrm{mmol}$ ) was added to a mixture of nitropyridine $\mathbf{S} 79 \mathrm{a}(331 \mathrm{mg}, 1.36 \mathrm{mmol})$ and $\mathrm{NaI}(224 \mathrm{mg}, 1.49 \mathrm{mmol})$ in MeCN $(15 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with water ( 50 mL ) and extracted with EtOAc $(50 \mathrm{~mL})$. The organic fraction was dried and the
solvent evaporated. The crude solid was purified by column chromatography, eluting with a gradient ( $0-75 \%$ ) of EtOAc/pet. ether, to give pyridone $\mathbf{S 7 9 b}$ ( $179 \mathrm{mg}, 57 \%$ ) as a yellow powder: mp (EtOAc) $169-170^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.32-7.41$ (m, $\left.5 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right), 6.23$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 4.05 (s, 2H, CH2), CONH not observed; MS m/z 231.2 ( $\mathrm{MH}^{+}$, 100\%).

6-Benzyl-1-methyl-3-nitropyridin-2(1H)-one (S79c). Prepared using Method E from methyl iodide and pyridone S79b (159 mg, 0.69 mmol$)$ at $20^{\circ} \mathrm{C}$. The crude solid was purified by column chromatography, eluting with a gradient ( $0-60 \%$ ) of EtOAc/pet. ether, to give nitropyridinone S79c (39 mg, 23\%) as a yellow solid: mp (EtOAc/pet. ether) 128$130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.26$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.32-7.41$ (m, 3H, H-3', H-4', H-5'), 7.14 (dd, $\left.J=6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{C}^{\prime}\right), 6.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57$ (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 245.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 63.93; H, 4.95; N, 11.47. Found: C, 64.21; H, 5.07; N, 11.53\%.

3-Amino-6-benzyl-1-methylpyridin-2(1H)-one (S79d). Prepared using Method B from S79c. The crude solid was purified by column chromatography, eluting with EtOAc, to give aminopyridinone S79d ( $30 \mathrm{mg}, 88 \%$ ) as a gum: ${ }^{1} \mathrm{H}$ NMR $\delta 7.31$ (ddd, $J=7.5,7.0$, $\left.1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.25$ (tt, J = 7.3, 2.3 Hz, 1H, H-4'), 7.11 (br d, J = 7.0 Hz, 2H, H2', H-4', H-6'), 7.52 (d, J = 7.3 Hz, 1H, H-4), 5.93 (d, J = 7.4 Hz, 1H, H-5), 4.13 (br s, 2H, $\mathrm{NH}_{2}$ ), 3.92 (s, 2H, CH2), 3.44 (s, 3H, $\mathrm{NCH}_{3}$ ); MS m/z 215.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(6-Benzyl-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-

 imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S79). Prepared using Method C from S79d and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / E t O A c$, to give urea $\mathbf{S 7 9}(26 \mathrm{mg}, 31 \%)$ as a white powder: mp (EtOAc) 239-241 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.19$ (s, 1H, CONH), 8.12 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "$ ), 8.03 (dd, J = 5.2, 1.2 Hz, 1H, H-5'), 7.97 (s, 1H, CONH), 7.27-7.36 (m, 4H, H-7', H-3'", H4", H-5'"), 7.14 (br d, J=7.2 Hz, 2H, H-2'", H-6'"), 6.98 (dd, J = 7.8, 5.2 Hz, 1H, H-6'), 6.17 (d, J = 7.7 Hz, 1H, H-5"), 4.58 (tt, $J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.36 (br d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-6$ ), 3.99 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.47 (s, 3H, NCH3), 3.06 (br dd, J = 12.4, 11.6 Hz, 2H, H-2, $\mathrm{H}-6), 2.27$ (dq, $J=12.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.96 (br d, J = $9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ); ${ }^{13} \mathrm{C}$ NMR $\delta$ 159.1, 154.3, 153.1, 143.0, 140.6, 138.3, 136.7, 129.1 (2), 128.5, 128.4 (2), 127.3, 123.3, 123.3, 119.6, 117.2, 115.6, 108.7, 50.5, 44.0 (2), 39.7, 29.5 (2); MS m/z 459.2 $\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 459.2139$. Found 459.2143 (0.9 ppm).SN36622 N-(6-(Benzylamino)-2-methoxypyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S80).


N-Benzyl-6-methoxy-5-nitropyridin-2-amine (S80a). A mixture of 6-chloro-2-methoxy-3-nitropyridine ( $500 \mathrm{mg}, 2.65 \mathrm{mmol}$ ), benzylamine ( $185 \mu \mathrm{~L}, 2.65 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(3.68$ $\mathrm{mL}, 26.5 \mathrm{mmol})$ in DMSO ( 20 mL ) was stirred at $90^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to $20^{\circ} \mathrm{C}$, diluted with water ( 50 mL ) and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic fraction was washed with water ( $2 \times 30 \mathrm{~mL}$ ) and brine ( 30 mL ), dried and the solvent evaporated. The crude solid was purified by column chromatography, eluting with a gradient (5-40\%) of EtOAc/pet. ether, to give benzylamine S80a (531 mg, 77\%) as a yellow powder: mp (EtOAc/pet. ether) $133-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.24$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 7.29-7.40 (m, 5H, H-2', H-3', H-4', H-5', H-6'), 6.01 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 5.48 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$,5.12 (br d, J = $4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 260.2\left(\mathrm{MH}^{+}\right.$, 100\%).
tert-Butyl Benzyl-(6-methoxy-5-nitropyridin-2-yl)carbamate (S80b). Prepared using Method K from amine S80a to give carbamate S80b ( 652 mg , quant.) as a yellow solid: mp (EtOAc) 82-83 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.36$ (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.73 (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 7.20-7.32 (m, 5H, H-2', H-3', H-4', H-5', H-6'), 5.27 (s, 2H, CH2N), 3.88 (s, 3H, $\left.\mathrm{OCH}_{3}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \mathrm{MS} \mathrm{m} / \mathrm{z} 360.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
tert-Butyl (5-Amino-6-methoxypyridin-2-yl)(benzyl)carbamate (S80c). Prepared using Method B from S80b to give aminopyridine S80c (152 mg, 99\%) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.23-7.30\left(m, 4 H, H-3^{\prime}, H-4{ }^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}-6^{\prime}\right), 7.18\left(\mathrm{tt}, \mathrm{J}=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.89$ (br d, J = 8.2 Hz, 2H, H-4), 6.86 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 5.02 (s, 2H, CH2N), 3.86 (s, 3H, $\mathrm{OCH}_{3}$ ), 3.62 (br s, 2H, NH2), 1.41 [s, 9H, C(CH3)3]; MS m/z $330.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
tert-Butyl Benzyl-(6-methoxy-5-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamido)pyridin-2-yl)carbamate (S80d). Prepared using Method C from S80b and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / E t O A c$, to give urea $\mathbf{S 8 0 d}$ ( $174 \mathrm{mg}, 72 \%$ ) as a gum: ${ }^{1} \mathrm{H}$ NMR $\delta 8.56$ (s, 1H, CONH), $8.34\left(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.03(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-5"), 7.33 (dd, J = 7.9, 1.3 Hz, 1H, H-7"), 7.17-7.30 (m, 6H, H-3', H-2'", H-3'", H-4'", H$5^{\prime \prime \prime}, \mathrm{H}-6{ }^{\prime \prime \prime}$ ), 6.99 (dd, $J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ "), 6.90 (s, 1H, CONH), 5.09 (s, 2H, CH2), 4.59 (tt, $J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.28 (br d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.87 (s, 3H, $\mathrm{OCH}_{3}$ ), 3.06 (br dd, $J=12.8,11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 2.30 (dq, $J=12.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-5$ ), 1.97 (br d, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.43 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR $\delta$ 159.1, 154.3, 153.1, 143.0, 140.6, 138.3, 136.7, 129.1 (2), 128.5, 128.4 (2), 127.3, 123.3, 123.3, 119.6, 117.2, 115.6, 108.7, 50.5, 44.0 (2), 39.7, 29.5 (2); MS m/z 574.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$.

## N-(6-(Benzylamino)-2-methoxypyridin-3-yl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-

 b]pyridin-1-yl)piperidine-1-carboxamide (S80). Prepared using Method $F$ from carbamate S80d to give urea S80 (86 mg, 64\%) as a grey solid: mp (EtOAc) 210-214 ${ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.55$ (s, 1H, CONH), 7.90 (dd, J = 5.2, 1.2 Hz, 1H, H$5^{\prime}$ ), 7.60 (s, 1H, CONH), 7.48 (dd, J = 7.8, 1.1 Hz, 1H, H-7'), 7.35 (br d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$, H-2'", H-6'"), 7.30 (br dd, J = 7.8, 7.3 Hz, 2H, H-3'", H-5'"), 7.24 (d, J = 8.2 Hz, 1H, H-4"), 7.20 (brt, J = 7.2 Hz, 1H, H-4'"), 6.99 (dd, $\left.J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.93$ (br s, 1H, NH), 6.01 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}$ ), 4.34-4.46 (m, 3H, CH2N, H-4), 4.17 (br d, J = $13.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-6), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.87$ (br dd, $\left.J=12.5,11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6\right), 2.17$ (dq, J = $12.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.81$ (br d, J = $9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$156.7, 156.1, 154.6, 153.0, 143.4, 141.0, 139.6, 137.7, 128.1 (2), 127.2 (2), 126.4, 123.2, 116.4, 114.5, 110.0, 98.3, 52.6, 50.0, 44.7, 43.5 (2), 28.6 (2); MS m/z 474.2 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 474.2251$. Found 474.2260 ( -1.9 ppm ).

SN36707 N-(3-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S81).



S81a



1-(Benzyloxy)-3-nitrobenzene (S81a). Prepared using Method E from benzyl bromide and 3 -nitrophenol. The crude residue was purified by column chromatography, eluting with 10\% EtOAc/pet. ether, to give ether S81a (746 mg, 91\%) as a clear colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.80-7.86$ (m, 2H, H-2, H-6), 7.33-7.47 (m, 6H, H-5, H-2', H-3' H-4', H-5', H$6^{\prime}$ ), 7.29 (ddd, $\left.J=8.3,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;(+)$-HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ 252.0632 (calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NNaO}_{3}, 252.0631$ ).

3-(Benzyloxy)aniline (S81b). Prepared using Method G from nitrobenzene S81a to give amine S81b ( $564 \mathrm{mg}, 94 \%$ ) as a pale orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.44$ (m, 4H, H-2', H-3', H-5', H-6'), $7.28-7.34$ (m, 1H, H-4'), 7.06 (td, $J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.40 (ddd, J = 8.1, 2.3, $0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.28-6.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$; MS m/z $200.6\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 200.1071 (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}$, 200.1070).

N-(3-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S81). Prepared using Method C from S81b and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give urea S 81 ( $400 \mathrm{mg}, 74 \%$ ) as a white solid: mp 238-240 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 11.56 (s, 1H, NH-1), 8.57 (s, 1H, CONH), 7.90 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.54 (dd, J = 7.9, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), $7.42-7.47$ (m, 2H, H-2"', H-6"'), 7.36-7.42 (m, 2H, H-3"', H-5"'), $7.30-7.35$ (m, 1H, H-4"'), 7.29 (t, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 "), 7.14$ (t, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ "), 7.08 (dt, J = 8.2, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 6.99$ (dd, J = 7.9, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.60 (ddd, J = 8.2, 2.3, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.41$ (tt, J = 12.4, $\left.3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}\right), 4.30$ (d, J = 12.4 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 2.92 (t, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6 '$ ), 2.21 (qd, $J=12.4,3.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.77 (dd, $J=12.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta$ 158.5 (C-3"), 154.6 (CONH), 153.1 (C-2), 143.4 (C-3a), 142.0 (C-1"), 139.7 (C-5), 137.2 (C-1"'), 129.0 (C-5"), 128.4 (C-3"'), 127.8 (C-4'"), 127.6 (C-2"'), 123.3 (C-7a), 116.4 (C6), 114.6 (C-7), 112.1 (C-6"), 107.9 (C-4"), 106.2 (C-2"), $69.0\left(\mathrm{CH}_{2}\right), 50.2$ (C-4'), 43.4 (C2', C-6'), 28.8 (C-3', C-5'); MS m/z 445.1 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.76 ; \mathrm{H}, 5.76 ; \mathrm{N}, 15.57$. Found: C, $66.95 ; \mathrm{H}, 5.70 ; \mathrm{N}, 15.28 \%$.

SN36708 4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-N-(3-((3(trifluoromethyl)benzyl)oxy) phenyl)piperidine-1-carboxamide (S82).


1-Nitro-3-((3-(trifluoromethyl)benzyl)oxy)benzene (S82a). Prepared using Method E from 3-trifluoromethylbenzyl bromide and 3-nitrophenol. The crude residue was purified by column chromatography, eluting in $10 \%$ EtOAc/pet. ether, to give ether S82a (1.14 g, quant.) as an off-white solid: mp $60-61^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.88$ (ddd, $J=8.2,2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 7.83(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.73$ (br s, 1H, H-2'), 7.64 (br d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathbf{4}^{\prime}$, H-6'), 7.55 (t, J = 7.5 Hz, 1H, H-5'), 7.47 (t, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.31 (ddd, J = 8.2, 2.3, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 5.19 (s, 2H, CH2); (+)-HRESIMS m/z [M+Na] 320.0503 (calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaO}_{3}, 320.0505$ ).
3-((3-(Trifluoromethyl)benzyl)oxy)aniline (S82b). Prepared using Method G from nitrobenzene S82a. The crude residue was purified by column chromatography, eluting with $10-20 \%$ EtOAc/pet. ether, to give amine S82b ( $776 \mathrm{mg}, 80 \%$ ) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.69$ (s, 1H, H-2'), $7.55-7.63$ (m, 2H, H-4', H-6'), 7.49 (t, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right)$, 7.04-7.10 (m, 1H, H-5), 6.39 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H, H-4), 6.30-6.35 (m, 2H, H-2, $\mathrm{H}-6$ ), 5.07 (s, 2H, CH2), 3.67 (br s, 2H, NH2); MS m/z $268.6\left(\mathrm{MH}^{+}, 100 \%\right)$.

## 4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)-N-(3-((3-

(trifluoromethyl)benzyl)oxy) phenyl)piperidine-1-carboxamide (S82). Prepared using Method C from S82b and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give urea $\mathbf{S 8 2}$ ( $350 \mathrm{mg}, 53 \%$ ) as a white solid: mp 170-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.15$ (br s, 1H, NH-3), 8.04 (dd, J = 5.3, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.72 (s, 1H, H-2"'), 7.63 (d, J = 7.7 Hz, 1H, H-6"'), 7.59 (d, J = 7.7 Hz, 1H, H-4"'), 7.51 (t, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}^{\prime}\right), 7.31-7.35$ (m, 2H, H-7, H-2"), 7.22 (t, J = $\left.8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}\right), 7.00$ (dd, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.86 (ddd, $J=8.2,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 6.69$ (ddd, $J=8.2$, 2.2, $0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{H}$ ), 6.47 (s, 1H, CONH), 5.13 (s, 2H, CH2), 4.59 (tt, J = 12.5, 4.2 Hz , $1 \mathrm{H}, \mathrm{H}-4$ '), 4.30 (dt, J = 12.5, 2.2 Hz, 2H, H2-2' or H2-6'), 3.07 (dt, J = 12.5, 2.2 Hz, 2H, H22' or H2-6'), 2.32 (qd, $J=12.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or H2-5'), 1.97 (dd, $J=12.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR $\delta 159.2$ (C-3"), 154.9 (CONH), 153.7 (C-2), 143.4 (C-3a), 140.6 (C-1"), 140.4 (C-5), 138.2 (C-1"'), 131.0 (C-3"'), 130.7 (C-6"'), 129.8 (C-5"), 129.1 (C-5"'), 124.8 (q, J = 3.8 Hz, C-4"'), 124.2 (d, J = 272.4 Hz, CF3-3"'), 124.2 (q, J = 3.8 Hz, C-2"'), 123.4 (C-7a), 117.0 (C-6), 115.5 (C-7), 112.7 (C-6"), 109.9 (C-4"), 106.7 (C-2"), 69.3 $\left(\mathrm{CH}_{2}\right), 50.6$ (C-4'), 44.2 (C-3', C-5'), 29.5 (C-2', C-6'); (+)-HRESIMS m/z [M+H]+ 512.1894 (calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}$, 512.1904). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}$ : $\mathrm{C}, 61.05 ; \mathrm{H}, 4.73 ; \mathrm{N}$, 13.69. Found: C, 61.26; H, 4.72; N, 13.82\%.

SN36709 N-(3-((4-(tert-Butyl)benzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S83).


1-((4-(tert-Butyl)benzyl)oxy)-3-nitrobenzene (S83a). Prepared using Method E from 4-tert-butylbenzyl bromide and 3-nitrophenol. The crude residue was purified by column chromatography, eluting with 10\% EtOAc/pet. ether, to give ether S83a ( $874 \mathrm{mg}, 85 \%$ ) as an off-white solid: mp 94-96 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.80-7.87$ (m, 2H, H-2, H-6), 7.35-7.46 (m, 5H, H-5, H-2', H-3', H-5', H-6'), 7.27-7.34 (m, 1H, H-4), 5.10 (s, 2H, CH2), 1.34 (s, 9H, tert-butyl-4'); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 308.1256$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaO}_{3}, 308.1257$ ).

3-((4-(tert-Butyl)benzyl)oxy)aniline (S83b). Prepared using Method G from nitrobenzene S83a. The crude residue was purified by column chromatography, eluting with $10 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give amine S83b ( $414 \mathrm{mg}, 57 \%$ ) as a pale orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.41$ (ddd, J = 8.5, 2.8, $2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ', H-5 '), 7.34-7.37$ (m, 2H, H-2', H-6'), 7.06 ( $\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.41 (ddd, $J=8.0,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.33 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2$ ), 6.30 (ddd, $J=8.0,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.98 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.65 (br s, 2H, NH2-1); MS m/z $256.6\left(\mathrm{MH}^{+}, 100 \%\right)$.

N-(3-((4-(tert-Butyl)benzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S83). Prepared using Method C from S83b and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give urea S83 (153 mg, 36\%) as a white solid: mp $191-193{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.11$ (br s, 1H, NH-3), 8.04 (dd, J = 5.3, 1.3 Hz, 1H, H-5), 7.32-7.46 (m, 5H, H-7, H-2"', H-3'", H-5"', H-6"'), 7.18-7.24 (m, 2H, H-2", H-5"), 6.99 (dd, J = 7.9, 5.3 Hz, 1H, H-6), 6.88 (ddd, $J=8.0,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 6.70$ (ddd, $J=8.3,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 6.45$ (s, 1H, CONH), 5.04 (s, 2H, CH2), 4.59 (tt, $J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.29 (d, J = 12.6 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ or $\mathrm{H}_{2}-6$ ), 3.06 (td, $J=12.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ or $\mathrm{H}_{2}-6$ ), 2.31 (qd, $J=12.6,4.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ or $\mathrm{H}_{2}-5$ ), 1.96 (dd, $J=12.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ or $\mathrm{H}_{2}-5$ ), 1.33 (s, 9H, $t$-butyl); ${ }^{13} \mathrm{C}$ NMR $\delta 159.8$ (C-3"), 154.8 (CONH), 153.2 (C-2), 151.2 (C-4"'), 143.1 (C-3a), 140.6 (C-5), 140.3 (C-1"), 134.0 (C-1"'), 129.8 (C-5"), 127.6 (C-2'", C-6"'), 125.7 (C-3"', C-5"'), 123.3 (C-7a), 117.2 (C-6), 115.6 (C-7), 112.3 (C-6"), 110.2 (C-4"), 106.6 (C-2"), 70.0 ( $\mathrm{CH}_{2}$ ), 50.6 (C-4'), 44.3 (C-2', C-6'), 34.7 (t-butyl-4"'), 31.5 (t-butyl-4"'), 29.5 (C-3', C-5'); MS m/z $501.3\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{3}$ : C, 69.72; H, 6.66; N, 14.02. Found: C, 69.83; H, 6.72; N, 14.14\%.

SN36765 N-(3-(Benzyloxy)phenyl)-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamide (S84).


N-(3-(Benzyloxy)phenyl)-2-bromoacetamide (S84a). Prepared using Method I from bromoacetyl bromide and amine S81b. The crude residue was purified by column chromatography, eluting with $10 \%$ EtOAc/pet. ether, to give bromide S84a ( 720 mg , quant.) as a pale orange powder: mp 123-125 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.08$ (s, 1H, CONH), 7.427.46 (m, 2H, H-2', H-6'), 7.36-7.41 (m, 3H, H-2, H-3', H-5'), 7.30-7.35 (m, 1H, H-4'), 7.22$7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.02$ (dd, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.79$ (ddd, $J=8.3,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 5.08$ (s, 2H, OCH2), 4.02 (s, 2H, BrCH 2 ); MS m/z 320.6 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(3-(Benzyloxy)phenyl)-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-

yl)piperidin-1-yl)acetamide (S84). Prepared by Method E from bromide S84a and piperidine $\mathbf{S 1 d}$ with $\mathrm{CsCO}_{3}$ at $20{ }^{\circ} \mathrm{C}$. The crude residue was purified by column chromatography eluting in EtOAc. Solvent was removed and the residue was loaded onto alumina, and the product eluted in $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the product $\mathbf{S 8 4}(118 \mathrm{mg}$, $39 \%$ ) as a white solid: mp 236-238 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.55$ (s, 1H, NH-1), 9.73 (s, 1H, CONH), 7.90 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.70 (dd, J = 7.8, 1.2 Hz, 1H, H-7), 7.43-7.48 (m, 3H, H-2", H-2"', H-6"'), 7.36-7.41 (m, 2H, H-3"', H-5"'), 7.30-7.35 (m, 1H, H-4"'), 7.19-7.25 (m, 2H, H-5", H-6"), 7.02 (dd, J = 7.8, 5.2 Hz, 1H, H-6), 6.71-6.77 (m,

1H, H-4"), 5.09 (s, 2H, OCH 2 ), 4.15-4.25 (m, 1H, H-4'), 3.18 (s, 2H, NCH2), 3.00 (d, J = $10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 2.31-2.44 (m, 4H, H2-2', H2-3', H2-5' or H2-6'), 1.69 (d, J = $10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\left.\mathrm{H}_{2}-5^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR [(CD2)2SO] ס 168.6 (CONH), 158.6 (C-3"), 153.1 (C-2), 143.5 (C-3a), 139.8 (C-1"), 139.6 (C-5), 137.1 (C-1"'), 129.5 (C-5"), 128.4 (C-3"', C-5"'), 127.8 (C-4"'), 127.7 (C-2"', C-6"'), 123.1 (C-7a), 116.4 (C-6), 115.0 (C-7), 112.2 (C-6"), 109.6 (C-4"), 106.5 (C-2"), $69.1\left(\mathrm{OCH}_{2}\right), 61.6\left(\mathrm{NCH}_{2}\right), 52.7(\mathrm{C}-2 ', \mathrm{C}-6 '), 49.7$ (C4'), 28.6 (C-3', C-5'); (+)-HRESIMS m/z [M+H]+ 458.2200 (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}, 458.2187$ ).

SN36874 tert-Butyl (3-(Benzyloxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S85).

tert-Butyl (3-(Benzyloxy)phenyl)carbamate (S85a). Prepared using Method K from aniline S81b to give carbamate S85a (248 mg, quant.) as a white solid: mp (EtOAc) 100$102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.43$ (br d, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6{ }^{\prime}\right), 7.38$ (br ddd, $J=7.4,7.1,1.1$ Hz, 2H, H-3', H-5'), 7.32 (br tt, J = 7.1, 1.3 Hz, 1H, H-4'), 7.15-7.21 (m, 2H, H-2, H-5), 6.85 (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.65 (ddd, $J=8.3,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.44 (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 5.06 (s, 2H, CH2O), 1.52 [s, 9H, C(CH3)3]; MS m/z 360.2 ( $\mathrm{M}-\mathrm{CO}_{2} \mathrm{CBu}^{+}, 100 \%$ ).

Methyl $\boldsymbol{N}$-(3-(Benzyloxy)phenyl)-N-(tert-butoxycarbonyl)glycinate (S85b). Prepared using Method L from S85a and methyl bromoacetate. The crude solid was purified by column chromatography, eluting with a gradient ( $0-10 \%$ ) of EtOAc/pet. ether, to give ester S85b ( $77 \mathrm{mg}, 39 \%$ ) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.42$ (br d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6{ }^{\prime \prime}$ ), 7.37 (br ddd, $\left.J=7.5,7.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 7.31$ (brtt, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$ ), 7.22 (br t, J = $\left.8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.95$ (br s, 1H, H-2'), 6.89 (br d, J = 7.2 Hz, 1H, H-6'), 6.82 (ddd, J = 8.3, 2.5, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 5.04 (s, 2H, CH2O), 4.26 (s, 2H, H-2), 3.74 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.43$ [s, 9H, C(CH3$\left.)_{3}\right] ; \mathrm{MS} \mathrm{m} / \mathrm{z} 372.2\left(\mathrm{MH}^{+}, 100 \%\right)$.

N-(3-(Benzyloxy)phenyl)-N-(tert-butoxycarbonyl)glycine (S85c). Prepared using Method J from ester S85b to give acid S85c (73 mg, quant) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.45$ (br d, J = 6.9 Hz, 2H, H-2", H-6"), 7.39 (br dd, J = 7.4, 7.0 Hz, 2H, H-3", H-5"), 7.33 (br t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 7.22 (br t, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.90$ (br s, 1H, H-2'), 6.82-6.87 (m, $\left.2 \mathrm{H}, \mathrm{H}-4{ }^{\prime}, \mathrm{H}-6^{\prime}\right), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.13$ (s, 2H, H-2), 1.37 [s, 9H, C(CH3)3]; MS m/z 356.2 (M-H-, 100\%).
tert-Butyl (3-(Benzyloxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S85). Prepared using Method H from acid S85c and piperidine S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of $\mathrm{MeOH} / \mathrm{EtOAc}$, to give carboxamide $\mathbf{S 8 5}$ (73 mg, 64\%) as a white solid: mp (EtOAc) $136{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR $\delta 9.80$ (br s, 1H, CONH), 8.00 (dd, J $\left.=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.42-7.47$ (m, 3H, H-2"", H-6""), 7.38 (br dd, J = 7.4, 7.0 Hz, 2H, H-3"", H-5""'), 7.32 (d, J = 7.1 Hz, 1H, H-4""), 7.22 (br t, J = 8.1 Hz, 1H, H-5"'), 7.04 (br t,
$\left.J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime \prime}\right), 6.93-7.00$ (m, 2H, H-6", H-6'"), 6.84 (ddd, J = 8.2, 1.8, 0.7 Hz, 1H, H-4'"), 5.06 (s, 2H, CH2O), 4.84 (m, 1H, H-4'), 4.55-4.66 (m, 2H, H-2), 4.25 (br d, J = 13.9 Hz, 1H, H-2', H-6'), 3.95 (br d, J = $13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 3.20 (br dd, $J=13.3,12.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.70$ (br dd, $\left.J=12.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.08-2.18$ (m, 2H, H-3', H5'), 1.96-2.06 (m, 2H, H-3', H-5'), 1.47 [s, 9H, C( $\left.\mathrm{CH}_{3}\right)_{3}$ ]; ${ }^{13} \mathrm{C}$ NMR $\delta$ 167.4, 159.2, 154.9, $153.4,144.4,143.2,140.6,137.0,129.4,128.8$ (2), 128.2, 127.8 (2), 123.3, 119.7, 117.2, 113.9, 112.9, 81.1, 70.3, 51.3, 50.3, 44.7 (2), 42.4, 29.2 (2), 28.5 (3); MS m/z 558.2 ( $\mathrm{MH}^{+}$, $30 \%$ ), 458.1 ( $\mathrm{MH}-\mathrm{CO}_{2} \mathrm{tBu}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 558.2711$. Found 558.2717 (-1.0 ppm).

SN36875 tert-Butyl (4-(Benzyloxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S86).


1-(Benzyloxy)-4-nitrobenzene (S86a). Prepared using Method E from benzyl bromide and 4-nitrophenol. Ether S86a ( $990 \mathrm{mg}, 94 \%$ ) was obtained as a pale yellow solid and was used without further purification: mp $103-105^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.19-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ 7.44 (m, 5H), 7.01-7.05 (m, 2H), 5.17 (s, 2H).

4-(Benzyloxy)aniline (S86b). Prepared using Method G from S86a. The amine S86b ( $658 \mathrm{mg}, 81 \%$ ) was obtained as a brown solid: $\mathrm{mp} 40-41{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.43(\mathrm{~m}$, 2H), 7.34-7.39 (m, 2H), 7.28-7.33 (m, 1H), 4.99 (s, 2H), 3.54 (br s, 2H); MS m/z 200.6 ( $\mathrm{MH}^{+}, 100 \%$ ).
tert-Butyl (4-(Benzyloxy)phenyl)carbamate (S86c). Prepared using Method K from aniline S86b to give carbamate S86c ( $634 \mathrm{mg}, 96 \%$ ) as a brown solid: mp (EtOAc) 120$122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.42$ (br d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6$ '), 7.36 (br dd, $J=7.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-3', H-5'), 7.31 (br ddd, J = 7.4, 6.7, 1.5 Hz, 1H, H-4'), 7.24-7.28 (m, 2H, H-2, H-6), 6.90 (ddd, J = 9.0, 3.5, 2.2 Hz, 2H, H-3, H-5), 6.32 (br s, 1H, $\mathrm{NHCO}_{2}$ ), $5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ ), 1.51 [s, $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ]; MS m/z $398.3\left(\mathrm{M}^{-} \mathrm{H}^{-}, 100 \%\right)$.

Methyl N-(4-(Benzyloxy)phenyl)-N-(tert-butoxycarbonyl)glycinate (S86d). Prepared using Method L from carbamate S86c and methyl bromoacetate. The crude solid was purified by column chromatography, eluting with a gradient ( $0-10 \%$ ) of EtOAc/pet. ether, to give ester S86d ( $247 \mathrm{mg}, 72 \%$ ) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2 ", \mathrm{H}-$ $3^{\prime \prime}, \mathrm{H}-5{ }^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$ ), 7.30-7.34 (m, 1H, H-4"), 7.15-7.22 (m, 2H, H-2', H-6'), 6.89-6.95 (m, 2H, $\left.\mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}\right), 5.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.21-4.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 3.71$ and $3.73\left(2 \times \mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 1.38 and $1.44\left[2 \times \mathrm{br} \mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; $\mathrm{MS} \mathrm{m} / \mathrm{z} 272.2\left(\mathrm{MH}-\mathrm{CO}_{2} \mathrm{tBu}{ }^{+}, 100 \%\right)$.

N-(4-(Benzyloxy)phenyl)-N-(tert-butoxycarbonyl)glycine (S86e). Prepared using Method J from ester S86d to give acid S86e (195 mg, 94\%) as a white solid: mp (EtOAc)

118-121 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 7.45$ (br d, J = $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6 "\right), 7.39$ (br dd, J $=7.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5 "$ ), 7.32 (brt, J = 7.1 Hz, 1H, H-4"), 7.18 (br d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$, H-2', H-6'), 6.95 (ddd, J = 9.0, 3.3, 2.0 Hz, 1H, H-3', H-5'), 5.08 (s, 2H, CH2O), 4.07 (br s, $2 \mathrm{H}, \mathrm{H}-2), 1.35\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; MS m/z $356.2\left(\mathrm{M}-\mathrm{H}^{-}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5}$ : C, 67.21, H, 6.49; N, 3.92. Found: C, 67.04; H, 6.49; N, 3.83\%.
tert-Butyl (4-(Benzyloxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S86). Prepared using Method H from S86e and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-5 \%$ ) of MeOH/EtOAc, to give urea $\mathbf{S 8 6}$ ( $173 \mathrm{mg}, 75 \%$ ) as a yellow solid: mp (EtOAc) $138{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR $\delta 10.79$ (br s, $1 \mathrm{H}, \mathrm{CONH}$ ), 8.07 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-5"), 7.42-7.46 (m, 3H, H-6", H-2"", H-6""), 7.39 (br dd, J = 7.6, 7.0 Hz, 2H, H-3"", H$5^{\prime \prime \prime}$ ), 7.33 (br t, J = 7.0 Hz, 1H, H-4""), 7.29 (br d, J = 8.9 Hz, 2H, H-2'", H-6'"), 6.97 (dd, J = 7.9, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}$ ), 6.93 (ddd, J = 9.0, $3.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}$ ), 5.05 (s, 2H, $\mathrm{CH}_{2} \mathrm{O}$ ), 4.83 (br d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 4.55-4.68 (m, 2H, H-2, H-4'), 4.20-4.28 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ ), 3.95 (br d, $\left.J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 3.21$ (br dd, $J=12.8,12.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.72 (br dd, $J=12.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ ), 2.18-2.30 (m, 2H, H-3', H-5'), 1.87-1.96 (m, 2H, H-3', H-5'), 1.44 [s, 9H, C(CH3 $)_{3}$ ]; ${ }^{13} \mathrm{C}$ NMR $\delta 167.4,157.2,155.4$, 153.7, 143.5, 140.4, 137.0, 136.4, 128.8 (2), 128.5 (2), 128.2 (2), 127.7 (2), 123.3, 117.1, 116.1, 115.0, 80.8, 70.4, 52.0, 50.3, 44.7, 42.3, 29.8, 29.2, 28.5 (3); MS m/z 558.3 ( $\mathrm{MH}^{+}$, $100 \%$ ); HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 558.2711$. Found 558.2742 ( -5.5 ppm ).

SN36876 tert-Butyl 4-((3-(Methyl(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)amino)phenoxy)methyl)piperidine-1-carboxylate (S87).

tert-Butyl 4-((3-Nitrophenoxy)methyl)piperidine-1-carboxylate (S87a). Prepared using Method L from tert-butyl 4-(hydroxymethyl)piperidine-1-carboxylate and 3fluoronitrobenzene at $90^{\circ} \mathrm{C}$. The crude solid was purified by column chromatography, eluting with a gradient (0-25\%) of EtOAc/pet. ether, to give ether S87a (111 mg, 46\%) as a white solid: $\mathrm{mp}\left(\mathrm{EtOAc} / \mathrm{pet}\right.$. ether) $92-93^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.80$ (ddd, $J=8.2,2.1,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), 7.71 (t, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 7.42 ( $\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.21 (ddd, $J=8.3$, $2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.10-4.20 (m, 2H, H-2, H-6), 3.89 (d, J = 6.4 Hz, 2H, CH2O), 2.76 (br t, J = 12.2 Hz, 2H, H-2, H-6), 1.95-2.05 (m, 1H, H-4), 1.82 (br d, J = $12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $3, \mathrm{H}-5), 1.48\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30(\mathrm{dq}, \mathrm{J}=12.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z 237.2 $\left(\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{tBu}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ : C, $60.70 ; \mathrm{H}, 7.19 ; \mathrm{N}, 8.13$. Found: C , 60.98; H, 7.03; N, 8.28\%.
tert-Butyl 4-((3-Aminophenoxy)methyl)piperidine-1-carboxylate (S87b). Prepared using Method B from S87a. The amine S87b ( $74 \mathrm{mg}, 77 \%$ ) was obtained as a tan solid: $\mathrm{mp}(\mathrm{MeOH}) 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.05\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.26-6.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$, H-6'), 6.23 (t, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 4.10-4.18 (m, 2H, H-2, H-6), 3.76 (d, J = 6.4 Hz, 2H, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.64 (br s, 2H, $3^{\prime}-\mathrm{NH}_{2}$ ), 2.73 (br t, J = $12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 1.87-1.98 (m, 1H,

H-4), 1.80 (br d, J = $12.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.46 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.24$ (dq, J = 12.4, 4.2 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5)$; MS m/z 307.2 ( $\left.\mathrm{MH}^{+}, 5 \%\right)$, 207.2 ( $\left.\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{tBu}, 100 \%\right)$. Anal. cald for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 65.90 ; \mathrm{H}, 8.66$; N, 8.91. Found: C, 66.03; H, 8.57; N, 9.04\%.
tert-Butyl 4-((3-((2-Methoxy-2-oxoethyl)amino)phenoxy)methyl)piperidine-1carboxylate (S87c). Prepared using Method E from methyl bromoacetate and aniline S87b at $20^{\circ} \mathrm{C}$. The crude solid was purified by column chromatography, eluting with a gradient (15-20\%) of EtOAc/pet. ether, to give ester S87c (451 mg, 87\%) as a white solid: mp (EtOAc/pet. ether) $79-80^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.08$ (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 6.29 (ddd, $J=$ 8.2, 2.3, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 6.22 (ddd, J = 8.0, 2.2, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.14 (t, J = 2.2 Hz , 1H, H-2'), 4.25 (br t, J = 5.4 Hz, 1H, NH), 4.08-4.16 (m, 2H, H-2, H-6), 3.90 (d, J = 5.4 $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.73(\mathrm{brt}, \mathrm{J}=12.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), $1.87-1.98$ (m, 1H, H-4), 1.80 (br d, J = $12.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.46 [s, 9 H , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.24$ (dq, J = 12.4, $\left.4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5\right)$; $\mathrm{MS} m / z 379.3\left(\mathrm{MH}^{+}, 20 \%\right), 279.3$ ( $\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{tBu}, 100 \%$ ).
tert-Butyl 4-((3-((2-Methoxy-2-oxoethyl)(methyl)amino)phenoxy)methyl)piperidine-1-carboxylate (S87d). Prepared using Method E from methyl iodide and carbamate S87c at $20^{\circ} \mathrm{C}$. The crude solid was purified by column chromatography, eluting with a gradient ( $0-20 \%$ ) of EtOAc/pet. ether, to give ester S87d (175 mg, 43\%) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta$ 7.11 (t, J = 8.2 Hz, 1H, H-5'), 6.26-6.31 (m, 2H, H-4', H-6'), 6.22 (br s, 1H, H-2'), 4.104.16 (m, 2H, H-2, H-6), 4.06 (s, 2H, H-1"), 3.78 (d, J = 6.3 Hz, 2H, CH2O), 3.71 (s, 3H, $\mathrm{OCH}_{3}$ ), 3.04 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 2.73 (br dd, $J=12.3,12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 1.87-1.97 (m, $1 \mathrm{H}, \mathrm{H}-4), 1.82$ (br d, J = $13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ ), 1.46 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.20-1.30(\mathrm{~m}, 2 \mathrm{H}$, H-3, H-5); MS m/z 393.3 ( $\mathrm{MH}^{+}, 30 \%$ ), 337.3 ( $\mathrm{MH}^{+}-t \mathrm{Bu}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 393.2384$. Found 393.2394 (-2.6 ppm). Starting material ( 210 mg , $54 \%$ ) was also isolated.

## N-(3-((1-(tert-Butoxycarbonyl)piperidin-4-yl)methoxy)phenyl)-N-methylglycine

(S87e). Prepared using Method J from ester S87d to give acid S87e ( $225 \mathrm{mg}, 96 \%$ ) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 6.93\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.14$ (dd, $J=8.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$ '), 6.06 (dd, $\left.J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 6.03\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.96$ (br d, J $\left.=11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 3.73$ (d, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ), 3.47 (s, 2H, CH2O), 2.88 (s, 3H, $\mathrm{NCH}_{3}$ ), 2.65-2.78 (m, 2H, H-2", H-6"), 1.81-1.92 (m, 2H, H-4"), 1.73 (br d, J = 11.1 Hz , $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 1.39\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.12$ (dq, J = 12.4, 4.0 Hz, 2H, H-3", H-5"), $\mathrm{CO}_{2} \mathrm{H}$ not observed; MS m/z 377.3 (M-H, $100 \%)$.
tert-Butyl 4-((3-(Methyl(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)amino)phenoxy)methyl)piperidine-1-carboxylate
(S87).
Prepared using Method H from S87d and S1d. The crude solid was purified by column chromatography, eluting with a gradient ( $0-10 \%$ ) of MeOH/DCM, to give urea $\mathbf{S 8 7}$ (184 $\mathrm{mg}, 67 \%$ ) as a grey solid: mp (EtOAc) 199-203 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 11.56$ (br s, 1H, CONH), 7.90 (dd, J = 5.2, 1.2 Hz, 1H, H-5""), 7.41 (dd, J = 7.8, 1.2 Hz, 1H, H-7""), 7.03 ( $\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 6.98 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 " \prime$ ), 6.28 (dd, $J=8.4,2.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.22$ (dd, $\left.J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.17\left(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.40-4.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2$ "", H-6"", H-4""), 4.34 (br d, J = 17.1 Hz, 1H, H-2"), 4.23 (br d, J = 17.0 Hz, 1H, H-
$2^{\prime \prime}$ ), 4.04 (br d, J = 11.4 Hz, 1H, H-2'", H-6"'), 3.96 (br d, J=11.7 Hz, 2H, H-2, H-6), 3.79 (d, J = 6.4 Hz, 2H, CH2O), 3.18 (br dd, J = 13.0, 11.8 Hz, 1H, H-2'", H-6'"), 2.95 (s, 3H, $\mathrm{NCH}_{3}$ ), 2.65-2.75 (m, 3H, H-2, H-6, H-2'", H-6'"), 2.20-2.30 (m, 1H, H-3'", H-5'"), 1.962.07 (m, 1H, H-3'", H-5'"), 1.84-1.92 (m, 1H, H-4), 1.68-1.82 (m, 4H, H-3, H-5, H-3'", H-
 $\delta 167.5,159.7,153.9,153.0,150.9,143.4,139.8,129.4,123.1,116.3,114.6,105.1$, 101.6, 98.9, 78.5, 71.5, 53.2, 49.7, 43.7 (2), 41.0, 40.9 (2), 39.2, 35.4, 29.2, 28.7, 28.4, 28.1 (3); MS m/z $579.3\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 579.3293$. Found 579.3297 (-0.8 ppm).

SN36877 1-(1-((4-(Benzyloxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S88).



1-(1-((4-(Benzyloxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S88). Prepared using Method F from carbamate $\mathbf{S 8 6}$ to give pyridinone S88 (70 mg, 88\%) as a white solid: mp (EtOAc/pet. ether) 106-109 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 11.55$ (br s, 1H, CONH), 7.88 (dd, J = 5.2, 1.2 Hz, 1H, H-5), 7.40-7.47 (m, 3H, H-7, H-2"", H-6""), 7.37 (br dd, J = 7.6, $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 " ", \mathrm{H}-5 "{ }^{\prime \prime}$ ), 7.30 (br t, J = 7.1 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4 " \prime$ "), 6.93 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.81 (ddd, $J=8.9,3.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $3^{\prime \prime \prime}, \mathrm{H}-5{ }^{\prime \prime \prime}$ ), 6.63 (ddd, $J=9.0,3.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ '", H-6'"), 5.27 (brt, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 4.98 (s, 2H, CH2O), 4.57 (br d, $\left.J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 4.47$ (tt, $J=12.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 4.10 (br d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}$ ), 3.97 (dd, J = 16.2, 5.0 Hz, 1H, H-2"), 3.85 (dd, $\left.J=16.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 3.16$ (br t, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 2.72$ (br dd, $J=$ $12.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), 2.24 (dq, $J=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 2.00 (dq, $J=$ 12.3, $\left.3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 1.70-1.80$ (m, 2H, H-3', H-5'); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 167.9$, 153.0, 149.9, 143.4, 142.7, 139.6, 137.7, 128.3 (2), 127.6, 127.5 (2), 123.0, 116.3, 115.7 (2), 114.8, 113.4 (2), 69.8, 49.7, 45.7, 43.5, 41.0, 29.0, 28.6; MS m/z 458.3 ( $\mathrm{MH}^{+}, 100 \%$ ); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 458.2187$. Found 458.2198 ( -2.4 ppm ).

SN36920 1-(1-(N-Methyl-N-(4-(piperidin-4-ylmethoxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S89).


1-(1-(N-Methyl-N-(4-(piperidin-4-ylmethoxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S89). Prepared using Method From carbamate $\mathbf{S 8 7}$ to give amine $\mathbf{S 8 9}$ (124 mg, 100\%) as a tan gum: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ 11.64 (br s, 1H, CONH), 8.95-9.05 (br s, 1H, NH), 8.60-8.70 (br s, 1H, NH), 7.90 (dd, J $=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.45(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.07\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime \prime}\right), 6.99$ (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.33 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}$ ), 6.28 (d, J=8.0 Hz, 1H, H6'"), 6.25 (br s, 1H, H-2'"), 4.42-4.50 (m, 2H, H-2', H-6', H-4'), 4.38 (br d, J = $17.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-2"), 4.28 (br d, J = $17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ ), 3.98-4.06 (m, 1H, H-2', H-6'), 3.81 (d, J = 6.2 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.27 (br d, $\left.J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 " ", \mathrm{H}-6 " "\right), 3.18$ (br dd, J = 12.6, 10.8 Hz , 1H, H-2', H-6'), 2.97 (s, 3H, NCH3 ), 2.87 (br q, J = $\left.12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}\right), 2.64-2.74$
(m, 1H, H-2', H-6'), 2.23-2.33 (m, 1H, H-3', H-5'), 1.97-2.07 (m, 2H, H-3', H-5', H-4""), 1.90 (br d, J = $13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}$ ), 1.76 (br t, J = $13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 1.431.55 (m, 2H, H-3"", H-5""); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ 167.1, 159.5, 153.0, 150.6, 143.3, 139.3, 129.6, 123.4, 116.4, 114.8, 105.7, 102.4, 99.3, 70.9, 53.4, 49.8, 43.7, 42.7 (2), 41.0, 39.4, 33.3, 29.2, 28.7, 25.3 (2); MS m/z $479.3\left(\mathrm{MH}^{+}, 100 \%\right)$ HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 479.2765$. Found 479.2773 (-1.6 ppm).

SN36944 N-(3-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidine-1-carboxamide (S90).


## N-(3-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-

yl)piperidine-1-carboxamide (S90). Prepared using Method C from S81b and 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give urea $\mathbf{S 9 0}$ ( $652 \mathrm{mg}, 49 \%$ ) as a white solid: mp 195-197 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.85$ (s, 1H, NH-3), 8.58 (s, 1H, CONH), 7.43-7.47 (m, 2H, H-2"', H-6"'), 7.37-7.42 (m, 2H, H-3"', H-5"'), 7.30-7.36 (m, $1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$ ), 7.29 (t, J = 2.3 Hz, 1H, H-2"), $7.18-7.23$ (m, 1H, H-4), $7.14(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-5"), 7.06-7.10 (m, 1H, H-6"), 6.94-7.01 (m, 3H, H-5, H-6, H-7), 6.60 (ddd, J = 8.0 , 2.3, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 5.06 (s, 2H, CH2), 4.39 (tt, $J=12.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.29 (d, J = 12.4 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or H2-6'), 2.93 (t, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2$ ' or H2-6'), 2.28 (qd, J = 12.4, 3.9 Hz , $2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right), 1.73$ (dd, $J=12.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ 158.5 (C-3"), 154.7 (CONH), 153.7 (C-2), 142.0 (C-1"), 137.2 (C-1"'), 129.3 (C-7a), 129.0 (C-5"), 128.4 (C-3"', C-5"'), 128.3 (C-3a), 127.8 (C-4"'), 127.6 (C-2"', C-6"'), 120.6 (C-6), 120.4 (C-5), 112.1 (C-6"), 108.8 (C-7), 108.5 (C-4), 107.9 (C-4"), 106.1 (C-2"), 69.0 (CH2), 50.1 (C-4'), 43.6 (C-2', C-6'), 28.7 (C-3', C-5'); MS m/z 444.1 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 70.57; H, 5.92; N, 12.66. Found: C, 70.48; H, $5.78 ; \mathrm{N}, 12.71 \%$.

SN36962 1-(1-(N-(3-(Benzyloxy)phenyl)-N-methylglycyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S91).


Methyl (3-(benzyloxy)phenyl)glycinate (S91a). Prepared using Method E from methyl bromoacetate and aniline S81b at $20^{\circ} \mathrm{C}$. The crude residue was purified by column chromatography, eluting with $20 \%$ EtOAc/pet. ether, to give methyl ester S91a ( 316 mg , $80 \%$ ) as a white solid: mp 97-99 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.45$ (m, 2H, H-2', H-6'), 7.35-7.40 (m, 2H, H-3', H-5'), 7.29-7.34 (m, 1H, H-4'), 7.07-7.12 (m, 1H, H-5), 6.38-6.41 (m, 1H, H-6), 6.22-6.27 (m, 2H, H-2, H-4), 5.03 (s, 2H, OCH2), 4.28 (t, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 3.90 (d, J = 5.4 Hz, 2H, CH2NH), 3.78 (s, 3H, OMe); MS m/z 272.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ : C, 70.83; H, 6.32; N, 5.16. Found: C, 71.01; H, 6.26; N, 5.22\%.

Methyl N-(3-(Benzyloxy)phenyl)-N-methylglycinate (S91b). Prepared using Method E from methyl iodide and methyl ester S91a at $20^{\circ} \mathrm{C}$. The crude residue was purified by column chromatography, eluting with 10-20\% EtOAc/pet. ether, to give methylated amine S91b (134 mg, 62\%) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.45$ (m, 2H, H-2', H-6'), 7.35-7.41 (m, 2H, H-3', H-5'), 7.29-7.34 (m, 1H, H-4'), 7.11-7.16 (m, 1H, H-5), 6.37-6.41 (m, 1H, H-6), 6.29-6.33 (m, 2H, H-2, H-4), 5.04 (s, 2H, OCH 2 ), 4.05 (s, 2H, CH2), 3.71 (s, 3H, OMe), 3.04 (s, 3H, Me); MS m/z 286.6 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H]+ 286.1438 (calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}, 286.1438$ ).

N-(3-(Benzyloxy)phenyl)-N-methylglycine (S91c). Prepared using Method J from ester S91b. The product was recrystallised from pet. ether ( 10 mL ) to give the acid S91c (79 $\mathrm{mg}, 71 \%$ ) as a pale green solid: mp 112-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 12.54$ (s, 1H, $\mathrm{CO}_{2} \mathrm{H}$ ), 7.42-7.46 (m, 2H, H-2', H-6'), 7.36-7.41 (m, 2H, H-3', H-5'), 7.29-7.34 (m, 1H, H-4'), 7.01-7.08 (m, 1H, H-5), 6.29-6.34 (m, 1H, H-6), 6.22-6.26 (m, 2H, H-2, H-4), 5.04 (s, 2H, OCH 2 ), 4.04 (s, 2H, CH2), 2.94 (s, 3H, Me); MS m/z 272.6 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ : C, 70.83; H, 6.32; N, 5.16. Found: C, 70.85; H, 6.41; N, 5.13\%.

1-(1-(N-(3-(Benzyloxy)phenyl)-N-methylglycyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S91). Prepared using Method H from S91c and 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one. The resulting crude residue was purified by column chromatography, eluting with $1-3 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give amide $\mathbf{S 9 1}$ (269 mg, $56 \%$ ) as a white solid: mp 152-154 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.35$ (s, 1H, NH-3), 7.42-7.46 (m, 2H, H-2'", H-6"'), 7.35-7.40 (m, 2H, H-3"', H-5"'), 7.29-7.34 (m, 1H, H-4"'), 7.16-7.22 (m, 1H, H-5"), 6.99-7.10 (m, 3H, H-5, H-6, H-7), 6.91 (d, J = 7.9 Hz, 1H, H-4), 6.44-6.47 (m, 1H, H-6"), 6.39-6.43 (m, 2H, H-2", H-4"), 5.07 (s, 2H, OCH2), 4.84 (br d, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-$ 2' or H2-6'), 4.56 (tt, J = 12.8, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 4.17 (br d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCH}_{2}$ ), 4.05 (br d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 3.22 (brt, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or H2-6'), 3.09 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$ ), 2.73 (brt, $\mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.30 (br p, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.90 (br d, $\mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR $\delta 168.3\left(\mathrm{COCH}_{2}\right), 160.3$ (C-3"), 155.1 (C-2), 150.9 (C-1"), 137.5 (C-1"'), 130.2 (C-5"), 129.0 (C-3a), 128.7 (C-3"', C-5"'), 128.2 (C-7a), 128.1 (C-4"'), 127.8 (C-2"', C-6"'), 121.6 (C-6), 121.5 (C-5), 110.0 (C-7), 109.4 (C-4), 106.2 (C-6"), 103.4 (C-4"), 100.6 (C-2"), $70.1\left(\mathrm{OCH}_{2}\right), 55.3\left(\mathrm{COCH}_{2}\right)$, 50.6 (C-4'), 44.9 (C-2' or C-6'), 42.3 (C-2' or C-6'), 40.0 (N-Me), 29.9 (C-3' or C-5'), 29.3 (C-3' or C-5'); MS m/z 472.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.13$; H, 6.52; N, 11.68. Found: C, 70.44; H, 6.38; N, 11.37\%.

SN36963 1-(1-(N-(3-(Benzyloxy)phenyl)-N-methylglycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S92).


1-(1-(N-(3-(Benzyloxy)phenyl)-N-methylglycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S92). Prepared using Method H from S91c and S1d. The resulting crude residue was purified by column chromatography, eluting with 1\% $\mathrm{MeOH} / \mathrm{EtOAc}$, to give the amide $\mathbf{S 9 2}$ ( $370 \mathrm{mg}, 51 \%$ ) as a white solid: mp $152-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 10.66$ (s, 1H, NH-3), 8.03 (dd, J = 5.2, 1.3 Hz, 1H, H-5), 7.39-7.45 (m, 2H, H-2"',

H-6"'), 7.32-7.38 (m, 2H, H-3"', H-5"'), 7.27-7.32 (m, 1H, H-4"'), 7.14-7.21 (m, 1H, H-5"), 6.96 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.88 (dd, $J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.46 (dd, $J=7.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 6.39-6.43 (m, 2H, H2-2", H2-6"), 5.05 (s, 2H, OCH2), 4.81 (d, J = 12.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2$ or $\mathrm{H}_{2}-6{ }^{\prime}$ ), 4.59 (tt, $\left.J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{\prime}\right), 4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 4.03(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6 '$ ), $3.20\left(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-\mathrm{Z}^{\prime}\right.$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.07 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-$ Me ), 2.71 (t, J = $12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-\mathrm{Z}^{\prime}$ or $\mathrm{H}_{2}-\mathrm{G}^{\prime}$ ), 2.01-2.21 (m, 2H, H2-3' or H2-5'), 1.88 (d, J $=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3$ ' or $\mathrm{H}_{2}-5$ '); ${ }^{13} \mathrm{C}$ NMR $\delta 168.4\left(\mathrm{COCH}_{2}\right), 160.3$ (C-3"), 153.6 (C-2), 150.9 (C-1"), 143.4 (C-3a), 140.4 (C-5), 137.4 (C-1"'), 130.3 (C-5"), 128.8 (C-3"', C-5"'), 128.1 (C-4"'), 127.8 (C-2"', C-6"'), 123.3 (C-7a), 117.1 (C-6), 115.6 (C-7), 106.2 (C-6"), 103.6 (C-4"), 100.6 (C-2"), $70.1\left(\mathrm{OCH}_{2}\right), 55.7\left(\mathrm{COCH}_{2}\right), 50.3(\mathrm{C}-4 '), 44.9(\mathrm{C}-2 ', \mathrm{C}-6 '), 42.2$ (C2', C-6'), 40.3 (N-Me), 30.0 (C-3', C-5'), 29.5 (C-3', C-5'); MS m/z 473.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{3}$ : C, 68.77; H, 6.20; N, 14.85. Found: C, 68.79; H, 6.21; N, 14.91\%.

SN36972 1-(1-((3-(Benzyloxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S93).


1-(1-((3-(Benzyloxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S93). Prepared using Method F from carbamate $\mathbf{S 8 5}$ to give pyridinone S93 (28 mg, 100\%) as a white solid: mp (EtOAc/pet. ether) $163{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] 11.56$ (s, 1, CONH), 7.89 (dd, J = 5.2, 1.2 Hz, 1H, H-5), 7.41-7.48 (m, 3H, H-7, H-2"", H-6""), 7.35-7.40 (m, 2H, H-3"", H-5""), 7.28-7.35 (m, 1H, H-4""), 7.00 (t, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime \prime}$ ), 6.94 (dd, J=7.8, 5.2 Hz, 1H, H-6), 6.37 (t, J = 2.2 Hz, 1H, H-2'"), 6.32 (dd, $\left.J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime}\right), 6.27$ (dd, $\left.J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime \prime}\right), 5.64$ (t, J = 4.9 Hz , $1 \mathrm{H}, \mathrm{NH}$ ), 5.04 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 4.57 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6$ '), 4.48 (tt, $J=12.3,4.0$ Hz, 1H, H-4'), 4.11 (br d, J = $\left.14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 4.01$ (dd, J = 16.3, 4.6 Hz, 1H, H2'), 3.88 (dd, J = 16.3, 4.6 Hz, 1H, H-2"), 3.18 (br dd, J = 13.0, 12.0 Hz, 1H, H-2', H-6'), 2.75 (br d, J = 12.0 Hz, 1H, H-2', H-6'), 2.20-2.30 (m, 1H, H-3', H-5'), 1.96-2.07 (m, 1H, H-3', H-5'), 1.72-1.81 (m, 2H, H-3', H-5'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 167.6, 159.5, 153.0, 149.5, 143.4, 139.6, 137.4, 129.5, 128.3 (2), 127.7 (2), 123.0, 116.4, 114.8, 105.9, 102.4, 99.1, 68.9, 49.6, 45.0, 43.5, 41.0 (2), 29.0, 28.7. MS m/z $458.4\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{z} 458.2187$. Found 458.2191 (-1.0 ppm).

SN36973 N-(2-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S94).


1-(Benzyloxy)-2-nitrobenzene (S94a). Prepared using Method E from benzyl bromide and 2-nitrophenol. The ether S94a ( $817 \mathrm{mg}, 99 \%$ ) was obtained as yellow oil and used without further purification: ${ }^{1} \mathrm{H}$ NMR $\delta 7.86$ (dd, $\left.J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.38-7.42$ (m, 2H), 7.33-7.35 (m, 1H), 7.12 (dd, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.06$ (m, 1H), 5.24 (s, 2H).

2-(Benzyloxy)aniline (S94b). Prepared using Method G from S94a. Amine S94b (428 $\mathrm{mg}, 67 \%)$ was obtained as a clear yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.41(\mathrm{~m}$, 2H), 7.31-7.35 (m, 1H), $6.86(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.76(\mathrm{~m}$, 2H), 5.08 (s, 2H), 3.83 (br s, 2H); MS m/z 200.6 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(2-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-

yl)piperidine-1-carboxamide (S94). Prepared using Method C from S94b and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc to give urea $\mathbf{S 9 4}$ ( $566 \mathrm{mg}, 62 \%$ ) as a white solid: mp $137-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ 11.56 (s, 1H), 7.89 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.82 (s, 1H), 7.65 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.51 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (tt, $J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-$ $6.96(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=12.1$, $12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{dd}, \mathrm{J}=11.9,2.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 154.7$, 153.1, 149.6, 143.5, 139.7, 137.3, 129.1, 128.4 (2), 127.7, 127.2 (2), 123.6, 123.3, 123.0, 120.6, 116.4, 114.5, 112.8, 69.8, 50.0, 43.5 (2), 28.7 (2); MS m/z 445.0 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$; (+)HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 444.2042$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3}, 444.2030$ ).

SN36987 N-(4-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S95).


$N$-(4-(Benzyloxy)phenyl)-4-(2-oxo-2,3-dihydro-1 H-imidazo[4,5-b]pyridin-1-
yl)piperidine-1-carboxamide (S95). Prepared using Method C from S86 and S1d. The crude residue was purified by column chromatography, eluting with $2-4 \% \mathrm{MeOH} / \mathrm{DCM}$, to give urea S95 (134 mg, 26\%) as an orange solid: mp (MeOH/DCM) 265-268 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] 11.55(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, \mathrm{J}=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, J $=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.99$ (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.90-6.92 (m, 1H), $5.05(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}$ = 12.4, $12.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.18-2.20 (m, 1H), 1.76 (dd, J = 12.4, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2}\right)_{2}$ ] ס 155.0, 153.5, 153.4, 143.9, 139.6, 137.4, 133.9, 128.4 (2), 127.7, 127.6 (2), 123.4, 121.5 (2), 116.2, 114.5 (2), 114.4, 69.4, 50.1, 43.4 (2), 28.8 (2); MS m/z 445.3 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$ : C, 67.70; H, 5.68; N, 15.79. Found: C, 67.51; H, 5.57; N, 15.87\%.

SN36988 4-(2-Oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)piperidine-1-carboxamide (S96).


4-(2-Oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)piperidine-1-carboxamide (S96). Prepared using Method C from S82b and 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one. The resulting crude residue was purified by column chromatography, eluting with EtOAc to give urea $\mathbf{S} 96$ (254 mg, 48\%) as a white solid: mp 181-183 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$
10.84 (s, 1H, NH-3), 8.59 (s, 1H, CONH), 7.81 (s, 1H, H-2"'), 7.77 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $6{ }^{\prime \prime}$ ), 7.70 (d, J = 2.1 Hz, 1H, H-4"'), 7.65 (t, J = 7.7 Hz, 1H, H-5"'), 7.32 (t, J = 2.3 Hz, 1H, H-2"), 7.18-7.23 (m, 1H, H-4), 7.15 (t, J = 8.0 Hz, 1H, H-5"), 7.06-7.12 (m, 1H, H-6"), 6.93-7.01 (m, 3H, H-5, H-6, H-7), 6.62 (ddd, J = 8.0, 2.3, 1.0 Hz, 1H, H-4"), 5.17 (s, 2H, $\mathrm{CH}_{2}$ ), $4.39\left(\mathrm{tt}, \mathrm{J}=12.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.29\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right.$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.94 ( $\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.28 (qd, $J=12.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.73 (dd, $J=12.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 158.2 (C-3"), 154.6 (CONH), 153.7 (C-2), 142.0 (C-1"), 138.8 (C-1"'), 131.5 (C-6"'), 129.5 (C-7a), 129.3 (C-5"'), 129.2 ( $q, J=31.6 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime \prime}$ ), 129.1 (C-5"), 128.3 (C-3a), 124.5 (q, J = $3.7 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime \prime}$ ), 124.2 ( $\mathrm{CF}_{3-}$ 3"'), 123.9 (q, J = 3.8 Hz, C-2"'), 120.6 (C-6), 120.4 (C-5), 112.3 (C-6"), 108.8 (C-7), 108.4 (C-4), 107.8 (C-4"), 106.2 (C-2"), 68.1 ( $\mathrm{CH}_{2}$ ), 50.1 (C-4'), 43.5 (C-2', C-6'), 28.7 (C-3', C$5^{\prime}$ ); MS $m / z 512.6\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 63.52; H, 4.95; N, 10.97. Found: C, 63.48; H, 4.87; N, 10.93\%.

SN37102 1-(1-((3-((4-(tert-Butyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S97).

tert-Butyl (3-((4-(tert-Butyl)benzyl)oxy)phenyl)carbamate (S97a). Prepared using Method K from aniline S83b. The crude residue was purified by column chromatography, eluting with $10 \%$ EtOAc/pet. ether, to give carbamate $\mathbf{S 9 7 a}(227 \mathrm{mg}, 94 \%)$ as an off-white solid: mp 130-133 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.42$ (m, 4H), 7.15-7.19 (m, 2H), 6.86 (dd, J = 8.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ 354.9 (M-H-, 100\%).

Methyl $\quad \mathbf{N}$-(tert-Butoxycarbonyl)-N-(3-((4-(tert-butyl)benzyl)oxy)phenyl)glycinate (S97b). Prepared using Method I from amine S97a and methyl bromoacetate. The crude residue was purified by column chromatography, eluting with $10 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give ester S97b (100 mg, 43\%) as a clear colourless gum: ${ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.42$ (m, 2H), 7.35-7.37 (m, 2H), 7.21-7.23 (m, 1H), 6.89-6.95 (m, 1H), 6.82-6.85 (m, 1H), 5.01 (s, 2H), 4.27 (s, 2H), 3.76 (s, 3H), 1.43 (br s, 9H), 1.33 (s, 9H).

N-(tert-Butoxycarbonyl)-N-(3-((4-(tert-butyl)benzyl)oxy)phenyl)glycine
(S97c).
Prepared using Method J from ester S97b to give acid S97c ( $110 \mathrm{mg}, 85 \%$ ) as a clear colourless gum: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 7.35-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.90-6.91 (m, 1H), 6.83-6.86 (m, 2H), $5.03(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 1.28(\mathrm{~s}$, 9H); MS m/z $413.0\left(\mathrm{M}^{-} \mathrm{H}^{-}, 100 \%\right)$.

tert-Butyl (3-((4-(tert-Butyl)benzyl)oxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S105). Prepared using Method H using S97c and S1d. The crude residue was purified by column
chromatography, eluting in EtOAc, to give amide S105 (35 mg, 45\%) as white residue: mp 209-211 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.53$ (br s, 1H), 7.89 (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.51 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.23$ (dd, $J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.97$ (m, 2H), 6.86-6.91 (m, 1H), 6.84 (dd, J = 8.3, 2.4 Hz, 1H), 5.04 (s, 2H), 4.32-4.61 (m, 4H), 3.97 (m, 1H), 3.16 (dd, $J=12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.27$ (m, 1H), 2.03-2.08 (m, 1H), 1.77 (br d, J = $11.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ ס 166.6, 158.2, 153.7, 153.1, 150.3, 144.2, 143.6, 139.7, 134.0, 128.9, 127.6 (2), 125.2 (2), 123.2, 118.7, 116.2, 114.4, 113.1, 111.5, 79.7, 69.1, 51.5, 49.7, 43.5, 41.2, 34.3, 31.1 (3), 29.0, 28.6, 27.9 (3); (+)-HRESIMS m/z [M+H] 614.3323 (calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{5}, 614.3337$ ).

## 1-(1-((3-((4-(tert-Butyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-

 imidazo[4,5-b]pyridin-2-one (S97). Prepared using Method F from carbamate S105 to give the amine $\mathbf{S 9 7}$ ( $25 \mathrm{mg}, 88 \%$ ) as an off-white solid: mp $137-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 11.55 (br s, 1H), 7.88 (dd, J = 5.2, 1.2 Hz, 1H), 7.31-7.43 (m, 5H), 6.98 (dd, $J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (t, $J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (dd, $J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (dd, $J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{t}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (s, $2 \mathrm{H}), 4.57(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.04$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=16.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.3$, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ 167.7, 159.5, 153.0, 150.1, 149.5, 143.4, 139.6, 134.4, 129.6, 127.5 (2), 125.1 (2), 123.0, 116.4, 114.8, 105.8, 102.5, 99.0, 68.6, 49.6, 45.1, 43.6, 41.0, 34.2, 31.1 (3), 29.0, 28.7; MS m/z $515.6\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H]+ 514.2824 (calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{3}, 514.2813$ ).SN37103 1-(1-Benzoylpiperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S98).


1-(1-Benzoylpiperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one
(S98).
Piperidine S1d ( $46 \mathrm{mg}, 0.18 \mathrm{mmol}$ ) was stirred in water ( 2 mL ) as a suspension. $\mathrm{Et}_{3} \mathrm{~N}(50$ $\mu \mathrm{L}, 0.36 \mathrm{mmol})$ was added followed by dropwise addition of benzoyl chloride $(21 \mu \mathrm{~L}, 0.18$ mmol ). The mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 20 min before diluted with water ( 50 mL ) and extracted with EtOAc ( 50 mL ). The organic layer was washed with water ( 50 mL ), brine ( 50 mL ), dried and concentrated. The crude residue was purified by column chromatography, eluting with EtOAc, to give amide S98 (29 mg, 49\%) as a white solid: mp 272-274 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.57$ (br s, 1H), 7.90 (dd, J = 5.2, 1.2 Hz, 1H), 7.69 (dd, J = 7.8, 1.2 Hz, 1H), 7.45-7.49 (m obsc., 5H), 7.00 (dd, J = 7.8, 5.2 Hz, 1H), $4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.44-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24$ (m, 2H), 1.73-1.81 (m, 2H); ${ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] ~ \delta 169.1,153.1,143.5,139.7,136.2$, 129.4, 128.4, 126.7, 123.1, 116.4, 115.0, 59.7, 49.8, 46.6, 28.8, 28.6, 20.7, 14.1; MS m/z $323.8\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 323.1507 (calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$, 323.1503).

SN37104 1-(1-(2-Phenylacetyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S99).


1-(1-(2-Phenylacetyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S99). Piperidine S1d ( $87 \mathrm{mg}, 0.34 \mathrm{mmol}$ ) was stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ as a suspension. Ammonia was added until dissolution. Solvent was removed and the residue was dried under vacuum. The residue was suspended in DMF ( 2 mL ). $\mathrm{Et}_{3} \mathrm{~N}(94 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$ ) and phenylacetyl chloride ( $45 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$ ) was added in a dropwise manner. The mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 16 h before diluted with water ( 50 mL ) and extracted with EtOAc ( 50 mL ). The organic layer was washed with water ( 50 mL ), brine ( 50 mL ), dried and concentrated. The crude residue was purified by column chromatography, eluting with EtOAc, to give amide $\mathbf{S 9 9}$ ( $71 \mathrm{mg}, 62 \%$ ) as an off-white solid: $\mathrm{mp} 232-233{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.53$ (br s, 1H), 7.88 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.37$ (m, 6H), 6.98 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.11(\mathrm{~m}, 1 \mathrm{H})$, 3.71-3.83 (m, 2H), 3.10-3.16 (m, 1H), 2.64-2.70 (m, 1H), 1.82-2.04 (m, 2H), 1.71-1.73 ( $\mathrm{m}, 1 \mathrm{H}$ ), 1.62-1.65 (m, 1H); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 168.6,152.9,143.4,139.6,135.9$, 128.8 (2), 128.3 (2), 126.3, 122.8, 116.2, 114.5, 49.4, 44.8, 40.7, 39.7, 28.8, 28.4; MS $\mathrm{m} / \mathrm{z} 337.8\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 337.1661$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$, 337.1659).

SN37105 1-(1-(3-Nitrobenzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S100).


1-(1-(3-Nitrobenzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one
(S100). Prepared using Method H from S1d and 3 -nitrobenzoic acid. The crude residue was purified by column chromatography, eluting in $2-5 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give amide S100 ( $137 \mathrm{mg}, 62 \%$ ) as an off-white solid: mp $213-215{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ SO] $\delta 11.58$ (s, 1H, NH-1), 8.29-8.33 (m, 2H, H-2", H-4"), 7.95 (dt, J = 7.6, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}$ ), 7.91 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), $7.74-7.80$ (m, 2H, H-7, H-5"), 7.01 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6$ ), 4.68 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2$ ' or $\mathrm{H}_{2}-6$ '), 4.51 (tt, $J=10.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-4$ '), 3.64 ( $\mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.32 (obscured, $1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), $2.96(\mathrm{t}, \mathrm{J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 2.16-2.37 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-\mathrm{S}^{\prime}$ ), 1.85 ( $\mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ), 1.69 (d, J = $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right)$ ); ${ }^{13} \mathrm{C}$ NMR [ ( $\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ] $\delta 166.8$ ( NCO ), 153.1 (C-2), 147.7 (C-3"), 143.5 (C-3a), 139.7 (C-5), 137.7 (C-1"), 133.3 (C-6"), 130.2 (C5"), 124.2 (C-4"), 123.1 (C-7a), 121.8 (C-2"), 116.4 (C-6), 115.1 (C-7), 49.6 (C-4'), 46.6 (C-2' or $\left.\mathrm{C}-6^{\prime}\right), 41.1$ (C-2' or $\left.\mathrm{C}-6^{\prime}\right), 29.0$ ( $\mathrm{C}-3^{\prime}$ or $\left.\mathrm{C}-5^{\prime}\right), 28.4$ (C-3' or $\mathrm{C}-5^{\prime}$ ); MS m/z 368.9 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.2 \mathrm{H} 2 \mathrm{O}: \mathrm{C}, 58.28 ; \mathrm{H}, 4.73 ; \mathrm{N}, 18.88$. Found: C , 58.48; H, 4.77; N, 18.69\%.

SN37106 Methyl 4-((3-(4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1carboxamido)phenoxy)methyl)benzoate (S101).



Methyl 4-((3-Nitrophenoxy)methyl)benzoate (S101a). Prepared using Method E from methyl 4 -(bromomethyl)benzoate and 3 -nitrophenol. A white precipitate formed and was removed by filtration to give ether S101a ( $1.52 \mathrm{mg}, 74 \%$ ) as an off-white solid which was used without futher purification: $\mathrm{mp} 141-143^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.07-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.87$ ( $\mathrm{m}, 1 \mathrm{H}$ ), 7.81 (dd, $J=2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30 (ddd, J = 8.3, 2.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.21 (s, 2H), 3.93 (s, 3H).

Methyl 4-((3-Aminophenoxy)methyl)benzoate (S101b). Prepared using Method G from S101a. The crude residue was purified by column chromatography, eluting with 25$50 \%$ EtOAc/pet. ether, to give amine S101b ( $427 \mathrm{mg}, 53 \%$ ) as an off-white solid: mp 96$98{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.03-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.69$ (m, 1H), 6.31-6.33 (m, 2H), 5.09 (s, 2H), 3.92 (s, 3H), 3.66 (br s, 2H); MS m/z 258.6 $\left(\mathrm{MH}^{+}, 100 \%\right)$.

Methyl 4-((3-(4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1carboxamido)phenoxy)methyl)benzoate (S101). Prepared using Method C from S101b and S1d. The crude residue was purified by column chromatography, eluting with $1 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea $\mathbf{S 1 0 1}$ ( $92 \mathrm{mg}, 32 \%$ ) as a white solid: $\mathrm{mp} 209-211^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ SO] $\delta 11.56$ (br s, 1H), 8.58 (s, 1H), 7.98-8.00 (m, 2H), 7.89 (dd, J = 5.2, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.58-7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.54 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.31 (dd, $J=$ 2.1, 2.1 Hz, 1H), 7.14 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.08-7.10 (m, 1H), 6.98 (dd, $J=7.8,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59-6.62(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.36-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=13.4,2 \mathrm{H}), 2.92$ (dd, $J=12.1,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] б 166.0, 158.2, 154.6, 153.1, 143.5, 142.9, 142.0, 139.6, 129.3 (2), 129.1, 128.9, 127.4 (2), 123.3, 116.4, 114.5, 112.2, 107.8, 106.2, 68.4, 52.1, 50.1, 43.4 (2), 28.8 (2); (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 502.2071$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NsOO}_{5}$, 502.2085).

SN37107 N-(3-((4-Methoxybenzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S102).


1-((4-Methoxybenzyl)oxy)-3-nitrobenzene (S102a). Prepared using Method E from 3nitrophenol and 4 -methoxybenzyl chloride. The crude residue was purified by column chromatography, eluting with $20 \%$ EtOAc/pet. ether, to give the ether S102a ( 1.96 g , quant.) as pale yellow solid: $\mathrm{mp} 83-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.44$ ( m , 1H), 7.35-7.39 (m, 2H), 7.27-7.29 (m, 1H), 6.92-6.96 (m, 2H), 5.07 (s, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H})$.

3-((4-Methoxybenzyl)oxy)aniline (S102b). Prepared using Method G from S102a and was used directly.

N-(3-((4-Methoxybenzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-
b]pyridin-1-yl)piperidine-1-carboxamide (S102). Prepared using Method C from S102b and S1d. The crude residue was purified by column chromatography, eluting with $1 \% \mathrm{MeOH} / E t O A c$, to give urea $\mathbf{S 1 0 2}(21 \mathrm{mg}, 13 \%)$ as an off-white solid: mp $136-139^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 11.56(\mathrm{~s}, 1 \mathrm{H}), 8.55$ (s, 1H), 7.90 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.54 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.58$ (m, 1H), 4.96 (s, 2H), $4.40(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 3H), 2.92 (dd, $J=$ 12.2, $12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR [(CD $\mathrm{D}_{2}$ 2 SO$] \delta 158.9$, 158.5, 154.6, 153.1, 143.4, 141.9, 139.6, 129.4 (2), 129.1, 129.0, 123.3, 116.4, 114.5, 113.8 (2), 111.9, 108.0, 106.1, 68.8, 55.1, 50.1, 43.4 (2), 28.8 (2); MS m/z 473.3 ( $\mathrm{MH}^{+}$, 100\%).

SN37130 N-(3-(Benzyloxy)phenyl)-4-(2-oxo-1,4-dihydropyrido[2,3-d]pyrimidin-3(2H)-yl)piperidine-1-carboxamide (S103).


N-(3-(Benzyloxy)phenyl)-4-(2-oxo-1,4-dihydropyrido[2,3-ه]pyrimidin-3(2H)-
yl)piperidine-1-carboxamide (S103). Prepared using Method C from 3-(piperidin-4-yl)-3,4-dihydroquinazolin-2(1H)-one and S81b. The resulting crude residue was purified by column chromatography, eluting with $2 \% \mathrm{MeOH} / \mathrm{DCM}$, to give urea S103 ( $175 \mathrm{mg}, 38 \%$ ) as a white solid: $\mathrm{mp} 237-240^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.42-$ 7.47 (m, 2H), 7.36-7.42 (m, 2H), 7.30-7.35 (m, 1H), 7.28 (dd, $J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $7.16(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{dt}, J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (ddd, $J=8.0,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.85$ (dd, $J=11.9,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.60(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] б 158.5, 154.5, 153.7, 142.0, 137.5, 137.2, 129.0, 128.4 (2), 127.7 (2), 127.6 (2), 125.6, 120.9, 118.3, 112.9, 112.0, 107.9, 106.1, 69.0, 51.0, 43.5, 42.3 (2), 28.2 (2); MS m/z 456.3 (M-H-, 100\%); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 479.2051$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaNaO}_{3}$, 479.2054). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 71.03; H, 6.18; N, 12.27. Found: C, 71.09; H, 6.14; N, 12.33\%.

SN37131 N-(3-(Benzyloxy)phenyl)-4-(2-oxo-4-phenyl-2,3-dihydro-1H-imidazol-1yl) piperidine-1-carboxamide (S104).


N-(3-(Benzyloxy)phenyl)-4-(2-oxo-4-phenyl-2,3-dihydro-1H-imidazol-1-
yl)piperidine-1-carboxamide (S104). Prepared using Method C from 4-phenyl-1-(piperidin-4-yl)-1,3-dihydro-2H-imidazol-2-one and S81b. The resulting crude residue was purified by column chromatography, eluting with $4 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give urea S104 ( $226 \mathrm{mg}, 48 \%$ ) as a white solid: $\mathrm{mp} 211-214{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta 10.70$ ( $\mathrm{d}, \mathrm{J}=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.53$ (m, 2H), 7.42-7.47 (m, 2H), 7.37-7.42 (m, 2H), 7.27$7.35(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{ddd}, J=7.9,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$,
4.02-4.13 (m, 1H), 2.91 (dd, J = 11.8, $11.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.67-1.82 (m, 4H); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right]$ ס 158.5, 154.5, 153.0, 141.9, 137.2, 129.7, 129.0, 128.6 (2), 128.4 (2), 127.7, 127.6 (2), 126.2, 122.7 (2), 120.8, 112.1, 107.9, 106.2, 105.9, 69.0, 49.4, 43.2 (2), 31.2 (2); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 469.2219$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3}, 469.2234$ ). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 71.78; H, 6.02; N, 11.96. Found: C, 71.77; H, 6.05; N, 11.91\%.

SN37134 tert-Butyl (3-((4-(tert-Butyl)benzyl)oxy)phenyl)(2-oxo-2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)ethyl)carbamate (S105).
Preparation reported in the synthesis of SN37102 1-(1-((3-()4-(tert-butyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S97).

SN37135 1,3-bis(3-(Benzyloxy)phenyl)urea (S106).


1,3-bis(3-(Benzyloxy)phenyl)urea (S106). Prepared using Method $K$ from amine S81b. The crude residue was purified by column chromatography, eluting with 30-50\% EtOAc/pet. ether, to give the urea S106 (40 mg, 7\%) as a white solid: mp 196-198 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 8.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}$, 1 H ), 7.25 (dd, $J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.17 (dd, $J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.93-6.95 (m, 1H), 6.62-6.65 (m, 1H), 5.08 (s, 2H); ${ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ ס 158.8, 152.3, 140.8, 137.1, 129.5, 128.4 (2), 127.8, 127.6 (2), 110.8, 108.0, 104.9, 69.1; MS m/z 426.0 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)HRESIMS m/z [M+H] 425.1862 (calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}, 425.1860$ ).

SN37163 1-(1-(3-(Benzylamino)benzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S107).


S1d


1-(1-(3-(Benzylamino)benzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S107). Amine S108 (183 mg, 0.54 mmol ) and benzaldehyde ( $55 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$ ) were stirred in DCM ( 5 mL ) for $4 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(172 \mathrm{mg}, 0.81 \mathrm{mmol})$ was added and the mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 20 h . Solvent was removed and the crude residue was purified by column chromatography, eluting in $2-6 \% \mathrm{MeOH} / E t O A c$. Solvent was removed and the residue was triturated in EtOAc to give the benzylamine S107 (165 mg, $71 \%$ ) as a white solid: mp 200-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.57$ (br s, 1H), 7.91 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.19$ (m, 1H), 7.11 (dd, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.01 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.66$ (m, 1H), $6.56-6.59$ (m, 2H), 6.56 (dd, J = 1.0 Hz, 1H), 4.60 (br s, 1H), 4.39-4.46 (m, 1H), 4.29 (d, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.67 (br s, 1H), 2.83-3.06 (m, 2H), 2.04-2.18 (m, 2H), 1.79 (br $\mathrm{s}, 1 \mathrm{H}), 1.59$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta 169.6,153.1,148.5,143.5,139.9,139.7$, 136.8, 128.9, 128.3 (2), 127.1 (2), 126.6, 123.1, 116.4, 114.9, 113.9, 113.2, 110.0, 49.8, 46.2, 40.8, 40.3, 29.0, 28.6; MS m/z 429.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H] ${ }^{+}$ 428.2093 (calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2}, 428.2081$ ).

SN37164 1-(1-(3-Aminobenzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2one (S108).
1-(1-(3-Aminobenzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S108). Prepared using Method B from S100. The crude residue was purified by column chromatography, eluting with $4-10 \% \mathrm{MeOH} / E t \mathrm{OAc}$ to give amine $\mathbf{S 1 0 8 ( 1 1 0 \mathrm { mg } , 3 2 \% )}$ as an off-white solid: mp $268-271^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.57$ (br s, 1 H ), 7.90 (dd, J $=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.00$ (dd, $J=7.8$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.42-$ $4.50(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.77$ (br s, 2H); ${ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ ] 169.7, 153.1, 148.7, 143.4, 139.7, 136.8, 128.8, 123.2, 116.4, 114.8, 114.6, 113.7, 111.8, 49.9, 46.4, 40.8, 29.2, 28.7; MS m/z 337.38 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$; (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 338.1615$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2}, 338.1612$ ).

SN37176 N-(3-Hydroxyphenyl)-4-(2-oxo-4-phenylimidazolidin-1-yl)piperidine-1carboxamide (S109).


N -(3-Hydroxyphenyl)-4-(2-oxo-4-phenylimidazolidin-1-yl)piperidine-1-carboxamide (S109). Prepared using Method B from S104 ( $67 \mathrm{mg}, 0.14 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}$. The crude residue was purified by column chromatography, eluting in 10\% EtOAc/pet. ether, to give phenol S109 ( $44 \mathrm{mg}, 81 \%$ ) as a white solid: $\mathrm{mp} 155-158^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=2.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92-6.98$ (m, 1H), 6.82 (ddd, $J=8.1,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (ddd, $J=8.0,2.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=13.9,13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.81(\mathrm{~m}, 2 \mathrm{H})$, $3.02(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{33} \mathrm{C}$ NMR [(CD3)2SO] ס 160.7, 157.3, 154.7, 142.7, 141.7, 128.8, 128.5 (2), 127.5, 126.0 (2), 110.3, 108.7, 106.7, 52.9, 49.2, 48.7, 43.3, 43.2, 29.2, 28.5; (+)-HRESIMS m/z [M+H] 381.1922 (calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}$, 381.1921).

SN37177 1-(1-(3-Nitrobenzyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S110).


1-(1-(3-Nitrobenzyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one
(S110). To a solution of piperidine S1d ( $1.15 \mathrm{~g}, 4.51 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{~mL}, 9.02$ $\mathrm{mmol})$ in DMF ( 20 mL ) was added 3-nitrobenzyl bromide ( $974 \mathrm{mg}, 4.51 \mathrm{mmol}$ ). The resulting mixture was allowed to stir at $20^{\circ} \mathrm{C}$ for 20 h . The resulting mixture was diluted with EtOAc ( 100 mL ) and was washed with water $(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried and concentrated in vacuo. The crude residue was purified by column chromatography, eluting with EtOAc, to give amine $\mathbf{S} 110(1.02 \mathrm{~g}, 64 \%)$ as an off-white solid: mp 177-180 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.56$ (br s, 1H), 8.28 (dd, $J=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.12-8.15$ (m, 1H), 8.05 (dd, $J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=7.9,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38-4.47$ (m, 1H), $3.65(\mathrm{~s}, 2 \mathrm{H}), 3.00-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ 2.27 (m, 2H), 1.84-1.87 (m, 2H); ${ }^{33} \mathrm{C}$ NMR $\delta$ 153.8, 148.7, 143.4, 141.1, 140.3, 135.1,
129.4, 123.9, 123.6, 122.5, 117.0, 115.9, 62.2, 53.3 (2), 50.6, 29.6 (2); MS m/z 354.9 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}$ : C, 61.18; H, 5.42; N, 19.82. Found: C, 61.14; H, 5.46; N, 19.85\%.

SM37178 N-(3-(Benzyloxy)phenyl)-4-(1H-pyrrolo[2,3-b]pyridin-3-yl)-3,6-dihydropyridine-1(2H)-carboxamide (S111).

tert-Butyl 4-(1H-Pyrrolo[2,3-b]pyridin-3-yl)-3,6-dihydropyridine-1(2H)-carboxylate (S111a). 7-Azaindole ( $500 \mathrm{mg}, 4.23 \mathrm{mmol}$ ), tert-butyl 4-oxopiperidine-1-carboxylate (1.68 $\mathrm{g}, 8.47 \mathrm{mmol}$ ) and $\mathrm{KOH}\left(950 \mathrm{mg}, 16.92 \mathrm{mmol}\right.$ ) were stirred together in MeOH at $65^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was cooled to $20^{\circ} \mathrm{C}$ and diluted with EtOAc ( 100 mL ). The organic layer was washed with water ( 100 mL ) and brine ( 100 mL ), dried and concentrated in vacuo to obtain a crude orange gum. The crude product was triturated in EtOAc/pet. ether to give the carbamate S111a (898 mg, 71\%) as a yellow solid: mp 171$173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.15(\mathrm{~m}$, 2 H ), 3.69 (t, $J=5.7,5.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.57 (br s, 2H), $1.50(\mathrm{~s}, 9 \mathrm{H})$; MS m/z $300.7\left(\mathrm{MH}^{+}, 100 \%\right)$.

3-(1,2,3,6-Tetrahydropyridin-4-yl)-1H-pyrrolo[2,3-b]pyridine Hydrochloride (S111b). Prepared using Method F from carbamate S111a to give amine S111b (77 mg, 61\%) as a cream coloured solid: mp 275-278 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.99$ (br s, 1H), 9.10 (br $\mathrm{s}, 2 \mathrm{H}), 8.28-8.34(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.76$ (br s, 2H), 3.32-3.34 (m, 2H), 2.73 (m, 2H); MS m/z 200.5 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(3-(Benzyloxy)phenyl)-4-(1H-pyrrolo[2,3-b]pyridin-3-yl)-3,6-dihydropyridine-

 1(2H)-carboxamide (S111). Prepared using Method C from S111b and S81b. The resulting residue was triturated in 10\% EtOAc/pet. ether to give urea $\mathbf{S 1 1 1}$ (73 mg, 25\%) as a cream coloured solid: mp 158-161 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}$, 1 H ), 8.26 (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.46 (m, 2H), 7.36-7.42 (m, 2H), 7.27-7.36 (m, 2H), 7.06-7.16 (m, 3H), 6.58-6.61 $(\mathrm{m}, 1 \mathrm{H}), 6.22(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=5.7,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 2.58 (s, 2H); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 158.5,154.9,149.1,142.8,141.9,137.2,129.8$, 129.0, 128.4 (2), 128.3, 127.7, 127.6 (2), 123.4, 117.1, 116.8, 115.8, 114.4, 112.2, 107.9, 106.2, 69.0, 43.8, 40.4, 27.3; (+)-HRESIMS m/z [M+H] 425.1986 (calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$, 425.1972).SN37179 N-Benzyl-3-methoxy-5-(2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)acetamido)benzamide (S112).


N-Benzyl-3,5-dinitrobenzamide (S112a). A mixture of 3,5-dinitrobenzoic acid (5.00 g, 23.57 mmol ) and CDI ( $4.59 \mathrm{~g}, 28.28 \mathrm{mmol}$ ) in DMF ( 25 mL ) was heated to $60^{\circ} \mathrm{C}$ for 1 h . Benzylamine ( $2.53 \mathrm{~g}, 23.57 \mathrm{mmol}$ ) was added and the reaction mixture was heated at 60 ${ }^{\circ} \mathrm{C}$ for 24 h . Once cooled, the resulting mixture was diluted with EtOAc ( 100 mL ), then washed with water $(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried and concentrated. The resulting solids were removed by filtration, washed with EtOAc and dried. The amide S112a (4.22 $\mathrm{g}, 59 \%$ ) was obtained as an off-white solid: mp 200-202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 9.75$ (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.97(\mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}$, 4H), 7.25-7.29 (m, 1H), 4.56 (d, J = 5.8 Hz, 2H); MS m/z 300.6 ([M-H]-, 100\%).

N-Benzyl-3-methoxy-5-nitrobenzamide (S112b). Sodium methoxide (0.97 g, 17.92) was added to a solution of amide S112a ( $3.60 \mathrm{~g}, 11.95 \mathrm{mmol}$ ) in DMF ( 50 mL ). The resulting mixture was heated at $60^{\circ} \mathrm{C}$ over 65 h . Once cooled, the mixture was diluted with EtOAc ( 200 mL ), washed with water $(2 \times 200 \mathrm{~mL})$, brine ( 200 mL ), dried and concentrated. The crude residue was purified by column chromatography, eluting with DCM, to give the amide S112b (1.13 g, 33\%) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ $9.40(\mathrm{t}, \mathrm{J}=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.34(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 285.6$ ([M-H] $\left.{ }^{-}, 100 \%\right)$.

3-Amino-N-benzyl-5-methoxybenzamide (S112c). Prepared using Method B from S112b and $10 \% \mathrm{Pd} / \mathrm{C}$. The crude residue was purified by column chromatography, eluting with $60 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give amine $\mathbf{S 1 1 2 c}(177 \mathrm{mg}, 63 \%)$ as a pale orange solid: $\mathrm{mp} 115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.68-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.34(\mathrm{dd}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{br}$ s, 2H); MS m/z 257.6 ( $\mathrm{MH}^{+}, 100 \%$ ).

N-Benzyl-3-(2-bromoacetamido)-5-methoxybenzamide (S112d). Prepared using Method I from bromoacetyl bromide and amine S112c. The bromide S112d (298 mg, $68 \%$ ) was obtained as an off-white solid: mp $191-194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.51$ (s, 1H), 9.03 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.61 (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}$, 2H), 3.79 (s, 3H); MS m/z $379.9\left(\mathrm{MH}^{+}, 100 \%\right)$.

## N-Benzyl-3-methoxy-5-(2-(4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-

yl)piperidin-1-yl)acetamido)benzamide (S112). Prepared using Method I from bromide S112d and piperidine S1d with $E t_{3} \mathrm{~N}$ in DMF. The crude residue was purified by column chromatography, eluting with EtOAc, to give amide S112 (87 mg, 60\%) as an off-white solid: mp 162-165 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 11.55(\mathrm{~s}, 1 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{t}, \mathrm{J}=6.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (dd, $J=$ $7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (dd, J = 1.8, 1.8 Hz, 1H), 7.30-7.36 (m, 4H), 7.21-7.28 (m, 1H), 7.18 (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.13-4.25 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.47(\mathrm{~m}, 4 \mathrm{H})$, $1.69(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 168.8, 166.0, 159.3, 153.1, 143.5, 139.7, 139.6, 136.0, 128.3 (2), 127.2 (2), 126.7, 123.2, 116.4, 114.9, 111.7, 108.5, 107.3, 61.6, 55.4, 52.7 (2), 49.7, 42.6, 28.6 (2), 1 carbon signal not observed; (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 515.2384$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{4}, 515.2401$ ).

SN37180 1-(1-(4,4-bis(4-Fluorophenyl)butyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S113) was obtained from AK Scientific.

SN37241 N-(3-((4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-yl)methyl)phenyl)-2-phenylacetamide (S114).


1-(1-(3-Aminobenzyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S114a). Prepared using Method B from S110 and 10\% Pd/C. The crude residue was purified by column chromatography, eluting with $5 \% \mathrm{MeOH} / E t O A c$, to give amine S114a ( $344 \mathrm{mg}, 99 \%$ ) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 11.52$ (s, 1H, NH-3), 7.89 (dd, J $=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.53 (dd, J = 7.9, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.92-7.03 (m, 2H), 6.57 (t, J = 1.7 Hz , 1H), 6.42-6.48 (m, 2H), 4.99 (s, 2H, NH2-3"), 4.14 (tt, J=11.9, 3.3 Hz, 1H, H-4'), 3.35 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.94 (d, J = $11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$ or H-6'), 2.28 (m, 2H, H-3' or H-5'), 2.04 (t, J= $11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ' or $\mathrm{H}-6 '), 1.67$ (dd, $J=12.0,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ ' or $\mathrm{H}-5)$; ${ }^{13} \mathrm{C}$ NMR [(CD3) ${ }_{2} \mathrm{SO}$ ] б 153.1 (C-2), 148.5 (C-3"), 143.4 (C-3a), 139.6 (C-5), 139.0 (C-1"), 128.6 (C-5"), 123.3 (C-7a), 116.4 (C-6, C-6"), 114.6 (C-7), 114.3 (C-2"), 112.6 (C-4"), 62.4 (CH2), 52.6 (C-2', C-6'), 50.3 (C-4'), 28.7 (C-3', C-5'); MS m/z 324.9 ( $\mathrm{MH}^{+}, 100 \%$ ).

## N-(3-((4-(2-Oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidin-1-

yl)methyl)phenyl)-2-phenylacetamide (S114). Prepared using Method I with phenylacetyl chloride and amine S114a with $\mathrm{Et}_{3} \mathrm{~N}$. The crude residue was purified by column chromatography, eluting with $3 \% \mathrm{MeOH} / \mathrm{DCM}$, to give amide S114 (53 mg, 34\%) as a white solid: $\mathrm{mp} 131-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.02$ (dd, $J=5.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.55-7.60(\mathrm{~m}$, 3H), 7.29-7.43 (m, 7H), 7.25 (dd obscured, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.10 (d, J = 7.6 Hz, 1H), 6.98 (dd, J = 7.9, 5.3 Hz, 1H), 4.39-4.45 (m, 1H), 3.75 (s, 2H), 3.63 (s, 2H), 3.11 (br d, J $=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta$ $169.5,153.8,143.3,140.2,138.3,134.7,129.7$ (2), 129.6, 129.4 (2), 129.3, 127.8, 125.7, 123.5, 121.0, 119.5, 117.2, 116.4, 62.3, 52.8 (2), 50.0, 45.0, 28.7 (2); MS m/z 443.3 ( $\mathrm{MH}^{+}$, $100 \%$ ); (+)-HRESIMS m/z [M+H] 442.2237 (calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}$, 442.2238).

SN37242 N-(3-((3-Methylbenzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S115).


1-Methyl-3-((3-nitrophenoxy)methyl)benzene (S115a). Prepared using Method E from 3-methylbenzyl bromide and 3-nitrophenol. The crude residue was purified by column chromatography, eluting with $5 \%$ EtOAc/pet. ether, to give S115a ( $1.55 \mathrm{~g}, 88 \%$ ) as a clear yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.82-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}$, 2H), 2.39 (s, 3H).

3-((3-Methylbenzyl)oxy)aniline (S115b). Prepared using Method G from S115a. The crude residue was purified by column chromatography, eluting with 5-10\% EtOAc/pet. ether, to give amine S115b (1.22 g, 93\%) as a dark red oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.20-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.13(\mathrm{~d}, \mathrm{~J}=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.42(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.33(\mathrm{~m}, 2 \mathrm{H}), 4.98$ (s, 2H), 3.66 (br s, 2H), 2.37 (s, 3H); MS m/z $214.6\left(\mathrm{MH}^{+}, 100 \%\right)$.

N-(3-((3-Methylbenzyl)oxy)phenyl)-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (S115). Prepared using Method C from S115b and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give urea S115 (231 mg, 47\%) as a white solid: mp 197-200 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (s, 1H), 8.57 (s, 1H), 7.90 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.31 (m, 4H), 7.05-7.18 (m, 3H), 6.99 (dd, $J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (ddd, J = 8.0, $2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.37-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $12.1,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=11.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right]$ ס 158.5, 154.6, 153.1, 143.5, 141.9, 139.6, 137.5, 137.1, 129.0, 128.4, 128.3, 128.1, 124.7, 123.3, 116.4, 114.5, 112.0, 107.9, 106.1, 69.0, 50.1, 43.4 (2), 28.8 (2), 21.0; MS m/z $458.3\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 458.2201$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3}, 458.2187$ ).

SN37243 1-(1-(3-((4-(Trifluoromethyl)benzyl)amino)benzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S116).


1-(1-(3-((4-(Trifluoromethyl)benzyl)amino)benzoyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S116). Amine S108 (246 mg, 0.73 mmol ) and 4trifluoromethyl benzaldehyde ( $99 \mu \mathrm{~L}, 0.73 \mathrm{mmol}$ ) were stirred together in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc}) 3(231 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added to the mixture, and was stirred at $20^{\circ} \mathrm{C}$ for 23 h . A white precipitate formed in the resulting mixture, which was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$ and brine ( 100 mL ), and concentrated in vacuo. The crude residue was purified by column chromatography, eluting with $1-10 \% \mathrm{EtOAc} / \mathrm{MeOH}, \mathrm{H}$ to give amide $\mathbf{S 1 1 6 ( 8 9 \mathrm { mg } , 2 5 \% ) \text { as an off-white }}$ solid: mp 248-251 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.56$ (s, 1H, NH-3), 7.92 (dd, J = 5.2, 1.2 Hz, 1H, H-5), 7.59 (dd, J = 7.8, 1.2 Hz, 1H, H-7), 7.49-7.55 (m, 4H, H-2"', H-3'", H-5"', H6"'), 7.09-7.15 (m, 1H, H-5"), 7.01 (dd, J = 7.8, 5.2 Hz, 1H, H-6), 6.63-6.69 (m, 2H, H-4", NH-3"), 6.57 (dt, J = 6.4, 1.5 Hz, 1H, H-6"), 6.51 (brt, J = 1.5 Hz, 1H, H-2"), 4.58 (s, 1H, $\mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 4.35-4.45 (m,3H, H-4', CH $\mathrm{CH}_{2}$, 3.56 (s, 1H, H2-2' or H $\mathrm{H}_{2}-6^{\prime}$ ), $3.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}-\right.$ $2^{\prime}$ or $\left.\mathrm{H}_{2}-6^{\prime}\right)$, $2.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}\right.$ or $\left.\mathrm{H}_{2}-6^{\prime}\right), 2.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}\right.$ or $\left.\mathrm{H}_{2}-5^{\prime}\right), 1.78$ (s, $2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}$ or $\left.\mathrm{H}_{2}-5^{\prime}\right), 1.41$ (s, 1H, $\mathrm{H}_{2}-3^{\prime}$ or $\mathrm{H}_{2}-5^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [( $\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ] $\mathbf{\delta} 169.6$ (COPh), 153.0 (C-2), 148.0 (C-3"), 145.1 (C-1"'), 143.5 (C-3a), 139.7 (C-5), 136.9 (C-1"), 129.1 (C-5"), 127.5 (C-2"', C-6"'), 127.2 (J = 31.5 Hz, C-4"'), 125.2 (J = 3.7 Hz, C-3"', C-5"'), 124.3 (J = 272.0 Hz, CF 3 -4"'), 123.0 (C-7a), 116.4 (C-6), 115.0 (C-7), 114.2 (C-6"), 113.6 (C-4"), 109.6 (C2'), 49.6 (C-4'), 46.3 (C-2' or C-6'), 45.6 ( $\mathrm{NHCH}_{2}$ ), 40.9 (C-2' or C-6'), 28.8 (C-3' or C-5'), 28.5 (C-3' or C-5'); (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 496.1943$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$, 496.1955). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.35$; H, 5.05 ; N, 13.76. Found: C, 61.26; H, 4.89; N, 13.67\%.

SN37244 1-(1-(N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S117).


Methyl (3-((3-(Trifluoromethyl)benzyl)oxy)phenyl)glycinate (S117a). Prepared using Method E from methyl bromoacetate and aniline S82b. The resulting crude residue was purified by column chromatography, eluting with $10 \% \mathrm{EtOAc} /$ pet. ether, to give the methyl ester S117a ( $459 \mathrm{mg}, 88 \%$ ) as an off-white solid: mp $51-52{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}\right), 7.62\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}^{\prime}\right), 7.58\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime}$ ), 7.11 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.38 (ddd, $J=8.1,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.27 (ddd, $J$ $=8.1,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.24(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.31(\mathrm{t}, \mathrm{J}=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 3.91 (d, J=5.0 Hz, 2H, COCH2), 3.79 (s, 3H, OMe); MS m/z 340.7 ( $\mathrm{MH}^{+}$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}$ : C, 60.18; $\mathrm{H}, 4.75 ; \mathrm{N}, 4.13$. Found: $\mathrm{C}, 60.22 ; \mathrm{H}, 4.74$; N, 4.08\%.

Methyl N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycinate (S117b). Prepared using Method E from methyl iodide and aniline S117a. The crude residue was purified by column chromatography, eluting with $5 \%$ EtOAc/pet. ether, to give methyl ester S117b ( $577 \mathrm{mg}, 85 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.71$ (s, 1H, H-2'), 7.63 (d, J $=7.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{6}^{\prime}\right), 7.58$ (d, J = 7.7 Hz, 1H, H-4'), 7.50 (t, J=7.7 Hz, 1H, H-5'), 7.12-7.18 (m, 1H, H-5), 6.36-6.40 (m, 1H, H-6), 6.30-6.35 (m, 2H, H-2, H-4), 5.09 (s, 2H, OCH2), 4.06 (s, $2 \mathrm{H}, \mathrm{COCH}_{2}$ ), 3.71 (s, 3H, OMe), 3.05 (s, 3H, N-Me); MS m/z 354.9 (MH ${ }^{+}, 100 \%$ ); (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 354.1304$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3}, 354.1312$ ).

N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycine (S117c). Prepared using Method J from methyl ester S117b to give the acid S117c ( $514 \mathrm{mg}, 95 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 7.79$ (s, 1H, H-2'), 7.75 (d, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right)$, 7.68 (d, $\left.J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.62\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.97-7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 6.19-6.28(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-6$ ), 5.13 (s, 2H, OCH2), 3.79 (s, 2H, COCH2), 2.92 (s, 3H, N-Me); (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 340.1144$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}, 340.1155$ ).

1-(1-(N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-
1,3-dihydro-2H-benzo[d]imidazol-2-one (S117). Prepared using Method H from S117b and 1-(4-piperidinyl)-1,3-dihydro-2H-benzimidazol-2-one. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give amide S117 (288 $\mathrm{mg}, 73 \%$ ) as a white solid: $\mathrm{mp} 210-212^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.66$ (s, $1 \mathrm{H}, \mathrm{NH}-3$ ), 7.70 (s, $1 \mathrm{H}, \mathrm{H}-$ 2'"), 7.62 (d, J=7.7 Hz, 1H, H-6"'), 7.57 (d, J = 7.7 Hz, 1H, H-4'"), 7.47 (t, J=7.7 Hz, 1H, H-5"'), 7.16-7.22 (m, 1H, H-5"), 7.09 (dd, J=7.7, 1.4 Hz, 1H, H-7), 7.04 (dt, J = 7.7, 7.5, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.99$ (dt, J = 7.6, 7.5, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), $6.90(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 6.39-6.44 (m, 3H, H-2", H-4", H-6"), 5.09 (s, 2H, OCH2), 4.83 (d, J = $12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-\mathrm{G}^{\prime}$ ), 4.55 (tt, J=12.6, $\left.4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.12-4.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}$ ), 4.04 (d, J = 12.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\mathrm{H}_{2}-6^{\prime}$ ), 3.23 (t, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ or $\left.\mathrm{H}-6^{\prime}\right)$, 3.09 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$ ), 2.73 (t, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}-2^{\prime}$ or $\left.\mathrm{H}_{2}-6^{\prime}\right), 2.22-2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}\right.$ or $\left.\mathrm{H}_{2}-5^{\prime}\right)$, $1.90\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}\right.$ or
$\left.\mathrm{H}_{2}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 168.3\left(\mathrm{COCH}_{2}\right), 160.0$ (C-3"), 155.0 (C-2), 151.0 (C-1"), 138.5 (C-1"'), 131.1 (J = 32.5 Hz, C-3"'), 131.0 (C-6"'), 130.4 (C-5"), 129.2 (C-5"'), 129.0 (C-3a), 128.1 (C-7a), 124.9 (J=3.8 Hz, C-4"'), 124.4 (J=3.8 Hz, C-2"'), 124.3 (J = 272.4 Hz, CF3-3'"), 121.7 (C-6), 121.5 (C-5), 110.0 (C-7), 109.4 (C-4), 106.5 (C-6"), 103.3 (C-4"), 100.5 (C2"), $69.3\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{COCH}_{2}\right), 50.7(\mathrm{C}-4 '), 44.9(\mathrm{C}-2 '$ or $\mathrm{C}-6 '), 42.3$ (C-2' or C-6'), 40.1 (N-Me), 29.9 (C-3' or C-5'), 29.3 (C-3' or C-5'); MS m/z 540.7 (MH ${ }^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C, 64.67; H, 5.43; N, 10.40. Found: C, 64.61; H, 5.35; N, 10.33\%.

SN37245 1-(1-(N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S118).


1-(1-(N-Methyl-N-(3-((3-(trifluoromethyl)benzyl)oxy)phenyl)glycyl)piperidin-4-yl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S118). Prepared using Method H from S117c and S1d. The resulting crude residue was purified by column chromatography, eluting with EtOAc, to give amide S118 ( $237 \mathrm{mg}, 60 \%$ ) as a white solid: mp $166-168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.01$ (s, 1H, NH-3), 8.00 (dd, J = 5.2, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.71 (s, 1H, H-2"'), 7.62 (d, J = 7.7 Hz, 1H, H-6"'), 7.57 (d, J = 7.7 Hz, 1H, H-4"'), 7.48 (t, J = 7.7 Hz, 1H, H-5"'), $7.16-7.22$ (m, 1H, H-5"), 6.96 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.89 (dd, J = 7.9, 5.2 Hz, 1H, H-6), 6.40-6.46 (m, 3H, H-2", H-4", H-6"), 5.10 (s, 2H, OCH2), 4.82 (d, J = $12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2$ ' or H-6'), $4.57(\mathrm{tt}, J=12.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 4.04\left(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or $\left.\mathrm{H}^{\prime} \mathrm{C}^{\prime}\right), 3.21\left(\mathrm{t}, \mathrm{J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or $\left.\mathrm{H}-6 \mathrm{C}^{\prime}\right), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.71\left(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or H-6'), 2.03-2.23 (m, 2H, H-3' or H-5'), 1.90 (br s, 2H, H-3' or H-5'); ${ }^{13} \mathrm{C}$ NMR $\delta 168.3$ ( $\mathrm{COCH}_{2}$ ), 160.0 (C-3"), 153.6 (C-2), 151.0 (C-1"), 143.4 (C-3a), 140.4 (C-5), 138.5 (C1'"), 131.1 (J = 32.4 Hz, C-3"'), 130.9 (C-6"'), 130.4 (C-5"), 129.2 (C-5"'), 124.9 (J = 3.8 Hz, C-4"'), 124.4 ( J = 3.8 Hz, C-2"'), 124.3 (J = 272.4 Hz, CF3-3"'), 123.3 (C-7a), 117.1 (C-6), 115.5 (C-7), 106.5 (C-6"), 103.4 (C-4"), $100.5(\mathrm{C}-2 "), 69.3\left(\mathrm{OCH}_{2}\right), 55.6\left(\mathrm{COCH}_{2}\right)$, 50.3 (C-4'), 44.9 (C-2' or C-6'), 42.2 (C-2' or C-6'), 40.3 (Me), 30.0 (C-3' or C-5'), 29.5 (C3 ' or $\mathrm{C}-5^{\prime}$ ); (+)-HRESIMS m/z [M+H]+ 540.2217 (calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}, 540.2226$ ).

## Chemical synthesis of compounds S154-S240 (Table S3)

SN37308 3-(4-Hydroxybenzyl)indolin-2-one (S154).


3-(4-Hydroxybenzyl)indolin-2-one (S154). Prepared using Method M from alkene 2. The crude material was purified by column chromatography, eluting with 40-50\% EtOAc/pet. ether, to give indolinone S154 (115 mg, 52\%) as a white solid: mp 198-201 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.25$ (s, 1H, NH-1), 9.15 (s, 1H, OH-4'), 7.06-7.11 (m, 1H, H6), 6.91 (dt, J = 8.5, 2.0 Hz, 2H, H-2, H-6), 6.80-6.86 (m, 2H, H-4, H-5), 6.71 (d, J = 7.7 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.57 (dt, $J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ', \mathrm{H}-5 \mathrm{C}), 3.68$ (dd, $J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.20 (dd, $J=13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.81 (dd, $J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta 178.2$ (CO-2), 155.7 (C-4'), 142.6 (C-7a), 130.2 (C-2', C-6'), 129.1 (C-3a), 128.0 (C-1'), 127.5 (C-6), 124.3 (C-4), 120.8 (C-5), 114.8 (C-3', C-5'), 109.0 (C-7), 46.7
(C-3), $34.5\left(\mathrm{CH}_{2}\right)$; MS $m / z 240.6\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot 0.05 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 75.01; H, 5.50; N, 5.83. Found: C, 74.90; H, 5.59; N, 5.77\%.

SN37309 (E)-3-(4-Methoxybenzylidene)indolin-2-one (S155).

(E)-3-(4-Methoxybenzylidene)indolin-2-one (S155). Prepared using Method N from oxindole and $p$-anisaldehyde. The crude residue was purified by column chromatography, eluting with 20-50\% EtOAc/pet. ether, to give alkene S155 ( $626 \mathrm{mg}, 83 \%$ ) as a yellow solid: mp 159-161 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta 10.55$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 7.71 (ddd, $J=8.7,2.9$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 ', \mathrm{H}-6$ '), 7.65 (d, J = 7.5 Hz, 1H, H-4), 7.58 (s, 1H, $=\mathrm{CH}$ ), 7.22 (td, J = 7.5, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.09 (ddd, J = 8.7, 2.9, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ ', H-5'), $6.84-6.90$ (m, 2H, H-5, $\mathrm{H}-7$ ), 3.84 (s, 3H, OMe-4'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 168.9$ (C-2), 160.5 (C-4'), 142.7 (C7a), 136.0 (=C), 131.5 (C-2', C-6'), 129.7 (C-6), 126.6 (C-1'), 125.6 (C-3), 122.1 (C-4), 121.2 (C-3a), 121.1 (C-5), 114.3 (C-3', C-5'), 110.0 (C-7), 55.4 (OMe-4'); MS m/z 252.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 76.48 ; \mathrm{H}, 5.21 ; \mathrm{N}, 5.57$. Found: C, 76.30; H, 5.27; N, 5.54\%.

SN37310 3-(4-Methoxybenzyl)indolin-2-one (S156).


3-(4-Methoxybenzy)indolin-2-one (S156). Prepared using Method M from alkene S155. The crude material was purified by column chromatography, eluting with $30 \%$ EtOAc/pet. ether, to give indolinone $\mathbf{S 1 5 6}(123 \mathrm{mg}, 56 \%)$ as an off-white solid: mp 117$118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.27$ (s, 1H, NH-1), 7.06-7.11 (m, 1H, H-6), 7.03 (ddd, J $\left.=8.7,3.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.84$ (td, $J=7.5,1.0 \mathrm{~Hz}$, 1H, H-5), 6.75 (ddd, J = 8.7, 3.0, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5{ }^{\prime}$ ), 6.71 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.73 (dd, $J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.68 (s, 3H, OMe-4'), 3.24 (dd, $J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}$ ), 2.89 (dd, $\left.J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס $178.1(\mathrm{C}-2), 157.7(\mathrm{C}-$ 4'), 142.6 (C-7a), 130.3 (C-2', C-6'), 129.8 (C-1'), 129.0 (C-3a), 127.5 (C-6), 124.3 (C-4), 120.9 (C-5), 113.4 (C-3', C-5'), 109.1 (C-7), 54.9 (OMe-4'), 46.6 (C-3), 34.3 (CH2); MS $\mathrm{m} / \mathrm{z} 254.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{5} \mathrm{NO}_{2}$ : C, 75.87; H, 5.97; N, 5.53. Found: C, 75.96; H, 5.97; N, 5.58\%.

SN37312 3-(4-Methoxy-3-methylbenzyl)indolin-2-one (S157).


3-(4-Methoxy-3-methylbenzyl)indolin-2-one (S157). Prepared using Method M from alkene 3. The crude material was purified by column chromatography, eluting with $20 \%$ EtOAc/pet. ether, to give indolinone S157 ( $440 \mathrm{mg}, 87 \%$ ) as an off-white solid: mp (EtOAc) 142-144 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2} \mathrm{SO}$ ] $\delta 10.27$ (s, 1H, NH-1), 7.06-7.12 (m, 1H, H-6), $6.86-6.93$ (m, 3H, H-4, H-2', H-6'), 6.83 (td, J = 7.3, 1.0 Hz, 1H, H-5), 6.70-6.76 (m, 2H, $\left.\mathrm{H}-7, \mathrm{H}-5^{\prime}\right), 3.69-3.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OMe}-4{ }^{\prime}, \mathrm{H}-3\right.$ ), 3.21 (dd, $J=13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.83
(dd, $J=13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), 2.04 (s, 3H, Me-3'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 178.2$ (C-2), 155.8 (C-4'), 142.6 (C-7a), 131.4 (C-2'), 129.4 (C-1'), 129.1 (C-3a), 127.6 (C-6'), 127.5 (C-6), 124.8 (C-3'), 124.3 (C-4), 120.9 (C-5), 109.7 (C-7), 109.1 (C-5'), 55.0 (OMe-4'), 46.6 (C-3), $34.4\left(\mathrm{CH}_{2}\right), 16.1$ (Me-3'); MS m/z 268.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ : C, $76.38 ; \mathrm{H}, 6.41 ; \mathrm{N}, 5.24$. Found: C, $76.57 ; \mathrm{H}, 6.41 ; \mathrm{N}, 5.27 \%$.

SN37321 Ethyl Acetyltyrosinate (S158) was obtained from BDH Chemicals.
SN37322 1-(4-Methoxybenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S159).

$\boldsymbol{N}^{1}$-(4-Methoxybenzyl)benzene-1,2-diamine (S159a). Prepared using Method E from 4methoxybenzyl chloride and o-phenylene diamine. The crude residue was purified by column chromatography, eluting in 20\% EtOAc/pet. ether, to give diamine (S159a) (772 $\mathrm{mg}, 37 \%$ ) as a pale brown solid: mp (EtOAc) $97-99^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.32$ (dt, $J=8.8,2.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.89$ (dt, J = 8.7, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 6.79-6.84 (m, 1H, H-4), 6.676.76 (m, 3H, H-3, H-5, H-6), 4.24 (s, 2H, CH2), 3.81 (s, 3H, OMe), 3.60 (br s, 1H, NH), 3.34 (br s, 2H, NH2); (+)-HRESIMS m/z [M+H] ${ }^{+} 229.1334$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$, 229.1335). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.66 ; \mathrm{H}, 7.06 ; \mathrm{N}, 12.27$. Found: C, 73.87; H, 7.00; N, 12.29\%.

1-(4-Methoxybenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S159). Prepared using Method O from S159a. The product S159 ( $500 \mathrm{mg}, 84 \%$ ) was recrystallised from EtOAc as a pale brown solid: mp $181-184{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [( $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.91$ (s, $\left.1 \mathrm{H}, \mathrm{NH}-1\right), 7.27$ (ddd, J = 8.8, 2.9, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6$ '), $7.00-7.05$ (m, 1H, H-4), 6.90-6.99 (m, 3H, H5, H-6, H-7), 6.88 (ddd, J = 8.8, 2.9, $2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$ ), 4.91 (s, 2H, CH2), 3.70 (s, $\left.3 \mathrm{H}, \mathrm{OMe}-4^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 158.6$ (C-4'), 154.3 (C-2), 129.9 (C-3a), 129.2 (C-1'), 128.8 (C-2', C-6'), 128.3 (C-7a), 120.9 (C-6), 120.5 (C-5), 114.0 (C-3', C-5'), 108.8 (C-7), 108.1 (C-4), 55.0 ( $\mathrm{OMe}-4^{-}$), 42.6 ( $\mathrm{CH}_{2}$ ); MS $\mathrm{m} / \mathrm{z} 255.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 70.85 ; H, 5.55 ; N, 11.02. Found: C, $70.81 ; \mathrm{H}, 5.47 ; \mathrm{N}, 10.98 \% .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with literature values ${ }^{5}$.

SN37340 1-(4-Hydroxybenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S160).


1-(4-Hydroxybenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S160). A solution of $\mathrm{BBr}_{3}\left(149 \mu \mathrm{~L}, 1.57 \mathrm{mmol}\right.$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added to a solution of methyl ether $\mathbf{S} 159(200 \mathrm{mg}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$, and allowed to warm to $20^{\circ} \mathrm{C}$ overnight. The reaction was quenched with MeOH , neutralised with sat. aq. $\mathrm{NaHCO}_{3}$ and a pale brown precipitate formed. The solid was removed by filtration, washed with EtOAc and dried under vacuum to give product S160 ( $163 \mathrm{mg}, 86 \%$ ) as a pale brown solid: $\mathrm{mp} 250-251^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.89$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-1$ ), 9.39 (s, 1H, OH-4'), 7.15 (ddd, J = 8.5, 2.8, $1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 6.997.04 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ ), $6.90-6.99$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7$ ), 6.69 (ddd, J $=8.5,2.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-3$ ', $\mathrm{H}-5^{\prime}$ ), 4.85 (s, 2H, CH2); ${ }^{13} \mathrm{C}$ NMR [(CD $)_{2}$ 2SO] ס 156.7 (C-4'), 154.3 (C-2), 130.0 (C-

3a), 128.8 (C-2', C-6'), 128.2 (C-7a), 127.4 (C-1'), 120.9 (C-6), 120.4 (C-5), 115.3 (C-3', C-5'), 108.7 (C-7), 108.2 (C-4), $42.8\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m/z} 241.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S$ $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 241.0977$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}, 241.0972$ ).

SN37341 (E)-3-(4-Hydroxy-3-methylbenzylidene)indolin-2-one (S161).

(E)-3-(4-Hydroxy-3-methylbenzylidene)indolin-2-one (S161). $\mathrm{BBr}_{3}$ (143 $\mu \mathrm{L}, 1.51$ $\mathrm{mmol})$ was added to a solution of alkene $3(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in DCM ( 10 mL ) at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$, and allowed to warm to $20^{\circ} \mathrm{C}$ overnight. The mixture was neutralised with sat. aq. $\mathrm{NaHCO}_{3}$ and extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The organic layer was washed with brine ( 50 mL ), dried and concentrated to $\sim 10 \mathrm{~mL}$. Pet. ether was added and the resulting solid was filtered to give alkene S161 (170 mg, 90\%) as a yellow solid: mp $234-237{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.50$ (s, 1H, NH-1), 7.71 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.51(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 ', \mathrm{H}-6 \mathrm{C}), 7.20$ (td, J = 7.7, 1.0 Hz, 1H, H-6), 6.92 (d, J = 8.1 Hz, 1H, H-5'), 6.84-6.90 (m, 2H, H-5, H-7), 2.18 (s, 1H, Me-3'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 169.1$ (C-2), 157.6 (C-4'), 142.2 (C-7a), 136.9 (=CH), 132.7 (C-2'), 129.3 (C-6), 129.1 (C-6'), 124.9 (C-3'), 124.4 (C-3, C-1'), 122.0 (C-4), 121.4 (C3a), 121.0 (C-5), 114.8 (C-5'), 109.9 (C-7), 15.9 ( $\mathrm{Me}-3 \mathrm{~B}$ ); MS $\mathrm{m} / \mathrm{z} 252.2$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ : C, 76.48; H, 5.21; N, 5.57. Found: C, 76.65; H, 5.32; N, 5.59\%.

SN37342 3-(4-Hydroxy-3-methylbenzyl)indolin-2-one (S162).


3-(4-Hydroxy-3-methylbenzyl)indolin-2-one (S162). Prepared using Method M from S161. The crude residue was purified by column chromatography, eluting with 40-50\% EtOAc/pet. ether, to give indolinone S162 (119 mg, 72\%) as a white solid: mp 198-200 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ ס 10.26 (s, 1H, NH-1), 9.03 (s, 1H, OH-4'), 7.05-7.12 (m, 1H, H6), 6.80-6.86 (m, 3H, H-4, H-5, H-2'), 6.72 (d, J = 7.9 Hz, 2H, H-6, H-7), 6.57 (d, J = 7.9 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 '$ ), 3.67 (dd, $J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.17 (dd, $J=13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2$ ), 2.75 (dd, J = 13.8, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.01 (s, 3H, Me-3'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 178.2$ (C-2), 153.7 (C-4'), 142.6 (C-7a), 131.5 (C-2'), 129.2 (C-3a), 128.0 (C-1'), 127.5 (C-6), 127.3 (C-6'), 124.4 (C-4), 123.2 (C-3'), 120.8 (C-5), 114.1 (C-5'), 109.0 (C-7), 46.7 (C-3), $\left.34.6\left(\mathrm{CH}_{2}\right), 16.0(\mathrm{Me}-3)^{\prime}\right)$ MS $\mathrm{m} / \mathrm{z} 254.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ : C, 75.87; H, 5.97; N, 5.53. Found: C, 76.6; H, 5.92; N, 5.52\%.

SN37343 (E)-3-(4-Methylbenzylidene)indolin-2-one (S163).

(E)-3-(4-Methylbenzylidene)indolin-2-one (S163). Prepared using Method N from oxindole and p-tolualdehyde. The crude material was purified by column chromatography, eluting with 10-50\% EtOAc/pet. ether, to give S163 ( $525 \mathrm{mg}, 85 \%$ ) as a yellow solid: mp $192-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.58$ (s, 1H, NH-1), 7.55-7.64 (m, 4H, H-4, =CH, H-

2', H-6'), 7.34 (d, J = $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ', \mathrm{H}^{\prime} \mathrm{S}^{\prime}\right), 7.22$ (td, J = 7.7, 1.1 Hz, 1H, H-6), 6.83-6.89 (m, 2H, H-5, H-7), 2.39 (s, 3H, Me-4'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 168.7 (C-2), 142.8 (C-7a), 139.7 (C-4'), 136.0 (=C), 131.5 (C-1'), 130.0 (C-6), 129.4 (C-3', C-5'), 129.3 (C-2', C-6'), 126.9 (C-3), 122.2 (C-4), 121.1 (C-5), 121.0 (C-3a), 110.1 (C-7), 21.1 (Me-4'); MS m/z $236.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 81.68$; H, 5.57; N, 5.95. Found: C, 81.92; H, 5.53; N, 6.02\%.

SN37344 3-(4-Methylbenzyl)indolin-2-one (S164).


3-(4-Methylbenzyl)indolin-2-one (S164). Prepared using Method M from S163. The crude material was purified by column chromatography, eluting with 20-30\% EtOAc/pet. ether, to give S164 (231 mg, 75\%) as a white solid: mp 150-151 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.27$ (s, 1H, NH-1), 7.06-7.11 (m, 1H), 6.97-7.03 (m, 4H), $6.89(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.91 (dd, $J=13.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.21 (s, 1H); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 178.1$ (C-2), 142.6 (C-7a), 135.2 (C-4'), 134.9 (C-1'), 129.1 (C-2', C-6'), 129.0 (C-3a), 128.6 (C-3', C-5'), 127.6 (C-6), 124.3 (C-4), 120.9 (C-5), 109.1 (C-7), 46.5 (C-3), $34.8\left(\mathrm{CH}_{2}\right), 20.6$ (Me-4'); MS m/z $238.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}$, 80.98; H, 6.37; N, 5.90. Found: C, 81.06; H, 6.35; N, 5.98\%.

SN37345 (E)-3-(4-Chlorobenzylidene)indolin-2-one (S165).

(E)-3-(4-Chlorobenzylidene)indolin-2-one (S165). Prepared using Method N from oxindole and 4-chlorobenzaldehyde. The crude material was purified by column chromatography, eluting with 10-50\% EtOAc/pet. ether, to give S165 (398 mg, 58\%) as a yellow solid: mp 190-191${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.63$ (s, 1H, NH-1), 7.70-7.75 (m, 2H, H-2', H-6'), 7.56-7.60 (m, 3H, =CH, H-3', H-5'), 7.48 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.24 (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.82-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 168.5$ (C2), $143.1(\mathrm{C}-7 \mathrm{a}), 134.3$ ( $=\mathrm{CH}$ ), 133.6 (C-4'), 133.3 (C-1'), 131.1 (C-2', C-6'), 130.4 (C-6), 128.9 (C-3', C-5'), 128.2 (C-3), 122.5 (C-4), 121.2 (C-5), 120.6 (C-3a), 110.2 (C-6); MS $\mathrm{m} / \mathrm{z} 254.1\left(\mathrm{M}-\mathrm{H}^{-}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{CINO}$ : C, 70.46; H, 3.94; N, 5.48. Found: C, 70.26; H, 4.06; N, 5.49\%.

SN37365 (E/Z)-3-(3-Nitrobenzylidene)indolin-2-one (S166).

(E/Z)-3-(3-Nitrobenzylidene)indolin-2-one (S166). Prepared using Method Nrom oxindole and 3-nitrobenzaldehyde. The crude residue was triturated with $50 \%$ EtOAc/pet. ether to obtain ( $E / Z$ )-S166 ( $860 \mathrm{mg}, 86 \%$ ) as a mixture of $E / Z$ isomers as an orange solid: $\mathrm{mp} 228-230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ Z-isomer (major) 10.73 (s, 1H, NH), 9.39 (t, J =
2.1 Hz, 1H, H-2'), 8.64 (d, J = 7.8 Hz, 1H, H-4'), 8.28 (ddd, J = 8.3, 2.1, 0.9 Hz, 1H, H-6'), 7.97 (s, 1H, =CH), 7.72-7.79 (m, 2H, H-4, H-5'), 7.26 (td, J = 7.6, 1.0 Hz, 1H, H-6), 7.03 (td, J = 7.6, 1.0 Hz, 1H, H-5), 6.85 (d, J = 7.6 Hz, 1H, H-7); E-isomer (minor) 8.52 (s, 1H), $8.28-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, 7.41 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.24-7.28$ (obscured, 1H), 6.90 (d, $J=7.76 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.82-6.84$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ Z-isomer (major) 167.0 (C=O), 147.7 (C-3'), 141.3 (C7a), 137.8 (C-4'), 135.4 (C-1'), 133.8 (=CH), 129.8 (C-6), 129.6 (C-5'), 129.1 (C-3), 125.8 (C-2'), 124.4 (C-6'), 124.3 (C-3a), 121.3 (C-5), 120.3 (C-4), 109.6 (C-7); E-isomer (minor) 168.2, 148.0, 143.4, 136.2, 135.6, 132.9, 130.9, 130.4, 129.6, 124.0, 123.6, 122.5, 121.4, 120.4, 110.4; MS m/z 267.1 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 67.67; H, 3.79; N, 10.52. Found: C, 67.66; H, 3.63; N, 10.56\%.

SN37366 Methyl (E)-4-((2-Oxoindolin-3-ylidene)methyl)benzoate (S167).


Methyl (E)-4-((2-Oxoindolin-3-ylidene)methyl)benzoate (S167). Prepared using Method N from oxindole and methyl 4 -formylbenzoate. The crude material was triturated in EtOAc/pet.ether to give S167 (776 mg, 85\%) as a yellow solid: mp 240-242 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 10.66$ (s, 1H, NH-1), 8.08 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ ', H-5'), 7.83 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 7.65 (s, 1H, =CH), 7.43 (d, J = 7.7 Hz, 1H, H-4), 7.25 (td, J = 7.7, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.84$ (td, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.89 (s, 3H, COOMe-4'); ${ }^{13} \mathrm{C}$ NMR [(CD $)_{2}$ 2SO] $\delta 168.3$ (C-2), 165.8 (COOMe-4'), 143.3 (C-7a), 139.4 (C-1'), 134.1 (=CH), 130.7 (C-6), 129.5 (C-2', C-3', C-5', C-6'), 129.2 (C-3), 128.8 (C-4'), 122.7 (C-4), 121.3 (C-5), 120.5 (C-3a), 110.3 (C-7), 52.3 (COOMe); MS m/z 280.1 $\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ : C, 73.11; H, 4.69; N, 5.02. Found: C, 72.92; H, 4.73; N, 4.99\%.

SN37367 3-(3-Aminobenzyl)indolin-2-one (S168).


3-(3-Aminobenzyl)indolin-2-one (S168). Prepared using Method M from alkene S166. The crude residue was purified by column chromatography, eluting with $75 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give indolinone $\mathbf{S 1 6 8}$ (444 mg, 99\%) as a pale yellow solid: mp $48-50{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 10.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.07-7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 6.86(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5'), 6.77-6.83 (m, 2H, H-4, H-5), 6.75 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), $6.35-6.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ ', H4'), 6.30-6.32 (m, 1H, H-6'), 4.91 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.67 (dd, J = 8.8, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), 3.18 (dd, $J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), $2.65\left(\mathrm{dd}, J=13.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ б 178.2 (C=O), 148.4 (C-3'), 142.6 (C-7a), 138.8 (C-1'), 129.2 (C-3a), 128.5 (C-5'), 127.5 (C-6), 124.3 (C-4), 120.8 (C-5), 116.7 (C-6'), 114.8 (C-2'), 112.1 (C-4'), 109.1 (C-7), 46.4 $\left(\mathrm{CH}_{2}\right), 35.7(\mathrm{CH}) ;(+)-\mathrm{HRESIMS} m / z[\mathrm{M}+\mathrm{H}]^{+} 239.1180$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}, 239.1179$ ).

SN37368 (E/Z)-3-(3-Aminobenzylidene)indolin-2-one (S169).

(E/Z)-3-(3-Aminobenzylidene)indolin-2-one (S169). Prepared by Method G from indolinone S166. The residue was triturated in $10 \% \mathrm{EtOAc} /$ pet. ether to give amine E/ZS169 ( $137 \mathrm{mg}, 89 \%$ ) as a mixture of isomers as a yellow solid: mp $126-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $)_{2} \mathrm{SO}$ ] $\delta(\mathrm{Z})$-isomer (major) 10.54 (br s, 1H, NH), 7.68 (d, J=7.5 Hz, 1H, H-4), 7.61 (s, 1H, =CH), 7.54-7.58 (m, 2H, H-2', H-6'), 7.17 (td obscured, J=7.5, 1.0 Hz, 1H, H-6), 7.10 (t, J = $\left.7.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)^{\prime}\right), 6.96$ (td, J = 7.5, 1.0 Hz, 1H, H-5), 6.79-6.81 (m, 1H, H-7), 6.65-6.68 (m, 1H, H-4'), 5.15 (br s, 2H, NH2); (E)-isomer (minor) 10.53 (br s, 1H, NH), $7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.49(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.20(\mathrm{td}$ obscured, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 7.15 (t obscured, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.84-6.88 (m, 3H, H-5, H-7, H-2'), 6.79-6.81 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ ), $6.65-6.68$ (m, 1H, H-4'), 5.31 (br s, 2H, NH2); ${ }^{33} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta(\mathrm{Z})-$ isomer (major) 167.0 (C=O), 148.4 (C-3'), 140.5 (C-7a), 138.0 (=CH), 134.4 (C-1'), 128.6 (C-6, C-5'), 125.9 (C-3), 125.1 (C-3a), 120.9 (C-5), 120.2 (C-6'), 119.6 (C-4), 117.0 (C2'), 116.5 (C-4'), 109.2 (C-7); (E)-isomer (minor) 168.8 (C=O), 149.0 (C-3'), 142.7 (C-7a), 137.0 (=CH), 134.9 (C-1'), 129.8 (C-6), 129.3 (C-5'), 126.8 (C-3), 122.8 (C-4), 121.1 (C3a, C5), 116.8 (C-6'), 115.4 (C-4'), 113.9 (C-2'), 110.0 (C-7); MS m/z 237.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 237.1026$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}, 237.1022$ ).

SN37369 Methyl 4-((2-Oxoindolin-3-yl)methyl)benzoate (S170).


Methyl 4-((2-Oxoindolin-3-yl)methyl)benzoate (S170). Prepared using Method M from S167. The crude material was purified by column chromatography, eluting with 20-40\% EtOAc/pet. ether, to give $\mathbf{S} 170(317 \mathrm{mg}, 79 \%)$ as a pale yellow solid: $\mathrm{mp} 158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.32$ (s, 1H), 7.79 (ddd, $\left.J=8.4,1.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H ), $7.12-7.06$ (m, 1H), 6.91 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dt, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, J = 7.7 Hz, 1H), 3.83-3.88 (m, 1H), 3.81 (s, 3H, COOMe), 3.35-3.40 (m, 1H), 3.06 (dd, $J=13.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 177.9$ (C-2), 166.1 (COOMe), 143.9 (C1'), 142.6 (C-7a), 129.7 (C-2', C-6'), 128.9 (C-3', C-5'), 128.6 (C-3a), 127.8 (C-4'), 127.7 (C-6), 124.3 (C-4), 121.0 (C-5), 109.2 (C-7), 52.0 (COOMe-4'), 46.1 (C-3), 35.1 ( $\mathrm{CH}_{2}$ ); MS m/z $282.2\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 72.58 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.98$. Found: C, 72.56; H, 5.25; N, 5.01\%.

SN37443 (E/Z)-3-(4-Aminobenzylidene)indolin-2-one (S171).

(E)-3-(4-Nitrobenzylidene)indolin-2-one (S171a). Prepared using Method N from oxindole and 4-nitrobenzaldehyde. The crude material was triturated in $50 \%$ EtOAc/pet.ether to give S171a ( $1.52 \mathrm{~g}, 95 \%$ ) as a yellow solid: $\mathrm{mp} 233-235^{\circ} \mathrm{C}$; 1 H NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta(E)$-isomer (major) 10.70 (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 8.35 (ddd, $J=8.7,2.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}$,

H-3', H-5'), $7.94-7.98$ (m, 2H, H-2', H-6'), 7.67 (s, 1H, =CH), 7.41 (d, J = 7.7 Hz, 1H, H4), 7.27 (td, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.89 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.85 (td, $J=7.7,1.0$ Hz, 1H, H-5); (Z)-isomer (minor) 10.70 (s, 1H, NH-1), $8.48-8.52$ (m, 2H, H-3', H-5'), $8.27-$ 8.31 (m, 2H, H-2', H-6'), 7.93 (s obscured, 1H, $=\mathrm{CH}$ ), 7.75 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.25-$ 7.29 (m, 1H, H-6), 7.01 (ddd, $J=7.4,7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.83-6.90 (m obscured, 1H, $\mathrm{H}-7) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ (both isomers) 168.1, 166.8, 147.4, 147.4, 143.5, 141.5, $141.4,140.2,133.4,132.9,132.5$ (2), 131.0, 130.4 (2), 130.2, 130.1, 130.1, 124.2, 123.9 (2), 123.1 (2), 122.9, 121.4, 120.7, 120.3, 110.4, 109.7, 1 carbon signal observed; MS $\mathrm{m} / \mathrm{z} 267.1\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ : $\mathrm{C}, 67.67 ; \mathrm{H}, 3.79 ; \mathrm{N}, 10.52$. Found: C, 67.53; H, 3.72; N, 10.52\%.
(E/Z)-3-(4-Aminobenzylidene)indolin-2-one (S171). Prepared by Method G from indolinone S171a. The crude residue was triturated in EtOAc to give amine E/Z-S171 ( $107 \mathrm{mg}, 55 \%$ ) as a mixture of isomers as an orange solid: mp $223-225{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ Z-isomer (major) 10.42 (br s, 1H, NH), 8.30-8.33 (m, 2H, H-2', H-6), 7.58 (d, J = 7.6 Hz, 1H, H-4), 7.56 (s, 1H, =CH), 7.09 (td, J = 7.6, 1.0 Hz, 1H, H-6), 6.93 (td, J $=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.78$ (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), $6.58-6.61$ (m, 2H, H-3', H-5'), 6.08 (brs, 2H, NH2); E-isomer (minor) 10.42 (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.77 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.50-$ 7.52 (m, 2H, H-2', H-5'), 7.46 (s, 1H, =CH), 7.15 (td, J = 7.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.89 (td obscured, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.84 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.65-6.68 (m, 2H, H3', H-5'), 5.96 (br s, 2H, NH2); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 169.5, 167.6, 152.1, $151.4,141.9,139.3,138.4,137.8,135.2$ (2), 132.3 (2), 128.5, 126.8, 126.2, 122.1, 121.9, $121.7,121.5,121.0,120.8,120.5,119.5,118.2,113.3$ (2), 112.9 (2), 109.7, 108.8; MS $\mathrm{m} / \mathrm{z} 237.1\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 237.1026$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$, 237.1022).

SN37444 1-(4-Methoxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S172).

$\mathbf{N}^{\mathbf{3}}$-(4-Methoxybenzyl)pyridine-2,3-diamine (S172a). Prepared using Method P from 2,3-diaminopyridine 4-methoxybenzaldehyde. The crude residue was purified by column chromatography, eluting with $70 \%$ EtOAc/pet. ether, Solvent to give diamine S172a (852 $\mathrm{mg}, 91 \%$ ) as a brownish-yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.62$ (dd, $J=5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.30 (ddd, J = 8.7, 2.9, 2.1 Hz, 2H, H-2', H-6'), 6.90 (d, J = 8.7, 2.9, 2.1 Hz, 2H, H-3', H-5'), 6.83 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.69$ (dd, $J=7.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.22$ (d, J = 4.0 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 4.16 (s, 2H, NH2-2), 3.82 (s, 3H, OMe-4'), 3.44 (s, 1H, NH-3); MS m/z 230.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

1-(4-Methoxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S172). Prepared using Method O from S172a. The pale orange precipitate was filtered and washed with EtOAc to give the product $\mathbf{S 1 7 2}$ ( $579 \mathrm{mg}, 86 \%$ ) as a pale brown solid: $\mathrm{mp} 196-198{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.61$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 7.88 (dd, $\left.J=5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.35$ (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.28 (ddd, $J=8.8,2.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (dd, J = 7.8, 5.2 Hz, 1H, H5), 6.88 (ddd, J = 8.8, 2.9, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.93 (s, 2H), 3.70 (s, 3H, OMe-4'); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2}\right)_{2}$ ] ס 158.7 (C-4'), 153.7 (C-2), 143.5 (C-7a), 140.0 (C-6), 129.0 (C-2', C-6'), 128.6
(C-1'), 124.0 (C-3a), 116.6 (C-5), 114.1 (C-4), 114.0 (C-3', C-5'), 55.0 (OMe-4'), 42.6 $\left(\mathrm{CH}_{2}\right)$; MS m/z $256.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 65.87; H, 5.13; N, 16.46. Found: C, 65.92; H, 5.06; N, 16.73\%.

SN37446 1-(4-Aminobenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S173).

$\boldsymbol{N}^{1}$-(4-Nitrobenzyl)benzene-1,2-diamine (S173a). Prepared using Method E from 4nitrobenzyl bromide and o-phenylene diamine. The crude residue was purified by column chromatography, eluting in 25-30\% EtOAc/pet. ether, to give diamine S173a ( 278 mg , $19 \%$ ) as an orange solid: mp $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.20$ (ddd, $J=8.8,2.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-3', H-5'), 7.53-7.58 (m, 2H, H-2', H-6'), 6.69-6.80 (m, 3H, H-3, H-4, H-5), 6.50 (dd, J = $7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.47$ (d, J = $4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.95 (s, 1H, NH), 3.38 (s, 2H, NH2); MS m/z $244.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 64.19; H, 5.39; N, 17.27. Found: C, 64.38; H, 5.39; N, 17.04\%.

1-(4-Nitrobenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S173b). Prepared using Method O from S173a. The crude residue was purified by column chromatography, eluting in 75-100\% EtOAc/pet. ether, to give product S173b ( $243 \mathrm{mg}, 88 \%$ ) as an offwhite solid: mp 189-191 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 11.04$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 8.20 (d, J = 8.8, 2.5, 2.0 Hz, 2H, H-3', H-5'), 7.54 (d, J = 8.8, 2.5, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 6.93-7.05 (m, $4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7), 5.16$ (s, 2H, CH2); ${ }^{33} \mathrm{C}$ NMR [(CD3)2SO] ס 154.3 (C-2), 146.8 (C4'), 145.0 (C-1'), 129.8 (C-3a), 128.4 (C-2', C-6'), 128.3 (C-7a), 123.8 (C-3', C-5'), 121.3 (C-5), 120.7 (C-6), $109.0(\mathrm{C}-4), 108.0(\mathrm{C}-7), 42.7\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 270.1\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ : C, 62.45; H, 4.12; N, 15.61. Found: C, 62.54; H, 4.05; N, 15.70\%.

1-(4-Aminobenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S173). Prepared using Method B from S173b to give the amine S173 (184 mg, 90\%) as a white solid: mp 201$203{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 10.84 (br s, 1H, NH), 6.99-7.02 (m, 3H, H-7, H-2', H-6'), 6.91-6.96 (m, 3H, H-4, H-5, H-6), 6.46-6.49 (m, 2H, H-3', H-5'), 5.01 (br s, 2H, NH2), 4.77 (s, 2H, CH2); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 154.3, 148.0, 130.0, 128.5 (2), 128.2, 124.0, 120.7, 120.4, 113.7 (2), 108.7, 108.2, 43.0; MS m/z $240.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z$ $[\mathrm{M}+\mathrm{H}]^{+} 240.1130$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}, 240.1131$ ).

SN37510 (Z)-3-(3,4-Dimethoxybenzylidene)indolin-2-one (S174).

(Z)-3-(3,4-Dimethoxybenzylidene)indolin-2-one (S174). Prepared using Method N from oxindole and 3,4-dimethoxybenzaldehyde. The crude material was triturated in 75\% EtOAc/pet.ether to give S174 (423 mg, quant.) as a yellow solid: mp $150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta 10.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.68(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.84$ (dd, J = 8.6, 1.9 Hz, $1 \mathrm{H}, \mathrm{H}-6$ '), 7.75 (s, 1H, =CH), 7.67 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.18 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$,

H-6), 7.07 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.98 (td, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.83 (d, J = 7.6 Hz , 1H, H-7), 3.84 (s, 3H, OMe-4'), 3.83 (s, 3H, OMe-3'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 167.5, 151.1, 148.0, 140.2, 137.4, 128.1, 127.4, 127.2, 125.4, 123.9, 120.9, 119.2, 114.9, 111.1, 109.2, 55.6, 55.4; MS m/z $282.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 72.58 ; \mathrm{H}, 5.37$; N , 4.98. Found: C, 72.49; H, 5.40; N, 4.97\%.

SN37511 (E)-3-(3,5-Dimethylbenzylidene)indolin-2-one (S175).

(E)-3-(3,5-Dimethylbenzylidene)indolin-2-one (S175). Prepared using Method N from oxindole and 3,5-dimethylbenzaldehyde. The crude material was purified by column chromatography, eluting with 20-30\% EtOAc/pet. ether, to give S175 (284 mg, 76\%) as a yellow solid: mp 160-162 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.58$ (s, 1H, NH), 7.56 (s, 1H, $=\mathrm{CH}), 7.52$ (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.30 (m, 2H, H-2', H-6'), 7.22 (td, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 7.11 (s, 1H, H-4'), 6.83-6.88 (m, 2H, H-5, H-7), 2.33 (s, 6H, Me-3', Me-5'); ${ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 168.7,142.9,137.9(2), 136.1,134.3,131.1,130.0,127.4,126.8$ (2), 122.3, 121.1, 121.0, 110.1, 20.8 (2); MS $m / z 250.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}$, 81.90; H, 6.06; N, 5.62. Found: C, 81.67; H, 6.16; N, 5.62\%.

SN37513 (E/Z)-3-(3,5-Dimethoxybenzylidene)indolin-2-one (S176).

(E/Z)-3-(3,5-Dimethoxybenzylidene)indolin-2-one (S176). Prepared using Method N from oxindole and 3,5-dimethoxybenzaldehyde. The crude material was purified by column chromatography, eluting with 20-50\% EtOAc/pet. ether, to give E/Z-S176 (383mg, 91\%) as a mixture of isomers as a yellow solid: mp $152-155{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta$ E-isomer (major) 10.60 (s, 1H, NH), 7.59 (d, J = 7.4 Hz, 1H, H-4), 7.56 (s, $1 \mathrm{H},=\mathrm{CH}$ ), 7.23 (td, J = 7.7, 1.1 Hz, 1H, H-6), 6.82-6.90 (m, 4H, H-5, H-7, H-2', H-6'), 6.60-6.61 (m, 1H, H-4'), 3.79 (s, 6H, OMe-3', OMe-5'); Z-isomer (minor) 10.60 (s, 1H, NH), 7.73-7.75 (m, 3H, =CH, H-2', H-6'), $7.70(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6), 6.99$ (td, J = 7.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), $6.82-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 6.60-6.61$ (m, 1H, H-4'), 3.80 (s, 6H, OMe-3', OMe-5'); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.{ }_{3}\right)_{2} \mathrm{SO}\right] \delta$ (both isomers) 168.6, 167.1, 160.5 (2), 160.0 (2), 143.1, 140.7, 136.9, 136.3, 135.7, 135.6, 130.2, 129.0, 127.9, 127.1, 124.9, $122.8,121.1$ (2), 120.8, 119.8, 110.2, 109.9 (2), 109.4, 107.0 (2), 103.0, 101.8, 55.4 (2), 55.3 (2); MS m/z 282.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$ : C, 72.58; H, 5.37; N, 4.98. Found: C, 72.68; H, 5.34; N, 5.00\%.

SN37514 (E/Z)-3-(4-Hydroxy-3,5-dimethylbenzylidene)indolin-2-one (S177).

(E/Z)-3-(4-Hydroxy-3,5-dimethylbenzylidene)indolin-2-one (S177). Prepared using Method N from oxindole and 3,5-dimethyl-4-hydroxybenzaldehyde. The crude material was purified by column chromatography, eluting with $30-60 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give E/Z-S177 ( $373 \mathrm{mg}, 94 \%$ ) as a mixture of isomers as a yellow solid: $\mathrm{mp} 190-193{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$-isomer (major) $10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.96$ (br s, 1H, OH), 7.70 (d, J= $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.48(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2 ', \mathrm{H}^{\prime} \mathrm{G}^{\prime}\right), 7.19(\mathrm{td}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 6.85-6.90 (m, 2H, H-5, H-7), 2.22 (s, 6H, Me-3', Me-5); Z-isomer (minor) 10.47 (s, 1H, NH), 8.96 (br s, 1H, OH), 8.17 (s, 2H, H-2', H-6'), 7.61-7.63 (m, 2H, H-4, =CH), 7.15 ( td, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.95$ (td, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7$ ), 2.21 (s, 6H, Me-3', Me-5); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta$ (both isomers) 169.1, 167.4, 156.4, 155.4, 142.5, 140.0, 137.7, 136.9, 133.5 (2), 130.3 (2), 129.3, 127.8, 125.7, 125.6, 125.1, 124.6, 124.5 (2), 123.7 (2), 122.8, 121.9, 121.4, 121.0, 120.8, 118.9, 109.9, 109.1, 16.7 (2), 16.5 (2); MS m/z $266.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C}, 76.96 ; \mathrm{H}, 5.70$; N, 5.28. Found: C, 76.68; H, 5.71; N, 5.27\%.

SN37515 (E/Z)-3-(3-Hydroxy-4-methoxybenzylidene)indolin-2-one (S178).

(E/Z)-3-(3-Hydroxy-4-methoxybenzylidene)indolin-2-one (S178). Prepared using Method N from oxindole and isovanillin. The crude material was purified by column chromatography, eluting with 30-50\% EtOAc/pet. ether, to give (E/Z)-S178 (388 mg, $97 \%$ ) as a yellow solid: mp 175-175 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.52 (s, $1 \mathrm{H}, \mathrm{NH}$ ), 9.39 (br s, 1H, OH), 7.73 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.49 (s, 1H, $=\mathrm{CH}$ ), 7.15-7.24 (m, 3H, H-6, H-2', H-6'), 7.05-7.08 (m, 1H, H-5'), 6.86-6.91 (m, 2H, H-5, H-7), 3.85 (s, $3 \mathrm{H}, \mathrm{OMe}-4 \mathrm{C}$ ); Z-isomer (minor) 10.52 (br s, 1H, NH), 9.13 (br s, 1H, OH), 8.17 (d, J=2.1 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.83$ (dd, J = 8.6, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}$ ), $7.65-7.67$ (m, 2H, $=\mathrm{CH}, \mathrm{H}-4$ ), $7.15-$ 7.24 (m, 1H, H-6), 7.02 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.96 (td, J = 7.6, 1.0 Hz, 1H, H-5), 6.80 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.85 (s, $3 \mathrm{H}, \mathrm{OMe}-4{ }^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD2) $\left.)_{2} \mathrm{SO}\right]$ (both isomers) $169.0,167.3,150.3,149.4,146.4,145.7,142.6,140.2,137.5,136.5,129.6,128.1,127.3$, $126.9,125.9,125.4,125.3,123.8,122.3,122.2,121.2,121.0,120.8,119.2,118.9,116.2$, 112.1, 111.3, 110.0, 109.1, 55.6, 55.6; MS m/z 268.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ : C, 71.90; H, 4.90; N, 5.24. Found: C, 71.61; H, 4.98; N, 5.18\%.

SN37516 (E/Z)-3-(4-Hydroxy-3-methoxybenzylidene)indolin-2-one (S179).

(E/Z)-3-(4-Hydroxy-3-methoxybenzylidene)indolin-2-one (S179). Prepared using Method N from oxindole and vanillin. The crude material was purified by column chromatography, eluting with 3-4\% EtOAc/DCM, to give (E/Z)-S179 (336 mg, 84\%) as a yellow solid: mp 226-228 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ Z-isomer (major) 10.51 (s, 1H, NH), $9.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.68\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.74\left(\mathrm{~d}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.69$ (s, 1H, =CH), 7.6 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.16$ (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.97$ (td, $J=$
$7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.85\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.82(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.85(\mathrm{~s}$, 3H, OMe); E-isomer (minor) 10.51 (s, 1H, NH), 9.84 (br s, 1H, OH), 7.75-7.77 (m, 1H, H4), 7.54 (s, 1H, $=\mathrm{CH}$ ), 7.32 (d, J=1.9 Hz, 1H, H-2'), 7.19-7.26 (m, 2H, H-6, H-6'), 6.856.92 (m, 3H, H-5, H-7, H-5'), 3.81 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ); ${ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$ (both isomers) 169.0, 167.3, 150.3, 149.4, 146.4, 145.7, 142.6, 140.2, 137.5, 136.5, 129.6, 128.1, 127.3, 126.9, 125.9, 125.4, 125.3, 123.8, 122.3, 122.2, 121.2, 121.0, 120.8, 119.2, 118.9, 116.2, 112.1, 111.3, 110.0, 109.1, 55.6, 55.6; MS m/z 268.1 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ : C, 71.90; H, 4.90; N, 5.24. Found: C, 72.15; H, 4.98; N, 5.28\%.

SN37517 3-(4-(Benzylamino)benzyl)indolin-2-one (S180).


3-(4-Aminobenzyl)indolin-2-one (S180a). Prepared using Method M from S171a. The crude residue was purified by column chromatography, eluting with 70-100\% EtOAc/pet. ether, to give the amine S180a ( $135 \mathrm{mg}, 25 \%$ ) as a white solid: mp $125-126{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.05-7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 6.79-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5)$, 6.75-6.78 (m, 2H, H-2', H-6'), 6.71 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.37-6.40 (m, 2H, H-3', H5'), 4.82 (br s, 2H, NH2), 3.63 (dd, $J=8.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), 3.14 (dd, $J=13.8,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.71 (dd, $J=13.8,8.2 \mathrm{~Hz}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \quad 178.3$ (C=O), 146.8 (C$4^{\prime}$ ), 142.6 (C-7a), 129.7 (2', C-6'), 129.3 (C-3a), 127.4 (C-6), 124.8 (C-1'), 124.4 (C-4), 120.8 (C-5), 113.7 (C-3'), $109.0(\mathrm{C}-7), 46.9(\mathrm{C}-3), 34.7\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 239.2\left(\mathrm{MH}^{+}, 100 \%\right)$; $(+)$-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 239.1181$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}, 239.1179$ ).

3-(4-(Benzylamino)benzyl)indolin-2-one (S180). Prepared using Method $P$ from amine S180a and benzaldehyde. The crude residue was purified by column chromatography, eluting with $30 \%$ EtOAc/pet. ether, to give amine $\mathbf{S 1 8 0}$ ( $25.8 \mathrm{mg}, 7 \%$ ) as a yellow solid: mp 152-155 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.23$ (br s, 1H, NH), 7.28-7.35 (m, 4H, H-2", H3", H-5", H-6"), 7.19-7.23 (m, 1H, H-4"), 7.06-7.10 (m, 1H, H-6), 6.79-6.82 (m, 4H, H-4, H-5, H-2', H-6'), 6.71 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.41-6.42 (m, 2H, H-3', H-5'), 6.01 (t, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2}$ ), $4.19\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.14 (dd, $J=13.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.71 (dd, $J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3) $)_{2} \mathrm{SO}$ ] 178.2 (C=O), 147.1 (C-4'), 142.6 (C-7a), 140.3 (C-1"), 129.7 (C-2', C-6'), 129.3 (C-3a), 128.2 (C-3", C-5"), 127.4 (C-6), 127.3 (C-2", C-6"), 126.6 (C-4"), 124.9 (C$\left.1^{\prime}\right), 124.3$ (C-4), 120.8 (C-5), $112.0\left(\mathrm{C}-3 ', \mathrm{C}-5\right.$ '), $109.0(\mathrm{C}-7), 46.8\left(\mathrm{CHCH}_{2}\right), 46.7\left(\mathrm{NHCH}_{2}\right)$, $34.6(\mathrm{CH})$; MS $\mathrm{m} / \mathrm{z} 329.2\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 329.1637 (calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}, 329.1648$ ).

SN37518 1-(4-(Dibenzylamino)benzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S181) and SN37729 1-(4-(Benzylamino)benzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S192).



1-(4-(Dibenzylamino)benzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S181) and 1-(4-(Benzylamino)benzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S192). Prepared using Method P from amine S173 and benzaldehyde. The crude mixture was purified by column chromatography, eluting with $20-30 \%$ EtOAc/DCM to give (a) the bis-alkylated
 (s, 1H, NH), 7.28-7.31 (m, 4H, H-3", H-5", H-3'", H-5"'), 7.19-7.23 (m, 6H, H-2", H-6", H2"', H-6"'), 7.03-7.09 (m, 3H, H-7, H-2', H-6'), 6.91-6.95 (m, 3H, H-4, H-5, H-6), 6.596.61 (m, 2H, H-3', H-5'), 4.79 (s, 2H, NCH 2 ), $4.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$ 154.3, 147.6, 138.9 (2), 130.0, 128.5 (6), 128.2, 126.7 (2), 126.6 (4), 124.5, 120.8, 120.4, 112.2 (2), 108.7, 108.1, 54.1 (2), 42.7; MS m/z 420.2 (MH ${ }^{+}$, 100\%); (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 420.2074$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}, 420.2070$ ). Also isolated was (b) the monoalkylated product S192 (12 mg, 9\%) as a white solid: mp 197-199 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] б 10.84 (s, 1H, NH), 7.26-7.33 (m, 4H, H-2", H-3", H-5", H-6"), 7.17-7.21 (m, 1H, H-4"), 6.99-7.05 (m, 3H, H-7, H-2', H-6'), 6.89-6.97 (m, 3H, H-4, H-5, H-6), 6.50 (d, J = 8.6 Hz , 2H, H-3', H-5'), 6.23 (t, J = 6.0 Hz, 1H, NHCH2), 4.77 (s, 2H, NCH2), 4.21 (d, J = 6.0 Hz , $\left.2 \mathrm{H}, \mathrm{NHCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 154.3,148.0,140.2,130.0,128.5$ (2), 128.2 (3), 127.1 (2), 126.6, 124.1, 120.7, 120.4, 112.1 (2), 108.6, 108.1, 46.4, 42.9; MS m/z 330.2 $\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-\mathrm{HRESIMS} m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 330.1588$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}, 330.1601$ ).

SN37519 1-(4-Methoxy-3-methylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (S182).


N-(4-Methoxy-3-methylbenzyl)-2-nitroaniline (S182a). Prepared using Method P from 2-nitroaniline and 3-methyl-p-anisaldehyde. The crude mixture was purified by column chromatography, eluting with $1-3 \%$ EtOAc/pet. ether, to give nitroaniline S182a ( 277 mg , $70 \%$ ) as a yellow solid: mp $89-91^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.33$ (br s, 1H, NH), 8.19 (dd, J = 8.6, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $7.37-7.41$ (m, 1H, H-5), 7.12-7.15 (m, 1H, H-2', H-6'), 6.84 (dd, J = 8.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.80(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{C}), 6.64-6.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.44(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.83 (s, 3H, OMe), 2.22 (s, 3H, Me).

## 1-(4-Methoxy-3-methylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one

(S182).
Prepared using Method B from nitroaniline S182a. The crude dianiline was used directly in Method O. The crude residue was purified by column chromatography, eluting in 75\% EtOAc/pet. ether, to give S182 (172 mg, 77\% over 2 steps) as a white solid: mp 189-191 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right]$ ס 10.89 (br s, 1H, NH), 7.12-7.15 (m, 2H, H-2', H-6), 6.91-7.02 (m, 4H, H-4, H-5, H-6, H-7), 6.86 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.87 (s, 2H, CH $)_{2}$ ), 3.73 (s, 3H, OMe), 2.09 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 156.6,154.3,129.9,129.7,128.7,128.2$, 126.3, 125.6, 120.9, 120.5, 110.2, 108.7, 108.1, 55.2, 42.7, 16.0; MS m/z $269.2\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 71.62; H, 6.01; N, 10.44. Found: C, 71.66; H, 5.89; N, 10.46\%.

SN37520 (E/Z)-3-(3-Fluoro-4-methoxybenzylidene)indolin-2-one (S183).

(E/Z)-3-(3-Fluoro-4-methoxybenzylidene)indolin-2-one (S183). Prepared using Method N from oxindole and 3 -fluoro-4-methoxybenzaldehyde. The crude material was purified by column chromatography, eluting with 20-80\% EtOAc/pet. ether, to give (E/Z)S183 ( $320 \mathrm{mg}, 88 \%$ ) as a yellow solid: $\mathrm{mp} 220-223{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta Z$ isomer (major) 10.65 (s, 1H, NH), 8.82 (dd, J = 14.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 8.01 (m, 1H, H-6'), 7.76 (s, 1H, $=\mathrm{CH}$ ), 7.68 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.28 (t, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.20 (td, $J=7.6$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.99(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.92(\mathrm{~s}, 3 \mathrm{H}$, OMe); E-isomer (minor) 10.59 (s, 1H, NH), 7.57-7.61 (m, 3H, H-4, H-2', H-6'), 7.54 ( s , 1H, =CH), 7.30-7.34 (m, 1H, H-5'), 7.23-7.24 (m, 1H, H-6), 6.86-6.90 (m, 2H, H-5, H-7), 3.92 (s, 3H, OMe); ${ }^{13} \mathrm{C}$ NMR [(CD $)_{2}$ 2SO] $\delta$ (both isomers) 168.7, 167.4, 151.1 (d, $J=244.7$ $\mathrm{Hz}), 150.5(\mathrm{~d}, J=242.6 \mathrm{~Hz}), 149.1(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 148.4(\mathrm{~d}, J=10.7), 142.9,140.5$, 135.8 (d, $J=2.1 \mathrm{~Hz}$ ), 134.7 (d, $J=1.4 \mathrm{~Hz}$ ), 130.7 (d, $J=2.5 \mathrm{~Hz}$ ), 130.1, 128.6, 127.3 (d, $J=7.9 \mathrm{~Hz}$ ), 127.1 (d, $J=7.0 \mathrm{~Hz}$ ), 126.8, 126.6 (d, $J=3.2 \mathrm{~Hz}$ ), 125.3, 125.0, 122.2, 121.1, $121.0,120.9,119.5,118.5(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=1.9 \mathrm{~Hz})$, 113.2 (d, $J=1.3 \mathrm{~Hz}$ ), 110.2, 109.3, 56.2, 56.1; MS m/z 270.1 (MH ${ }^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{2}$ : C, 71.37; H, 4.49; N, 5.20. Found: C, 71.23; H, 4.38; N, 5.24\%.

SN37562 (E/Z)-3-(4-Methoxy-3,5-dimethylbenzylidene)indolin-2-one (S184).

(E/Z)-3-(4-Methoxy-3,5-dimethylbenzylidene)indolin-2-one (S184). Prepared using Method E from methyl iodide and phenol $\mathbf{S 1 7 7}$. The crude residue was purified by column chromatography, eluting in 10\% EtOAc/pet. ether, to give (E/Z)-S184 (43 mg, 40\%) as a yellow solid: mp 200-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.56 (s, 1H, NH), $7.60-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 7.51(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.41$ (m, 2H, H-2', H-6'), 7.22 (ddd, J = 7.7, $7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.86-6.89 (m, 2H, H-5, H-7), 3.73 (s, 3H, OMe), 2.28 (s, 2H, Me3', Me-5'); Z-isomer (minor) 10.56 (s, 1H, NH), 8.15 (s, 2H, H-2', H-6'), 7.65-7.68 (m, 2H, $\mathrm{H}-4,=\mathrm{CH}$ ), 7.17-7.21 (m, 1H, H-6), 6.97 (ddd, J=7.6, 7.6, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.81 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.71 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 2.27 (s, 2H, Me-3', Me-5'); ${ }^{13} \mathrm{C}$ NMR [(CD $)_{2} \mathrm{SO}^{2} \mathrm{SO}$ ס (both isomers) 168.8, 167.1, 158.7, 157.9, 142.8 (2), 140.5 (2), 136.6, 135.8, 133.1 (2), 130.9, 130.0 (3), 129.9, 129.7, 129.7, 128.5, 126.6, 125.3, 125.2, 122.2, 121.1, 121.0 (2), 119.4, 110.1, 109.2, 59.5, 59.4, 16.0 (2), 15.8 (2); MS $m / z 280.2$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ : $\mathrm{C}, 77.40 ; \mathrm{H}, 6.13 ; \mathrm{N}, 5.01$. Found: C, 77.35; H, 6.06; N, 5.09\%.

SN37563 (E/Z)-3-(3-(Hydroxymethyl)-4-methoxybenzylidene)indolin-2-one (S185).

(E/Z)-3-(3-(Hydroxymethyl)-4-methoxybenzylidene)indolin-2-one (S185). Prepared using Method N from oxindole and 3 -hydroxymethyl-4-methoxybenzaldehyde. The crude material was purified by column chromatography, eluting with $50-100 \%$ EtOAc/pet. ether, to give (E/Z)-S185 ( $372 \mathrm{mg}, 95 \%$ ) as a yellow solid: mp $175-178{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta E$-isomer (major) 10.54 (s, 1H, NH), 7.83 (d, J=1.8 Hz, 1H, H-2'), 7.74 (d obscured, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.64$ (dd, J = $8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 7.58 (s, 1H, $=\mathrm{CH}$ ), $7.20-7.24$ (m, 1H, H-6), 7.11 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), $6.84-6.88$ (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7$ ), 5.16 (t, J $=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $4.55\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ ), 3.87 (s,3H,OMe); Z-isomer (minor) 10.53 (s, 1H, NH), 8.67 (dd, J = 8.7, $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 8.31$ (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 7.77 (s obscured, 1H, =CH), 7.71 (d obscured, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.17 (ddd obscured, $J=$ $7.7,7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.07 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.96 (ddd, $J=7.7,7.7,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.81$ (d, J = 7.7 Hz, 1H, H-7), 5.07 (t, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 4.52 (d, J=5.6 Hz, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.87 (s, $3 \mathrm{H}, \mathrm{OMe}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3 $)_{2} \mathrm{SO}$ ] (both isomers) 169.0, 167.3, 158.2, 157.3, 142.6, 140.2, 137.3, 136.4, 132.6, 132.3, 130.8, 130.3, 130.0, 129.6, 128.1 (2), 126.6, 126.2, 125.5, 125.3, 123.9, 122.3, 121.2, 121.0, 120.9, 119.3, 110.4 (2), 110.0, 109.1, 59.7, 57.8, $57.6,55.5 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 282.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}$, 72.58; H, 4.98; N, 5.01. Found: C, 72.31; H, 5.39; N, 4.84\%.

SN37657 (E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)indolin-2-one (S186).

( $E$ )-3-(Benzo[d][1,3]dioxol-5-ylmethylene)indolin-2-one (S186). Prepared using Method N from oxindole and piperonal. The crude material was purified by column chromatography, eluting with 50-100\% EtOAc/pet. ether, to give S186 ( $362 \mathrm{mg}, 91 \%$ ) as a yellow solid: mp $226-229^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ SO] $\delta 10.56$ (s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.63 (d, J = 7.6 Hz, 1H, H-4), 7.53 (s, 1H, =CH), 7.28-7.30 (m, 2H, H-4', H-6'), 7.22 (ddd, J = 7.6, 1.0 Hz , 1H, H-6), 7.07-7.09 (m, 1H, H-7'), 6.86-6.90 (m, 2H, H-5, H-7), 6.13 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 168.8,148.6,147.6,142.8,136.0,129.8,128.2,126.1,124.6,122.2$, 121.1, 121.0, 110.1, 109.3, 108.6, 101.7; MS $\mathrm{m} / \mathrm{z} 266.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 72.45 ; \mathrm{H}, 4.18$; N, 5.28. Found: C, 72.56; H, 4.08; N, 5.30\%.

SN37658 tert-Butyl 4-(2-oxoindolin-3-ylidene)piperidine-1-carboxylate (S187).

tert-Butyl 4-(2-oxoindolin-3-ylidene)piperidine-1-carboxylate (S187). Prepared using Method N from oxindole and N -tert-butylcarbonate-4-piperidone. The crude material was purified by column chromatography, eluting with $25 \%$ EtOAc/pet. ether, to give S187 (785 $\mathrm{mg}, 67 \%$ ) as a yellow solid: $\mathrm{mp} 204-207{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.49$ (s, 1H, NH), 7.57 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.18 (ddd, $J=7.7,7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.94 (ddd, $J=7.7$, $7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.82$ (dd, J = 7.7, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.58 (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.43 (br s, 4H, $=\mathrm{CCH}_{2}, \mathrm{CH}_{2} \mathrm{~N}$ ), $2.95\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right.$ ), $1.42(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) ;{ }^{13} \mathrm{C}$ NMR [(CD $)_{2}$ SO] $\delta 168.5,155.6,154.0,140.6,128.1,123.8,122.9,121.9,121.0,109.2$, 78.8, 42.3, 41.4, 31.4, 28.1, 27.0; MS m/z 313.2 (M-H-100\%); (+)-HRESIMS m/z [M+Na] ${ }^{+}$ 337.1527 (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}, 337.1523$ ).

SN37659 tert-Butyl 4-(2-oxoindolin-3-yl)piperidine-1-carboxylate (S188).

tert-Butyl 4-(2-oxoindolin-3-yl)piperidine-1-carboxylate (S188). Prepared using Method M from alkene S187. The crude residue was triturated in EtOAc to obtain the oxindolyl S188 ( 310 mg , quant.) as an off-white solid: mp $180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.37$ (s, 1H, NH), 7.24 (d, J = 7.5 Hz, 1H, H-4), 7.15-7.19 (m, 1H, H-6), 6.94 (ddd, J = 7.5, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.81 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.91-4.02 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$ ), $3.41(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, \mathrm{CH}-3$ ), 3.64-2.67 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{~N}$ ), 2.12-2.19 (m, 1H, CH-1'), 1.17-1.54 (m, 4H, CH2-2', CH2-6'), 1.36 (s obscured, $9 \mathrm{H}, t \mathrm{Bu}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $)_{2} \mathrm{SO}$ ] $\delta$ 177.8, 153.8, 143.0, 127.9, 127.7, 124.4, 121.2, 109.1, 78.5, 49.8, 43.8, 43.3, 38.0, 28.2, 28.0 (3), 27.3; MS m/z 315.2 (M-H-, 100\%); (+)-HRESIMS m/z [M+H] 217.1337 (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}, 217.1335$ ).

SN37660 (E/Z)-3-((2,3-Dihydrobenzofuran-5-yl)methylene)indolin-2-one (S189).

(E/Z)-3-((2,3-Dihydrobenzofuran-5-yl)methylene)indolin-2-one (S189). Prepared using Method $N$ from oxindole and 2,3-dihydrobenzofuran-5-carboxaldehyde. The crude material was purified by column chromatography, eluting with 30-80\% EtOAc/pet. ether, to give (E/Z)-S189 ( $182 \mathrm{mg}, 46 \%$ ) as a yellow solid: $\mathrm{mp} 207-210^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta$ Z-isomer (major) 10.56 (s, 1H, NH), 8.60 (d, J=1.2 Hz, 1H, H-4'), 8.20 (dd, J=8.5, 1.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.73$ (s, 1H, =CH), 7.64-7.69 (m, 1H, H-4), 7.16 (ddd, $J=7.6,7.6,1.1 \mathrm{~Hz}$, 1H, H-6), 6.97 (ddd, J = 7.6, 7.6, 1.1 Hz, 1H, H-5), 6.85-6.90 (m, 1H, H-7'), 6.81 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 4.63 (t, J = $\left.8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}\right), 3.20-3.29$ (m, 2H, CH2-3'); E-isomer (minor) 10.53 (s, 1H, NH), 7.64-7.69 (m, 2H, H-4, H-4'), 7.53-7.56 (m, 2H, =CH, H-6'), 7.20 (ddd, $J=7.8,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.92 (d, J = $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 6.85-6.90(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5, \mathrm{H}-7), 4.63\left(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-2\right.$ '), $3.20-3.29$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}$ '); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 169.0, 167.4, 162.1, 161.3, 142.6, 140.1, 137.4, 136.6, 134.3, 130.6, $129.5,129.2,128.3,128.0,127.7,127.2,126.8,126.6,125.5,125.0,123.2,122.0,121.2$, 121.0, 120.8, 119.0, 110.0, 109.2, 109.1, 108.9, 71.9, 71.7, 28.7, 28.6; MS m/z 264.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 264.1019$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}, 264.1019$ ).

SN37673 3-(Benzo[d][1,3]dioxol-5-ylmethyl)indolin-2-one (S190).


3-(Benzo[d][1,3]dioxol-5-ylmethyl)indolin-2-one (S190). Prepared using Method M from S189. The resulting residue was purified by column chromatography, eluting with $40 \%$ EtOAc/pet. ether, to give S190 ( $98 \mathrm{mg}, 59 \%$ ) as a pale yellow solid: mp 136-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.29$ (s, 1H, NH), 7.08-7.12 (m, 1H, H-6), 6.92 (d, J = 7.4 Hz, 1H, H-4), 6.84 (ddd, J = 7.4, 1.0 Hz, 1H, H-5), 6.71-6.74 (m, 3H, H-7, H-4', H-7'), 6.57
(dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ) , 5.93 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-2$ ), 3.75 (dd, $J=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), 3.22 (dd, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$ ), 2.88 (dd, $J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 178.1,146.9,145.6,142.6,131.7,128.9,127.6,124.3,122.3,120.9,109.5$, 109.1, 107.8, 100.6, 46.5, 34.8; MS m/z $268.1\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ : C, 71.90; H, 4.90; N, 5.24. Found: C, 71.77; H, 4.95; N, 5.24\%.

SN37674 3-(Piperidin-4-ylidene)indolin-2-one hydrochloride (S191).


3-(Piperidin-4-ylidene)indolin-2-one hydrochloride (S191). Prepared using Method F from carbamate S187 to give the amine S191 (186 mg, quant.) as a yellow solid: mp 255$258{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 10.60 (s, 1H, NH), 9.24 (s, 2H, NH.HCl), 7.62 (d, J = 7.7 Hz, 1H, H-4), 7.21 (ddd, J = 7.7, 7.7, 0.8 Hz, 1H, H-6), 6.96 (ddd, J = 7.7, 7.7, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 6.84$ (dd, $J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), $3.60\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right.$ ), 3.26-3.32 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.19-3.24 (m, 2H, CH2), 3.12 (t, J=6.1 Hz, 2H, = $\mathrm{CCH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] б 168.5, 150.3, 140.9, 128.6, 124.0, 122.6, 122.5, 121.2, 109.5, 42.3, 41.9, 27.6, 24.0; $\mathrm{m} / \mathrm{z} 215.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[\mathrm{M}+\mathrm{H}]^{+} 215.1177$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$, 215.1179).

SN37730 (Z)-3-(4-(Dimethylamino)benzylidene)indolin-2-one (S193).

(Z)-3-(4-(Dimethylamino)benzylidene)indolin-2-one (S193). Prepared using Method N from oxindole and p-dimethylaminobenzaldehyde. The crude material was triturated in $60 \%$ EtOAc/pet. ether to give S193 (269 mg, 68\%) as a red solid: mp 209-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 10.44$ (s, 1H, NH), 8.43-8.46 (m, 2H, H-2', H-6'), 7.60-7.63 (m, 2H, $=\mathrm{CH}, \mathrm{H}-4$ ), 7.11 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.94 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 6.76-6.80 (m, 3H, H-7, H-3', H-5'), 3.04 (s, 6H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 167.6, 151.7, 139.5, 138.0, 134.7 (2), 126.9, 126.1, 122.1, 120.5, 120.3, 118.4, 111.0 (2), 108.9, 39.6 (2); $m / z 265.2$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.25 ; \mathrm{H}, 6.10 ; \mathrm{N}, 10.60$. Found: C, 77.25 ; H, 6.08 ; N, 10.65\%.

SN37731 (E/Z)-3-(3-Methoxybenzylidene)indolin-2-one (S194).

(EIZ)-3-(3-Methoxybenzylidene)indolin-2-one (S194). Prepared using Method N from oxindole and $m$-anisaldehyde. The crude material was triturated in EtOAc/pet. ether to give (E/Z)-S194 (231 mg, 61\%) as a yellow solid: mp 134-137 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס E-isomer (major) 10.60 (s, 1H, NH), 7.60 (s, 1H, $=\mathrm{CH}$ ), 7.55 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.44 (dd, J = 7.9, 7.9 Hz, 1H, H-5'), 7.20-7.29 (m, 3H, H-6, H-2', H-6'), 7.02-7.06 (m, 1H, H4'), 6.86-6.88 (m, 2H, H-5, H-7), 3.80 (s, 3H, OMe); Z-isomer (minor) 10.60 (s, 1H, NH), 8.28-8.29 (m, 1H, H-2'), 7.82 (d, J=7.9 Hz, 1H, H-4'), 7.79 (s, 1H, $=\mathrm{CH}$ ), 7.71 (d, J= 7.6

Hz, 1H, H-4), 7.38 (dd, J = 7.9, 7.9 Hz, 1H, H-5'), 7.19-7.29 (m, 1H, H-6), 7.02-7.06 (m, 1H, H-6'), 6.99 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H, H-5), 6.82-6.88 (m, 1H, H-7), 3.82 (s, 3H, OMe); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 168.6, 167.1, 159.3, 158.9, 143.0, 140.7, $136.7,135.8,135.6,135.2,130.2,129.9,129.1,129.0,127.8,126.9,124.9$ (2), 122.5, $121.4,121.1$ (2), 120.8, 119.8, 116.6, 116.4, 115.6, 114.3, 110.2, 109.3, 55.2, 55.1; MS $\mathrm{m} / \mathrm{z} 252.2\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 252.1024 (calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}$, 252.1019).

SN37732 (E/Z)-3-(4-(2-Methoxyethoxy)-3-methylbenzylidene)indolin-2-one (S195).


4-(2-Methoxyethoxy)-3-methylbenzaldehyde (S195a). Prepared using Method E from 2-bromoethyl methyl ester and 4-hydroxy-3-methylbenzaldehyde. The crude residue was purified by column chromatography, eluting in $20 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give aldehyde S195a (260 mg, 91\%) as a clear colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.86$ (s, 1H, CHO), 7.69-7.71 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 6.91-6.93 (m, 1H, H-5), 4.20-4.23 (m, 2H, OCH2), 3.80-3.82 (m, 2H, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.47 (s, 3H, OMe), 2.29 (s, 3H, Me); MS m/z 195.2 ( $\mathrm{MH}^{+}, 100 \%$ ).
(E/Z)-3-(4-(2-Methoxyethoxy)-3-methylbenzylidene)indolin-2-one (S195). Prepared using Method N from oxindole and aldehyde S195a. The crude material was purified by column chromatography, eluting with 40\% EtOAc/pet. ether, to give (E/Z)-S195 (82 mg, $75 \%$ ) as a yellow solid: mp 141-144 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.54 (s, 1H, NH), 7.65-7.70 (m, 1H, H-4), 7.58 (dd, J = 8.5, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.54 (m, 2H, =CH, H-2'), 7.21 (ddd, $J=7.7,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.09 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.85-6.89$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7$ ), 4.19-4.21 (m, 2H, OCH 2 ), 3.70-3.73 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{O}$ ), 3.35 (s, 3H, OMe), 2.21 (s, 3H, Me); Z-isomer (minor) 10.54 (s, 1H, NH), 8.40 (dd, J = 8.7, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 8.30 (d, J = 2.0 Hz, 1H, H-2'), 7.70 (s, 1H, =CH), 7.65-7.67 (m, 1H, H-4), 7.17 (ddd, J = $7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.05$ (d, J=8.7 Hz, 1H, H-5'), 6.97 (ddd, J = 7.6, 7.6, 1.0 Hz , $1 \mathrm{H}, \mathrm{H}-5), 6.81(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.19-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.70-3.73$ (m, 2H, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.34 (s, 3H, OMe), 2.20 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 168.9, 167.3, 158.7, 158.0, 142.6, 140.2, 137.0, 136.2, 134.9, 132.3, 132.0, 129.6, 129.1, 128.1, 126.7, 126.3 (2), 125.4 (3), 123.8, 122.0, 121.2, 121.0, 120.8, 119.1, 111.4, 111.0, 110.0, 109.1, 70.4 (2), 67.5 (2), 58.4 (2), 16.0, 15.9; MS m/z 310.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ : C, 73.77; H, 6.19; N, 4.53. Found: C, 73.76; H, 6.27; N, 4.56\%.

SN37769 (E)-3-(2-Methylbenzylidene)indolin-2-one (S196).

(E)-3-(2-Methylbenzylidene)indolin-2-one (S196). Prepared using Method N from oxindole and o-tolualdehyde. The crude material was purified by column chromatography, eluting with 20-25\% EtOAc/pet. ether, to give $\mathbf{S 1 9 6}$ (330 mg, 93\%) as a yellow solid: mp $129-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.68(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.54(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $7.35-7.40$ (m, 2H, H-3', H-4'), 7.30-7.34 (m, 1H, H-5'), 7.19 (ddd, J = 7.6, $7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.77$
(ddd, J=7.6, 7.6, 1.1 Hz, 1H, H-5), 2.30 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 168.3, 142.8, 136.8, 134.7, 133.8, 130.4, 130.1, 129.4, 128.4, 128.2, 125.9, 122.3, 121.1 (2), 110.1, 19.5; MS m/z 236.1 ( $\mathrm{MH}^{+}$, 100\%). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 81.68$; H, 5.57; N, 5.95. Found: C, 81.45; H, 5.64; N, 6.02\%.

SN37770 (E/Z)-3-(3-Methylbenzylidene)indolin-2-one (S197).

(E/Z)-3-(3-Methylbenzylidene)indolin-2-one (S197). Prepared using Method N from oxindole and $m$-tolualdehyde. The crude material was purified by column chromatography, eluting with 20-25\% EtOAc/pet. ether, to give (E/Z)-S197 (326 mg, $92 \%$ ) as a yellow solid: mp $130-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.59 (s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.59 (s, 1H, =CH), 7.49-7.53 (m, 3H, H-2', H-4', H-6'), 7.42 (dd obscured, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.23$ (ddd, $J=7.8,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.81-6.88 (m, 2H, H-5, H-7), 2.38 (s, 3H, Me); Z-isomer (minor) 10.59 (s, 1H, NH), 8.23 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 8.16 (s, 1H, H-2'), 7.76 (s, 1H, =CH), 7.70 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 7.36 (d, J = 7.8, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.19-7.26 (m, 2H, H-4, H-6), 6.99 (ddd, J=7.6, 7.6, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.81-6.88$ (m, 1H, H-7), 2.36 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta$ (both isomers) 168.6, 167.0, 142.9, 140.7, 138.0, 137.2, 136.9, 135.9, 134.4, 133.9, 132.5, $131.0,130.3,130.1,129.7,129.0,128.9,128.6,128.1,127.5,126.6,126.3,124.9,122.3$, 121.1, 121.0, 120.9, 119.7, 110.1, 109.3, 21.0, 20.9; MS m/z 236.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 81.68$; H, 5.57; N, 5.95. Found: C, 81.84; H, 5.62; N, 6.00\%.

SN37771 (E)-3-(2,3-Dimethylbenzylidene)indolin-2-one (S198).

(E)-3-(2,3-Dimethylbenzylidene)indolin-2-one (S198). Prepared using Method N from oxindole and 2,3-dimethylbenzaldehyde. The crude material was triturated in EtOAc/pet. ether to give S198 (332 mg, 89\%) as a yellow solid: mp 181-184 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.59$ (s, 1H, NH), 7.71 (s, 1H, =CH), 7.34 (d, J = 7.3 Hz, 1H, H-6'), 7.27 (d, J = 7.3 Hz , $\left.1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 7.16-7.22$ (m, 2H, H-6, H-5'), 7.01 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.85 (d, J = 7.6 Hz , $1 \mathrm{H}, \mathrm{H}-7$ ), 6.75 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H, H-5), 2.31 (s, 3H, Me-3'), 2.19 (s, 3H, Me${ }^{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 168.3,142.8,137.1,135.6,135.0,133.9,130.7,129.9,128.4$, 126.0, 125.5 (2), 121.1 (2), 110.0, 19.9, 16.0; MS $m / z 250.2$ ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 81.90$; H, 6.06; N, 5.62. Found: C, 81.84; H, 6.19; N, 5.66\%.

SN37797 (Z)-3-(1-(4-Methoxy-3-methylphenyl)ethylidene)indolin-2-one (S199).


1-(4-Methoxy-3-methylphenyl)ethan-1-one (S199a). Prepared using Method E from methyl iodide and 4-hydroxy-3-methylacetophenone. The crude residue was purified by column chromatography, eluting with $20 \%$ EtOAc/pet. ether, to give acetophenone S199a
(146 mg, 67\%) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.81-7.84$ (m, 1H, H-6), 7.77-7.78 (m, 1H, $\mathrm{H}-2$ ), 6.85 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.90 (s, 3H, OMe), 2.55 (s, 3H, MeCO), 2.25 (s, 3H, Me); MS m/z 165.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$.
(Z)-3-(1-(4-Methoxy-3-methylphenyl)ethylidene)indolin-2-one (S199). Prepared using Method N from oxindole and acetophenone S199a. The crude material was purified by column chromatography, eluting with 20-25\% EtOAc/pet. ether, to give alkene S199 (67 $\mathrm{mg}, 27 \%)$ as orange crystals: mp $221-223^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.51$ (s, 1H, NH), 7.13-7.18 (m, 2H, H-2', H-6'), 7.01-7.09 (m, 2H, H-6, H-5'), 6.76 (d, J = 7.6 Hz, 1H, H-7), 6.59 (dt, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}-3), 2.66$ (s, 3H, =CMe), 2.18 (s, 3H, Me-3'); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 168.9 (C-2), 157.5 (C-4'), 154.1 (=C), 140.5 (C-7a), 134.2 (C-1'), 128.8 (C-2'), 128.0 (C-6), 126.3 (C-3'), 125.5 (C-6'), 123.2 (C-3), 123.0 (C-3a), 122.1 (C-4), 120.4 (C-5), 110.6 (C-5'), 109.2 (C-7), 55.4 (OMe$\left.4^{\prime}\right), 22.2$ (=CMe), 16.0 (Me-3'); MS m/z $280.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \cdot 0.15 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.65$; H, 6.18; N, 4.97. Found: C, 76.65; H, 6.18; N, 4.94 \%.

SN37798 (E)-3-(3,4-Dimethylbenzylidene)indolin-2-one (S200).

(E)-3-(3,4-Dimethylbenzylidene)indolin-2-one (S200). Prepared using Method $N$ from oxindole and 3,4-dimethylbenzaldehyde. The crude material was purified by column chromatography, eluting with 20-30\% EtOAc/pet. ether to give S200 (354 mg, 94\%) as a yellow solid: mp 181-183 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.59(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.56$ (s, 1H, =CH), 7.45-7.48 (m, 2H, H-2', H-6'), 7.29 (d, J = 7.7 Hz, 1H, H5'), 7.22 (ddd, J=7.6, 7.6, 1.1 Hz, 1H, H-6), 6.83-6.88 (m, 2H, H-5, H-7), 2.30 (s, 3H, Me4'), 2.29 (s, 3H, Me-3'); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ 168.7, 142.8, 138.5, 136.7, 136.1, 131.9, $130.4,129.9,129.8,126.8,126.8,122.2,121.1,110.1,19.4,19.3$, (1 signal not observed); MS m/z 250.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 81.90 ; \mathrm{H}, 6.06$; N, 5.62. Found: C, 81.77; H, 6.16; N, 5.65\%.

SN37799 (Z)-3-(3-Methoxy-4-methylbenzylidene)indolin-2-one (S201).

(Z)-3-(3-Methoxy-4-methylbenzylidene)indolin-2-one (S201). Prepared using Method N from oxindole and 3-methoxy-4-methylbenzaldehyde. The crude material was purified by column chromatography, eluting with 20-30\% EtOAc/pet. ether, to give S201 ( 288 mg , $72 \%$ ) as a yellow solid: mp 225-227 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.58$ (s, 1H, NH), 8.47 (d, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.78$ (s, 1H, =CH), 7.73 (dd, J = 7.7, 1.3 Hz, 1H, H-6'), 7.70 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.24(\mathrm{dd}, J=7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 7.20 (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6 ), 6.99 (dt, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.83$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.87 (s, 3H, OMe-3'), 2.21 (s, 3H, Me-4'); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 167.3$ (CONH), 156.9 (C-3'), 140.5 (C-7a), 137.3 (=CH), 133.2 (C-1'), 130.1 (C-5'), 129.1 (C-4'), 128.7 (C-6), 125.8 (C-3), 125.2 (C6'), 125.2 (C-3a), 121.0 (C-5), 119.5 (C-4), 113.2 (C-2'), 109.3 (C-7), 55.2 (OMe-3'), 16.3
(Me-4'); MS m/z 266.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ : C, 76.96; H, 5.70; N, 5.28. Found: C, 76.91; H, 5.71; N, 5.36\%.

SN37800 (E/Z)-3-(3-Methyl-4-nitrobenzylidene)indolin-2-one (S202).

(E/Z)-3-(3-Methyl-4-nitrobenzylidene)indolin-2-one (S202). Prepared using Method N from oxindole and 3-methyl-4-nitrobenzaldehyde. The crude material was purified by column chromatography, eluting with 10\% EtOAc/pet. ether, to give (E/Z)-S202 (194 mg, $46 \%$ ) as an orange solid: mp 202-205 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.68 (s, 1H, NH), 8.12 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.85 (s, 1H, H-2'), 7.76 (dd, J = 8.4, 1.8 Hz , $1 \mathrm{H}, \mathrm{H}-5$ '), $7.60(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.26$ (d, J=7.7, 7.7, 1.1 Hz, 1H, H-6), 6.86-6.90 (m, 2H, H-5, H-7), 2.58 (s, 3H, Me); Z-isomer (minor) 10.68 (s, 1H, NH), 8.37 (dd, J = 8.7, 2.3 Hz, 1H, H-6'), 8.30 (s, 1H, H-2'), 8.05 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.85 (s, 1H, =CH), 7.72-7.80 (m, 1H, H-4), 7.26 (d, J = 7.6, 7.6, 1.0 Hz, 1H, H-6), 7.02 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H, H-5), 6.83-6.86 (m, 1H, H-7), 2.56 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta$ (both isomers) 168.2, 166.8, 148.6 (2), 143.4, 141.4, 139.6, 138.5, 135.5, $133.5,133.4,133.3,132.9,132.3,130.9,130.0,129.9,129.8$ (2), 127.7, 125.0, 124.2 (2), 122.8, 121.4, 121.3, 120.5, 120.4, 110.3, 109.6, 19.7, 19.6; MS m/z 281.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z [M+H] ${ }^{+} 296.1284$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}, 296.1281$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 68.56; H, 4.32; N, 9.99. Found: C, 68.50; H, 4.26; N, 10.07\%.

SN37801 (E)-3-(4-Bromo-3-methylbenzylidene)indolin-2-one (S203).

(E)-3-(4-Bromo-3-methylbenzylidene)indolin-2-one (S203). Prepared using Method N from oxindole and 4-bromo-3-methylbenzaldehyde. The crude material was washed with pet. ether to give S203 (391 mg, 83\%) as a yellow solid: mp $194-197{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 10.62$ (s, 1H, NH), 7.73 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.67 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2'), 7.53 (s, 1H, =CH), 7.46-7.50 (m, 2H, H-4, H-6'), 7.24 (ddd, J = 7.7, 1.0 Hz, 1H, H-6), 6.84-6.88 (m, 2H, H-5, H-7), 2.41 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ 168.5, 143.0, 137.9, $134.5,134.0,132.5,131.8,130.3,128.4,128.1,125.4,122.5,121.3,120.7,110.2,22.3$; MS m/z 314.0, $316.0\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}$ : C, 61.17; H, 3.85; N, 4.46. Found: C, 61.34; H, 3.81; N, 4.46\%.

SN37836 tert-Butyl (1-Amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)carbamate (S204).

tert-Butyl (1-Amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)carbamate (S204). Prepared using Method O from (tert-butoxycarbonyl)tyrosine. The crude mixture was purified by column chromatography, eluting with 70-80\% EtOAc/pet. ether, to give carbamate S204 (309 mg, 24\%) as a white solid: mp 135-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ ס $9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 6.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right)$,
$6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.82$ (dd, $J=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.61 (dd, $J=13.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 173.8,155.7,155.2,130.0(2), 128.3,114.8$ (2), 77.8, 55.9, 36.7, 28.2 (3); MS m/z 279.2 (M-H', 100\%); (+)-HRESIMS m/z [M+H] 281.1494 (calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}, 281.1496$ ).

SN37837 2-Amino-3-(4-hydroxyphenyl)propanamide Hydrochloride (S205).


2-Amino-3-(4-hydroxyphenyl)propanamide Hydrochloride (S205). Prepared using Method F from carbamate S204 give phenol S205 (161 mg, 93\%) as a white solid: mp $243-246{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 9.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.10$ (br s, $3 \mathrm{H}, \mathrm{NH}_{3}$ ), 7.87 (s, 1H, $\mathrm{NH}_{2}$ ), 7.50 (s, 1H, NH2), 7.04-7.06 (m, 2H, H-2, H-6), 6.70-6.73 (m, 2H, H-3, H-5), 3.84 (m, 1H, CH), 2.98 (dd, $J=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.87 (dd, $J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ 169.8, 156.5, 130.5 (2), 125.0, 115.3 (2), 53.7, 36.0; MS m/z 181.2 $\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-\mathrm{HRESIMS} m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 181.0971$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}, 181.0972$ ).

SN37838 (E)-3-(4-Methoxy-2-methylbenzylidene)indolin-2-one (S206).


4-Methoxy-2-methylbenzaldehyde (S206a). Prepared using Method E from methyl iodide and 4-hydroxy-2-methylbenzaldehyde. The crude residue was purified by column chromatography, eluting with 10\% EtOAc/pet. ether, to give aldehyde S206a ( 504 mg , 92\%) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 10.12$ (s, 1H, CHO), 7.76 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.85 (d, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.74 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.87 (s, 3H, OMe), 2.65 (s, 3H, Me).
(E)-3-(4-Methoxy-2-methylbenzylidene)indolin-2-one (S206). Prepared using Method N from oxindole and aldehyde S206a. The alkene S206 (396 mg, 90\%) was obtained as a yellow solid: mp $173-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.56$ (s, 1H, NH), 7.62 (s, 1H, $=\mathrm{CH}$ ), 7.57 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 7.31$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.19 (ddd, $J=7.6,7.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.95$ (d, J = 2.6 Hz, 1H, H-3'), 6.90 (dd, J = 8.5, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.86 (d, J = 7.4 Hz, 1H, H-7), 6.81 (ddd, J = 7.6, 7.6, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.82 (s, 3H, OMe), 2.31 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 168.6,160.3,142.6,139.4,134.5,130.1,129.7,126.8$, $125.8,122.1,121.3,121.0,115.9,111.3,110.0,55.2,19.7 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 266.2\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] ${ }^{+} 266.1175$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}, 266.1176$ ).

SN37839 (E)-3-(2-Methoxy-3-methylbenzylidene)indolin-2-one (S207).


2-Methoxy-3-methylbenzaldehyde (S207a). Prepared using Method E from methyl iodide and 2-hydroxy-3- to give aldehyde S207a ( $396 \mathrm{mg}, 90 \%$ ) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR ס 10.39 ( $\mathrm{d}, \mathrm{J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$ ), 7.68-7.71 (m, 1H, H-6), 7.44-7.46 (m, 1H, H-4),
7.45 (dd, J = 7.6, 7.6 Hz, 1H, H-5), 3.89 (s, 3H, OMe), 2.30 (s, 3H, Me); MS m/z 151.2 ( $\mathrm{MH}^{+}, 100 \%$ ).
(E)-3-(2-Methoxy-3-methylbenzylidene)indolin-2-one (S207). Prepared using Method N from oxindole and aldehyde S207a. The crude material was purified by column chromatography, eluting with 40-50\% EtOAc/pet. ether, to give S207 (393 mg, 94\%) as a yellow solid: mp 160-162 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.62$ (s, 1H, NH), 7.65 (s, 1H, $=\mathrm{CH}$ ), 7.52 (d, J=7.6 Hz, 1H, H-6'), 7.34-7.37 (m, 2H, H-4, H-4'), 7.22 (ddd, J = 7.7, 7.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.17$ (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.82$ (ddd, J = 7.7, 7.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.66 (s, $3 \mathrm{H}, \mathrm{OMe}$ ), $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2}\right]$ б 168.5, 157.1, 142.9, 132.9, 131.7, 131.3, 130.1, 128.2, 127.7, 127.6, 123.9, 122.5, 121.1, 121.0, 110.1, 61.0, 15.6; MS m/z 266.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 266.1174$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}, 266.1176$ ).

SN37840 (E)-3-(2-Methoxy-5-methylbenzylidene)indolin-2-one (S208).


2-Methoxy-5-methylbenzaldehyde (S208a). Prepared using Method E from methyl iodide and 2-hydroxy-5-methylbenzaldehyde to give aldehyde S208a ( $417 \mathrm{mg}, 95 \%$ ) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 10.44$ (s, 1H, CHO), 7.63 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.34-7.37 (m, 1H, H-4), 6.89 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.90 (s, 3H, OMe), 2.32 (s, 3H, Me); MS m/z $151.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
(E)-3-(2-Methoxy-5-methylbenzylidene)indolin-2-one (S208). Prepared using Method N from oxindole and aldehyde S208a. The crude material was purified by column chromatography, eluting with 40-75\% EtOAc/pet. ether, to give S208 (341 mg, 93\%) as a yellow solid: mp $244-247{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.56$ (s, 1H, NH), 7.62 (s, 1H, $=\mathrm{CH}$ ), 7.48 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.29$ (dd, $J=8.5,2.1$ Hz, 1H, H-4'), 7.21 (ddd, J = 7.6, 7.6, 1.1 Hz, 1H, H-6), 7.05 (d, J = $\left.8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, 6.82-6.87 (m, 2H, H-5, H-7), 3.82 (s, 3H, OMe), 2.29 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 168.6, 155.6, 142.7, 132.0, 131.8, 129.8, 129.7, 128.9, 127.2, 122.5, 122.2, 121.1 (2), 111.5, 110.0, 55.6, 19.9; MS m/z $266.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 266.1179$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}, 266.1176$ ).

SN37841 Methyl (E)-3-(3-((E/Z)-4-Methoxy-3-methylbenzylidene)-2-oxoindolin-5yl)acrylate (S209).


5-Bromooxindole (S209a). NBS ( $735 \mathrm{mg}, 4.13 \mathrm{mmol}$ ) was added to a solution of oxindole ( $500 \mathrm{mg}, 3.76$ ) in $\mathrm{MeCN}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ over 3 h . Solvent was removed and the residue triturated in EtOAc to
obtain the bromide S209a (634 mg, 80\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.47$ (s, 1H, NH), 7.38 (m, 1H, H-4), 7.32-7.35 (m, 1H, H-6), 6.76 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.50 (s, 2H, CH2); MS m/z 210.2, $212.0\left(\mathrm{M}^{-} \mathrm{H}^{-}, 100 \%\right)$.

Methyl (E)-3-(2-Oxoindolin-5-yl)acrylate (S209b). Bromooxindole S209a (225 mg, 1.06 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(36 \mathrm{mg}, 0.16 \mathrm{mmol})$ and tri(o-tolyl)phosphine ( $65 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) were stirred in dioxane ( 5 mL ) while purged with $\mathrm{N}_{2}$ for 10 min . Methyl acrylate ( $144 \mu \mathrm{~L}, 1.59$ $\mathrm{mmol})$ and TEA ( $441 \mu \mathrm{~L}, 3.18 \mathrm{mmol}$ ) were added and purged with $\mathrm{N}_{2}$ for another 15 min . The resulting mixture was heated to $120^{\circ} \mathrm{C}$ for 5 h . Once cooled, the reaction mixture was diluted with EtOAc ( 50 mL ), washed with water $(50 \mathrm{~mL})$, brine ( 50 mL ), dried and concentrated. The crude residue was purified by column chromatography, eluting with 10-20\% EtOAc/DCM, to give S209b (138 mg, 60\%) as a white solid: mp $215-218{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta 10.61$ (s, 1H, NH), 7.61 (d obscured, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$ ), 7.61 ( s obscured, 1H, H-4), 7.52 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.84 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.47 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCO}), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 218.2\left(\mathrm{MH}^{+}\right.$, 100\%).

Methyl (E)-3-(3-((E/Z)-4-Methoxy-3-methylbenzylidene)-2-oxoindolin-5-yl)acrylate (S209). Prepared using Method N from oxindole S209b and 3-methyl-p-anisaldehyde. The resulting yellow solid was removed by filtration, washed with EtOH and dried to give S209 (34 mg, 90\%) as a yellow solid: mp 273-276 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta$ E-isomer (major) 10.83 (s, 1H, NH), 7.95 (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $7.62-7.67$ (m, 4H, $=\mathrm{CH}, \mathrm{H}-6, \mathrm{H}-$ $\left.2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right), 7.56(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-3), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $6.92(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.27 (d, J=16.0 Hz, 1H, =CHCO), 3.90 (s, 3H, OMe-4'), 3.70 (s, 3H, OMe), 2.23 (s, 3H, Me); Z-isomer (minor) 10.83 (s, 1H, NH), 8.41 (dd, J = $8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 8.33 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 8.19$ (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.89 (s, 1H, =CH-3), 7.627.67 (m, 1H, =CH), 7.49 (dd, J = 8.0, 1.4 Hz, 1H, H-6), 7.09 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.84 (d, J = 8.0 Hz, 1H, H-7), 6.62 (d, J=16.0 Hz, 1H, =CHCO), $\left.3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}-4)^{\prime}\right), 3.72$ (s, $3 \mathrm{H}, \mathrm{OMe}$ ), 2.20 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right]$ (both isomers) 169.0, 167.5, 167.0, 166.7, 159.8, 159.1, 145.2, 144.9, 144.6, 142.2, 138.4, 137.7, 134.9, 132.7, 132.1, 130.5, $130.1,129.7,127.1,126.9,126.5,126.3,126.0,125.9,125.3,124.4,122.8,121.9,121.5$, 118.2, 114.7, 114.6, 110.6, 110.3, 110.2, 109.2, 55.6 (2), 51.4, 51.3, 16.1, 15.8; MS m/z 350.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$ : C, 72.19 ; H, 5.48; N, 4.01. Found: C, 71.90; H, 5.37; N, 4.00\%.

SN37847 (E/Z)-3-(4-(2-(Dimethylamino)ethoxy)-3-methylbenzylidene)indolin-2-one (S210).



4-(2-(Dimethylamino)ethoxy)-3-methylbenzaldehyde (S210a). Prepared using Method E from 4-hydroxy-3-methylbenzaldehyde and 2-(dimethylamino)ethylchloride hydrochloride. The crude residue was purified by column chromatography, eluting with $3 \% \mathrm{MeOH} / \mathrm{DCM}$, to give aldehyde S210a ( $92 \mathrm{mg}, 30 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.85$ (s, 1H, CHO), 7.68-7.71 (m, 2H, H-2, H-6), 6.92 (d, J = 8.4 Hz, 1H, H-5), 4.17 (t, J = 5.8
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 2.81 (t, J = $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.37 (s, 6H, NMe2), 2.27 (s, 3H, Me-3); MS m/z 208.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$.
(E/Z)-3-(4-(2-(Dimethylamino)ethoxy)-3-methylbenzylidene)indolin-2-one (S210). Prepared using Method N from oxindole and aldehyde S210a. The crude material was purified by column chromatography, eluting with $8-20 \% \mathrm{MeOH} / \mathrm{DCM}$, to give $\mathbf{S 2 1 0}$ (102 $\mathrm{mg}, 73 \%$ ) as a yellow-orange gum: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta$ E-isomer (major) 10.53 (s, 1H, NH), 7.65-7.70 (m, 1H, H-4), 7.59 (dd, J = 8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 7.54 (m, 2H, =CH, H$2^{\prime}$ ), 7.20 (ddd, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.11 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.85-6.89 (m, 2H, $\mathrm{H}-5, \mathrm{H}-7$ ), 4.14-4.17 (m, 2H, OCH ${ }_{2}$ ), 2.70-2.72 (m, 2H, CH2N), 2.26 (s, 6H, Me), 2.21 (s, 3H, Me); Z-isomer (minor) 10.53 (s, 1H, NH), 8.39 (dd, J = 8.7, 1.9 Hz, 1H, H-6'), 8.30 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4,=\mathrm{CH}$ ), 7.17 (ddd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.06 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.97 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.81 (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 4.14-4.17 (m, 2H, OCH2), 2.70-2.72 (m, 2H, CH2N), 2.26 (s, 6H, Me), 2.19 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 168.9, 167.3, 158.7, 158.0, 142.6, 140.2, 137.1, 136.3, 134.8, 132.4, 132.0, 129.6, 129.1, 128.1, 126.6, 126.2, 125.4 (3), 125.3, 123.8, 122.0, 121.2, 121.0, 120.8, 119.1, 111.3, 110.9, 110.0, 109.1, 66.3 (2), 57.6 (2), 45.6 (4), 16.1, 15.9; MS m/z $323.2\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 345.1565 (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{2}, 345.1573$ ).

SN37883 (E/Z)-5-Bromo-3-(4-methoxy-3-methylbenzylidene)indolin-2-one (S211).

(E/Z)-5-Bromo-3-(4-methoxy-3-methylbenzylidene)indolin-2-one (S211). Prepared using Method N from oxindole S209a and 3-methyl- $p$-anisaldehyde. The crude residue was purified by column chromatography, eluting in 30-60\% EtOAc/pet. ether, to give the product (E/Z)-S211 (77 mg, 47\%) as a yellow solid: mp 171-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta E$-isomer (major) 10.70 (s, 1H, NH), 7.74 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.59-7.62 (m, 2H, $\left.=\mathrm{CH}, \mathrm{H}-6{ }^{\prime}\right), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.40(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ '), 6.84 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.89 (s, 3H, OMe), 2.21 (s, 3H, Me); Z-isomer (minor) 10.67 (s, 1H, NH), 8.41 (dd, J = 8.2, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 8.35 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2'), 7.91 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.85 (s, 1H, =CH), 7.32 ( $8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.07 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.77 (d, J=8.2 Hz, 1H, H-7), 3.88 (s, 3H, OMe), 2.19 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 179.4, 168.5, 167.0, 159.9, 159.1, 141.7, 139.1, $138.2,135.0,133.0,132.1,131.8,130.2,129.3,127.9,126.4,126.2,125.7,125.3,124.4$, 124.2, 123.4, 122.5, 121.9, 112.9, 112.5, 111.8, 111.0, 110.5, 110.1, 55.6 (2), 16.1, 15.8; MS m/z 344.1, $346.0\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 344.0287$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrNO}_{2}$, 344.0281).

SN37884 (E/Z)-3-(3-(Hydroxymethyl)-4-methoxybenzylidene)-1-methylindolin-2-one (S212).

(E/Z)-3-(3-(Hydroxymethyl)-4-methoxybenzylidene)-1-methylindolin-2-one (S212). Prepared using Method E from methyl iodide and alcohol S185. The crude residue was purified by column chromatography, eluting in $40 \% \mathrm{EtOAc} /$ pet. ether, to give the product (E/Z)-S212 (66 mg, 59\%) as a yellow solid: mp 173-176 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta \mathrm{E}$ isomer (major) $7.84-7.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.76-7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 7.68(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.65$ (dd, J = 8.5, 2.2 Hz, 1H, H-6'), 7.32 (ddd, $J=7.7,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.12 (d, J = 8.5 Hz, 1H, H-5'), 7.03-7.07 (m, 1H, H-7), 6.95 (ddd, J = 7.7, 7.7, 1.0 Hz, 1H, H-5), 5.17 (t, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.55\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe})$; Z-isomer (minor) 8.65 (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 8.40$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 7.84$ (s, 1H, =CH), 7.76-7.79 (m, 1H, H-4), 7.27 (ddd, J=7.7, 7.7, 1.1 Hz, 1H, H-6), 7.03-7.09 (m, 2H, H-5, H-5'), 6.99 (d, J=7.7 Hz, 1H, H-7), 5.08 (t, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 4.52 (d, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.87 (s, 3H, OMe), 3.23 (s, 3H, NMe); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 167.6, 165.5, 158.3, 157.4, 143.8, 141.4, 137.7, 137.0, 132.8, 132.3, 130.8, $130.4,130.1,129.6,128.2,128.1,126.5,126.0,124.4,124.3,122.7,122.0,121.6,121.5$, 120.5, 118.9, 110.5, 110.0, 108.7, 108.1, 57.8, 57.6, 55.6 (2), 26.0; MS m/z $350.2\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$ : C, 72.19; H, 5.48; N, 4.01. Found: C, 71.90; H, 5.37; N, 4.00\%.

SN37943 5-(3-Aminophenyl)indolin-2-one (S213).


5-(3-Aminophenyl)indolin-2-one (S213). Prepared using Method A from bromide 209a and 3 -aminophenylboronic acid. The crude residue was purified by column chromatography, eluting with 70-80\% EtOAc/pet. ether, to give product $\mathbf{S 2 1 3}(30 \mathrm{mg}$, $28 \%$ ) as a yellow solid: mp $182-183{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 10.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.38$ (s, 1H, H-4), 7.35 (dd, J = 8.0, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.05 (dd, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.85 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.76 (dd, J = 1.9, 1.9 Hz, 1H, H-2'), 6.69-6.71 (m, 1H, H-6'), 6.486.51 (m, 1H, H-4'), 5.09 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ ), $3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ ס 176.4, 149.0, 142.9, 141.1, 134.4, 129.3, 126.4, 125.6, 122.6, 113.9, 112.5, 111.7, 109.2, 35.9; MS m/z $225.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 225.1023$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$, 225.1022).

SN37944 Methyl (E/Z)-3-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-5yl)propanoate (S214).


Methyl 3-(2-Oxoindolin-5-yl)propanoate (S214a). Prepared by Method M from alkene S209b to give oxindole S214a (79 mg, 92\%) as a white solid: mp $145-147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.52$ (s, 1H, NH), 7.08 (s, 1H, H-4), 7.03-7.06 (m, 1H, H-6), 6.77 (d, J = 7.9 Hz, 1H, H7), 3.67 (s, 3H, OMe), $3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.61$ (t, J = 7.7 Hz, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$; MS m/z 220.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

## Methyl (E/Z)-3-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-5-yl)propanoate

 (S214). Prepared using Method N from oxindole S214a and 3-methyl-p-anisaldehyde. The crude residue was purified by column chromatography, eluting with 40-50\% EtOAc/pet. ether, to give the product (E/Z)-S214 ( $69 \mathrm{mg}, 87 \%$ ) as a yellow solid: $\mathrm{mp} 152-$ $154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [ $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ] $\delta$ E-isomer (major) 10.45 (s, 1H, NH), $7.55-7.61$ (m, 3H, H4, H-2', H-6'), 7.52 (s, 1H, =CH), $7.06-7.11$ (m, 2H, H-6, H-5'), 6.78 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), 3.88 (s, 3H, OMe-4'), 3.52 (s, 3H, OMe), 2.73 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.55 (t, J = 7.4 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$ ), 2.22 (s, 3H, Me); Z-isomer (minor) $\delta 10.45$ (s, 1H, NH), 8.39 (dd, $J=$ 8.6, 2.0 Hz, 1H, H-6'), 8.32 (d, J=2.0 Hz, 1H, H-2'), 7.68 (s, 1H, $=\mathrm{CH}$ ), $7.55-7.61$ (m, 1H, H-4), 7.01-7.07 (m, 2H, H-6, H-5'), 6.72 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe-4}$ '), $3.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.83\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.19(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 172.7, 172.6, 169.0, 167.5, 159.4, 158.8, 140.9, 138.5, 136.9, 136.1, 134.7, 132.9, 132.9, 132.4, 131.9, 129.5, 129.4, 128.0, 126.6, 126.1, 126.0, 125.5, 125.3, 125.2, 123.9, 122.0, 121.3, 119.0, 110.5, 110.1, 109.8, 108.9, 55.5 (2), 51.3, 51.2, 35.3, 35.1, 30.2, 30.0, 16.1; MS m/z 352.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 352.1546$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}, 352.1543$ ).SN37988 1-(4-Hydroxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S215).


1-(4-Hydroxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (S215). A solution of $\mathrm{BBr}_{3}(330 \mu \mathrm{~L}, 3.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added to a stirred suspension of $\mathbf{S 1 7 2}(448 \mathrm{mg}, 1.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to $20^{\circ} \mathrm{C}$ over 17 h . The resulting mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with MeOH , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, followed by brine ( 50 mL ). The organic layer was dried, concentrated under reduced pressure and triturated with EtOAc/pet. ether to obtain phenol S215 (429 mg, quant.) as a pale brown solid: mp 203-206 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2} \mathrm{SO}$ ] $\delta 11.64$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 7.88 (dd, $J=5.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.35(\mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.16$ (ddd, $J=8.6,2.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $2^{\prime}, \mathrm{H}-6^{\prime}$ ), 6.97 (dd, J = 7.8, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.70 (ddd, J = $8.6,2.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-$ 5'), 4.88 (s, 2H, CH2); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.{ }_{3}\right)_{2} \mathrm{SO}\right] \delta 156.9$ (C-4'), 153.5 (C-2), 143.0 (C-7a), 138.6 (C-6), 129.0 (C-2', C-6'), 126.7 (C-1'), 124.5 (C-3a), 116.7 (C-5), 115.3 (C-3', C-5'), 114.8 (C-4), $42.8\left(\mathrm{CH}_{2}\right) ;$ MS m/z $242.2\left(\mathrm{MH}^{+}, 100 \%\right)$; (+)-HRESIMS m/z [M+H] 242.0927 (calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}, 242.0924$ ).

SN37989 (Z)-3-(4-Methoxy-3-methylbenzylidene)-1-methylindolin-2-one (S216) and (E)-3-(4-Methoxy-3-methylbenzylidene)-1-methylindolin-2-one (9).

(Z)-3-(4-Methoxy-3-methylbenzylidene)-1-methylindolin-2-one (S216) and (E)-3-(4-Methoxy-3-methylbenzylidene)-1-methylindolin-2-one (9). Prepared using Method E from methyl iodide and indolin-2-one 3 . The crude residue was purified by column chromatography, eluting with DCM to give Z-S216 ( $32 \mathrm{mg}, 15 \%$ ) as a yellow solid: mp
$118-120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 8.37-8.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6\right.$ '), 7.77 (s, 1H, =CH), 7.72 (d, J = 7.5 Hz, 1H, H-4), 7.27 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H, H-6), 7.03-7.07 (m, 2H, H-5, $\mathrm{H}-5$ '), 6.99 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.88 (s, 3H, OMe), 3.22 (s, 3H, NMe), 2.20 (s, 3H, $\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ $165.5,159.6,141.3,137.4,134.7,132.7,128.1,126.5,125.2$, 124.3, 122.6, 121.5, 118.8, 110.1, 108.1, 55.5, 25.8, 16.1; (+)-HRESIMS m/z [M+H] ${ }^{+}$ 280.1341 (calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}, 280.1332$ ). Further elution with $5 \%$ EtOAc/DCM gave $E-$ 9 (86 mg, 39\%) as a yellow solid: mp 89-91 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \quad 7.71$ (d, J = 7.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.62-7.64$ (m, 2H, $\left.=\mathrm{CH}, \mathrm{H}-6{ }^{\prime}\right), 7.54-7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.32$ (td, J = 7.6, 1.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.96$ (td, $J=$ $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.88 (s, 3H, OMe), 3.21 (s, 3H, NMe), 2.21 (s, 3H, Me); MS m/z $280.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 280.1338$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$, 280.1332).

SN37991 (Z)-3-(3-Ethylbenzylidene)indolin-2-one (S217) and SN37992 (E)-3-(3-Ethylbenzylidene)indolin-2-one (S218).


(Z)-3-(3-Ethylbenzylidene)indolin-2-one (S217). Prepared using Method N from oxindole and 3-ethylbenzaldehyde. The crude material was purified by column chromatography, with the $Z$ isomer eluting with $20 \%$ EtOAc/pet. ether to give Z-S217 ( $41 \mathrm{mg}, 11 \%$ ) as a yellow solid: mp 121-123 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3) $)_{2} \mathrm{SO}$ ] 10.58 (s, 1H, NH), 8.24 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 8.21 (s, 1H, H-2'), 7.79 (s, 1H, =CH), 7.70 (d, J = 7.6 Hz , $1 \mathrm{H}, \mathrm{H}-4), 7.38$ (dd, J = 7.8, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '), 7.30$ (d, J = 7.8 Hz, 1H, H-4'), 7.21 (ddd, J $=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.99$ (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.82 (d, J = 7.6 Hz , $1 \mathrm{H}, \mathrm{H}-7), 2.66\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ б 167.1, 143.5, 140.7, 137.0, 134.0, 131.4, 130.0, 129.3, 128.9, 128.1, 126.5, 125.0, 121.0, 119.7, 109.3, 28.1, 15.5; MS m/z $250.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ : C, 81.90; H, 6.06; N, 5.62. Found: C, 81.79; H, 5.81; N, 5.63\%. Further elution with 20$30 \%$ EtOAc/pet. ether gave E-S218 (284 mg, 76\%) as a yellow-orange solid: mp 99-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right]$ б $10.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.61(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.50-7.54(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$, H-2', H-6'), 7.44 (dd, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '$ ), 7.32 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 7.22 (ddd, J = 7.7, $7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.82-6.88$ (m, 2H, H-5, H-7), 2.68 (q, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), $1.22\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 168.6,144.2,142.9,136.0,134.4$, 130.1, 129.3, 128.7, 128.6, 127.5, 126.6, 122.3, 121.0, 120.9, 110.1, 28.0, 15.4; MS m/z $250.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 81.90 ; \mathrm{H}, 6.06$; N, 5.62. Found: C, 81.95; H, 5.95; N, 5.62\%.

SN37993 6-((4-Methoxy-3-methylbenzyl)amino)indolin-2-one (S219).
6-Aminoindolin-2-one (S219a). 2,3-Dinitrophenyl acetic acid ( $5.09 \mathrm{~g}, 22.49 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}\left(509 \mathrm{mg}, 10 \% \mathrm{wt}\right.$. of nitro) were stirred in $\mathrm{AcOH}(20 \mathrm{~mL})$ at r.t. under $\mathrm{H}_{2}(40$ psi) overnight ( 26 h ). The catalyst was removed by filtration over diatomaceous earth, washed with EtOAc and concentrated to a dark green-brownish gum. The residue was triturated in EtOAc to obtain amine S219a (2.69, 81\%) as a dark grey solid: mp 197-200 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3 $\left.)_{2} \mathrm{SO}\right] \delta 10.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.78-6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 6.09-6.12(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4, \mathrm{H}-5), 5.00$ (s, 2H, NH2), 3.23 (s, 2H, CH2); MS m/z 149.2 ( $\mathrm{MH}^{+}, 100 \%$ ).


6-((4-Methoxy-3-methylbenzyl)amino)indolin-2-one (S219). Prepared using Method $P$ from 6-aminooxindole S219a and 3-methyl-p-anisaldehyde. The crude residue was purified by column chromatography, eluting in $40-70 \%$ EtOAc/pet. ether, to give the amine S219 (127 mg, 31\%) as a yellow solid: mp 163-166 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ 10.06 (s, 1H, NH), 7.09-7.11 (m, 2H, H-2', H-6'), 6.82-6.86 (m, 2H, H-4, H-5'), 6.09-6.13 (m, 3H, H-5, H-7, NH), 4.11 (d, J = $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2}$ ), 3.74 (s, 3H, OMe), 3.23 (s, 2H, $\mathrm{CH}_{2}$ ), 2.12 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 177.2,156.1,148.7,144.3,131.5,129.3$, 125.6, 125.2, 124.5, 112.1, 110.0, 105.0, 94.5, 55.2, 46.1, 35.1, 16.1; MS m/z $283.2\left(\mathrm{MH}^{+}\right.$, $100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 72.32; H, 6.43; N, 9.92. Found: C, 72.04; H, 6.71; N, 9.98\%.

SN37994 3-(1-Methylpiperidin-4-ylidene)indolin-2-one (S220).


3-(1-Methylpiperidin-4-ylidene)indolin-2-one (S220). Prepared using Method N from oxindole and $N$-methyl-piperidine. The crude material was purified by column chromatography, eluting with 6-10\% MeOH/DCM, to give S220 ( $37 \mathrm{mg}, 22 \%$ ) as a yellow solid: mp 161-164 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.45$ (s, 1H, NH), 7.61 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7$ ), 7.16 (ddd, $J=7.7,7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.92$ (ddd, $J=7.7,7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.80 (dd, $\left.J=7.7,7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-2\right)^{\prime}\right), 2.92(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{2}-6{ }^{\prime}$ ), 2.53 (t obscured, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-5{ }^{\prime}$ ), $2.45\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime}\right), 2.21$ (s, $3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ 168.8, 157.0, 140.6, 127.9, 123.7, 123.1, 120.9 (2), 109.2, 55.7, 55.4, 45.4, 31.3, 28.2; MS m/z $229.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+}$ 229.1334 (calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}, 229.1335$ ).

SN38047 (Z)-3-(3-Methyl-4-(2-(piperidin-1-yl)ethoxy)benzylidene)indolin-2-one (S221).


S221a


3-Methyl-4-(2-(piperidin-1-yl)ethoxy)benzaldehyde (S221a). Prepared using Method E from 4-hydroxy-3-methylbenzaldehyde and 1-(2-chloroethyl)piperidine hydrochloride to give aldehyde S221a (183 mg, quant.) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.85$ (s, 1H, CHO), $7.68-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}$ ), $2.84\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.53-2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-2^{\prime}, \mathrm{CH}_{2}-6\right.$ ), $2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.58-$ 1.64 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}, \mathrm{CH}_{2}-5^{\prime}$ ), 1.42-1.48 (m, 2H, CH2-4'); MS m/z 248.2 ( $\mathrm{MH}^{+}, 100 \%$ ).
(Z)-3-(3-Methyl-4-(2-(piperidin-1-yl)ethoxy)benzylidene)indolin-2-one
(S221).
Prepared using Method N from oxindole and aldehyde 221a. The crude material was purified by column chromatography, eluting with $0-10 \% \mathrm{MeOH} / E t O A c$, to give $\mathbf{S 2 2 1}$ (152 $\mathrm{mg}, 69 \%$ ) as a yellow solid: $\mathrm{mp} 170-172{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 8.39 (d, J = 8.7, 2.0 Hz, 1H, H-6'), 8.30 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '$ ), 7.69 (s, 1H, =CH), 7.65 (d, J = 7.6 Hz, 1H, H-4), 7.17 (ddd, J = 7.6, 7.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.05 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$, H-5'), 6.97 (ddd, $J=7.6,7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.81$ (d, J = 7.6 Hz, 1H, H-7), 4.17 (t, J =
$5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 2.71 (t, J = $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.45-2.48 (m, 4H, CH2-2", CH2-6"), 2.18 (s, 3H, Me), 1.47-1.53 (m, 4H, CH2-3", CH2-5"), 1.36-1.40 (m, 2H, CH2-4"); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2}\right)_{2}$ ] $\delta 167.3,158.8,140.2,137.1,134.8,132.4,128.1,126.5,125.4,125.3$, 123.7, 120.8, 119.1, 110.9, 109.1, 66.3, 57.3, 54.4 (2), 25.7 (2), 23.9, 16.1; MS m/z 363.2 $\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[\mathrm{M}+\mathrm{H}]^{+} 363.2071$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}, 363.2067$ ).

SN38048 (Z)-3-(3-Methyl-4-(2-(pyrrolidin-1-yl)ethoxy)benzylidene)indolin-2-one (S222).


3-Methyl-4-(2-(pyrrolidin-1-yl)ethoxy)benzaldehyde (S222a). Prepared using Method E from 4-hydroxy-3-methylbenzaldehyde and 1-(2-chloroethyl)pyrrolidine to give aldehyde S222a (178 mg, quant) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.85$ (s, 1H, CHO), 7.687.71 (m, 2H, H-2, H-6), $6.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.21\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.97(\mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.64-2.69 (m, 4H, CH2-2', $\left.\mathrm{CH}_{2}-5^{\prime}\right)$, 2.27 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$ ), 1.80-1.83 (m, 4H, $\mathrm{CH}_{2}-3$ ', $\mathrm{CH}_{2}-4$ ').
(Z)-3-(3-Methyl-4-(2-(pyrrolidin-1-yl)ethoxy)benzylidene)indolin-2-one (S222). Prepared using Method N from oxindole and aldehyde S222a. The crude material was purified by column chromatography, eluting with $5-10 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give $\mathbf{S 2 2 2}$ (28 $\mathrm{mg}, 13 \%$ ) as a yellow solid: mp 168-171 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD2)2SO] $\delta 10.53$ (s, 1H, NH), 8.39 (dd, $\left.J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 8.30(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.70(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.66$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.16 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.05 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, H-5'), 6.97 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.81$ (d, J = 7.6 Hz, 1H, H-7), 4.18 (t, J = $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 2.84 (t, J = $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.54-2.57 (m, 4H, CH2-2", CH2-5"), 2.19 (s, 3H, Me), 1.67-1.71 (m, 4H, CH2-3", CH2-4"); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] ס 167.3, 158.7, 140.2, 137.1, 134.8, 132.4, 128.1, 126.5, 125.4, 125.3, 123.7, 120.8, 119.1, 110.8, 109.1, 67.4, 54.2 (3), 23.2 (2), 16.1; MS m/z $349.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+}$ 349.1919 (calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}, 349.1911$ ).

SN38049 tert-Butyl (E)-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)carbamate (S223).

tert-Butyl (2-Oxoindolin-6-yl)carbamate (S223a). Prepared using Method K from oxindole S219a to give carbamate S223a ( $287 \mathrm{mg}, 43 \%$ ) as a pale pink solid: $\mathrm{mp} 214^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 10.29 (s, 1H, NH), 9.30 (s, 1H, NH-Boc), 7.16 (s, 1H, $\mathrm{H}-7$ ), 7.03 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.91 (d, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.36 (s, 2H, CH2), 1.47 (s, 9H, tBu); MS m/z 247.2 ( $\mathrm{M}^{\left.-\mathrm{H}^{-}, 100 \%\right) .}$
tert-Butyl (E)-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)carbamate (S223). Prepared using Method N from oxindole S223a and 3-methyl-p-anisaldehyde. The resulting yellow solid was removed by filtration and washed with $\mathrm{EtOH}(10 \mathrm{~mL})$, then with pet. ether ( 10 mL ). The alkene $\mathbf{S 2 2 3}(311 \mathrm{mg}, 81 \%)$ was obtained as a yellow solid:
mp 232-235 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.47$ (s, 1H, NH), 9.53 (s, 1H, NH-Boc), 7.57 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.49$ (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 ')$, 7.37 (s, 1H, =CH), 7.25 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.07 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.85$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.47(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 169.5,158.4,152.5,143.5,140.9,133.3,131.8,129.0,126.5,126.0,125.2$, 122.5, 115.1, 110.4, 110.3, 99.8, 79.3, 55.5, 28.1 (3), 15.9; MS m/z 381.2 ( $\left.\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 69.46; H, 6.36; N, 7.36. Found: C, 69.58; H, 6.53; N, 7.43\%.

SN38050 (E/Z)-3-(4-Methoxy-3-methylbenzylidene)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one (S224).


3,3-Dibromo-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one (S224a). 7-Azaindole (500 $\mathrm{mg}, 4.23 \mathrm{mmol}$ ) was dissolved in tert-butanol ( 30 mL ). Pyridinium bromide perbromide ( $5.41 \mathrm{~g}, 16.93 \mathrm{mmol}$ ) was added in small portions over 6 h . The resulting mixture was diluted with EtOAc ( 100 mL ), washed with brine ( 100 mL ), dried and concentrated. The residue was triturated in DCM ( 50 mL ) to give the dibromide S224a ( $820 \mathrm{mg}, 66 \%$ ) as a light brown solid: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 11.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.22(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 8.01 (dd, J = 7.6, 1.6 Hz, 1H, H-4), 7.18 (dd, J = 7.6, 5.2 Hz, 1H, H-5); MS m/z 292.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

1,3-Dihydro-2H-pyrrolo[2,3-b]pyridin-2-one (224b). Dibromide S224a (764 mg, 2.75 mmol ) and $10 \% \mathrm{Pd} / \mathrm{C}(76 \mathrm{mg}, 10 \% \mathrm{wt}$. of bromide) were stirred in EtOH ( 30 mL ) under $\mathrm{H}_{2}$ (50 psi) for 7 days. The catalyst was removed by filtration over Celite, washed with EtOAc ( 30 mL ) and concentrated. The crude residue was used in the next step without further purification.
(EIZ)-3-(4-Methoxy-3-methylbenzylidene)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2one (S224). Prepared using Method N from crude residue containing azaoxindole S224b and 3-methyl-p-anisaldehyde. The crude residue was purified by column chromatography, eluting with $1 \% \mathrm{MeOH} / \mathrm{DCM}$, to give a mixture of isomers (E/Z)-S224 ( $50 \mathrm{mg}, 7 \%$ over 2 steps) as a yellow solid: mp 169-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right] \delta E-$ isomer (major) 11.16 (s, 1H, NH), 8.09 (dd, $J=5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.94 (d, $J=7.6,1.3$ Hz, 1H, H-4), 7.68 (s, 1H, =CH), 7.64 (dd, J = $8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 7.56 (d, J = 1.8 Hz , $1 \mathrm{H}, \mathrm{H}-2$ '), 7.12 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '), 6.93$ (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.88 (s, 3H, OMe), 2.21 (s, 3H, Me); Z-isomer (minor) 11.16 (s, 1H, NH), 8.42 (dd, $J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-6'), 8.29 (d, J=2.0 Hz, 1H, H-2'), 8.06 (dd, J = 5. 2, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.99 (dd, J = 7.5, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.79 (s, 1H, =CH), 7.09 (d obscured, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.00 (d, J= $7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.88 (s, 3H, OMe), 2.20 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2}\right)_{2} \mathrm{SO}$ ] (both isomers) 168.5, 166.9, 159.9, 159.2, 156.6, 154.4, 147.5, 146.4, 139.3, 138.3, 134.9, $132.8,132.2,129.6,128.9,126.3$ (2), 126.1, 125.8, 125.4, 123.5, 121.8, 119.9, 117.3, 117.2, 115.6, 110.6, 110.2, 55.6 (2), 16.1, 15.9; MS m/z 267.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)HRESIMS m/z [M+H]+ 267.1129 (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$, 267.1128).

SN38051 (E)-6-Amino-3-(4-methoxy-3-methylbenzylidene)indolin-2-one (S225).

(E)-6-Amino-3-(4-methoxy-3-methylbenzylidene)indolin-2-one (S225). Prepared using Method F from carbamate S223 to give amine S225 (122 mg, quant.) as an orange solid: mp 242-246 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ ס 10.53(s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.56-7.58 (m, 2H, H-4, H-6'), 7.49 (d, J=2.0 Hz, 1H, H-2'), 7.38 (s, 1H, $=\mathrm{CH}$ ), 7.08 (d, J=8.5 Hz, 1H, H-5'), 6.55 (s, 1H, H-7), 6.49 (d, J = 7.6 Hz, 1H, H-5), 3.87 (s, 3H, OMe), 2.20 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta 169.1,158.8,143.7,136.0,132.0,129.3,126.1$ (2), 124.5, 122.9, 119.0, 114.1, 110.5, 103.5, 55.5, 15.9, (1 signal not observed); MS m/z 281.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 281.1283$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}, 281.1285$ ).

SN38052 tert-Butyl (E)-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)(methyl)carbamate (S226).

tert-Butyl
(E)-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)(methyl)carbamate (S226). Prepared using Method E from methyl iodide and carbamate S223. The crude residue was purified by column chromatography, eluting in DCM, to give S226 ( $246 \mathrm{mg}, 92 \%$ ) as a yellow solid: mp 171-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.58-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.09 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H, OMe), 3.16 (s, 3H, NMe), 2.20 (s, 3H, Me), 1.48 (s, 9H, tBu); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ ס 168.1, 158.5, 152.6, 144.6, 141.1, 134.0, 131.9, 129.1, 126.3, 126.0, 124.1, 122.3, 114.4, 110.7, 110.4, 98.5, 79.4, 55.5, 28.1 (3), 25.8, 15.9; MS m/z $395.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 70.03; H, 6.64; N, 7.10. Found: C, 69.96; H, 6.69; N, 7.04\%.

SN38053 (E)-3-(2-Methoxybenzylidene)indolin-2-one (S227).

(E)-3-(2-Methoxybenzylidene)indolin-2-one (S227). Prepared using Method N from oxindole and $o$-anisaldehyde. The crude material was purified by column chromatography, eluting with $30-60 \%$ EtOAc/pet. ether, to give $\mathbf{S 2 2 7}$ ( $174 \mathrm{mg}, 92 \%$ ) as a yellow solid: mp 171-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.57$ (s, 1H, NH), 7.68 (dd, J = $\left.7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.47-7.51$ (m, 1H, H-4'), $7.40(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4)$ ) 7.21 (ddd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.17 (d, J = $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.08$ (dd, J = 7.5, $\left.7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.81-6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ;{ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ б 168.6, 157.6, 142.7, 131.7 (2), 129.9, 129.5, 127.3, 122.8, 122.2, 121.1, 121.0, 120.2, 111.6, 110.0, 55.6; MS m/z 252.2 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ : C, $76.48 ; \mathrm{H}$, 5.21; N, 5.57. Found: C, 76.63; H, 5.11; N, 5.57\%.

SN38054 (E/Z)-4-((2-Oxoindolin-3-ylidene)methyl)benzonitrile (S228).

(E/Z)-4-((2-Oxoindolin-3-ylidene)methyl)benzonitrile (S228). Prepared using Method N from oxindole and 4-cyanobenzaldehyde. The crude material was purified by column chromatography, eluting with 30-60\% EtOAc/pet. ether, to give (E/Z)-S228 (126 mg, $68 \%$ ) as an orange solid: mp $232-234{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.68 (s, 1H, NH), 7.98 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ', \mathrm{H}^{\prime} 5$ '), 7.87 (d, J = 8.2 Hz, 2H, H-2', H-6'), 7.63 (s, 1H, =CH), 7.38 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.25 (ddd, $J=7.7,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.88$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.84 (ddd, $J=7.7,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 168.2, 143.4, 139.5, 133.4, 132.6 (2), 130.9, 130.0 (2), 129.6, 122.7, 121.3, 120.3, 118.6, 111.6, 110.3; MS m/z $247.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)$-HRESIMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$ 247.0867 (calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}, 247.0866$ ).

SN38055 (E/Z)-3-(4-Methoxy-3-(trifluoromethyl)benzylidene)indolin-2-one (S229).


4-Methoxy-3-(trifluoromethyl)benzaldehyde (S229a). Prepared using Method E from methyl iodide and 3-trifluoromethyl-4-hydroxybenzaldehyde to give aldehyde S229a (146 $\mathrm{mg}, 90 \%$ ) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.93$ (s, 1H, CHO), 8.12 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 8.06 (dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.14$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 4.01 (s, 3H, OMe).
(E/Z)-3-(4-Methoxy-3-(trifluoromethyl)benzylidene)indolin-2-one (S229). Prepared using Method N from oxindole and aldehyde S229a. The crude material was purified by column chromatography, eluting with 20-50\% EtOAc/pet. ether, to give (E/Z)-S229 (178 $\mathrm{mg}, 89 \%$ ) as a yellow solid: $\mathrm{mp} 212-214{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.61 (s, 1H, NH), 8.04 (d, J = 8.2, 1.9 Hz, 1H, H-6'), 7.97 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 7.62 (s, 1H, =CH), 7.50 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.43 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{S}^{\prime}$ ), $7.22-7.26$ (m, 1H, H-6), 6.82-6.90 (m, 2H, H-5, H-7), 3.98 (s, 3H, OMe); Z-isomer (minor) 10.61 (s, 1H, NH), 9.01 (d, J=2.0 Hz, 1H, H-2'), 8.63 (dd, J= $\left.8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.85$ (s, 1H, =CH), 7.69 (d, J = 7.5 Hz, 1H, H-4), 7.38 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), $7.19-7.23$ (m, 1H, H-6), 6.99 (ddd, J=7.5, $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.82-6.90 (m, 1H, H-7), 3.97 (s, 3H, OMe); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta$ (both isomers) 168.6, 167.3, 158.3 (d, $J=1.1 \mathrm{~Hz}$ ), $157.8(\mathrm{~d}, J=1.1 \mathrm{~Hz})$, 143.0, 140.6, 138.4, 135.4, 135.2, 134.3, 130.7 (q, $J=5.4 \mathrm{~Hz}$ ), 130.2, 128.8, 128.3 (q, J $=5.1 \mathrm{~Hz}), 127.2,126.5,126.4,125.7,124.9,123.6(\mathrm{q}, J=271.6 \mathrm{~Hz}), 123.4(\mathrm{q}, J=278.8$ $\mathrm{Hz}), 121.9,121.1,121.1,120.8,119.6,117.1(\mathrm{q}, J=30.5 \mathrm{~Hz}), 116.7(\mathrm{q}, J=30.6 \mathrm{~Hz})$, 113.3, 112.7, 110.2, 109.4, 56.5 (2); MS m/z 320.1 ( $\mathrm{MH}^{+}, 100 \%$ ). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$ : C, 63.95; H, 3.79; N, 4.39. Found: C, 63.96; H, 3.85; N, 4.41\%.

SN38056 (Z)-3-(3-Chloro-4-methoxybenzylidene)indolin-2-one (S230).



3-Chloro-4-methoxybenzaldehyde (S230a). Prepared using Method E from methyl iodide and 3-chloro-4-hydroxybenzaldehyde to give aldehyde S230a (178 mg, quant.) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.92(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.78$ (dd, J=8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.05$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 4.00 (s, 3H, OMe).
(Z)-3-(3-Chloro-4-methoxybenzylidene)indolin-2-one (S230). Prepared using Method N from oxindole and aldehyde S230a. The crude material was purified by column chromatography, eluting with 20-60\% EtOAc/pet. ether, to give $\mathbf{S 2 3 0}$ ( $207 \mathrm{mg}, 78 \%$ ) as an orange solid: mp $242-245{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.88(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 8.29$ (dd, $J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '$ ), 7.75 (s, 1H, =CH), 7.67 (d, J = 7.6 Hz, 1H, H-4), 7.27 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.20 (ddd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.99 (ddd, J=7.6, 7.6, 1.0 Hz, 1H, H-5), 6.82 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 3.94 (s, 3H, OMe); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.)_{2}\right)_{2} \mathrm{SO} \delta 167.3,156.1,140.5,135.3,133.4,133.1,128.7,127.8,125.4,125.0$, 121.0, 120.7, 119.5, 112.3, 109.3, 56.4; MS m/z $286.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{CINO}_{2}$ : C, 67.26; H, 4.23; N, 4.90. Found: C, 67.10; H, 4.17; N, 4.92\%.

SN38078 (Z)-3-(4-(Methylamino)benzylidene)indolin-2-one (S231).


## tert-Butyl (Z)-(4-((2-Oxoindolin-3-ylidene)methyl)phenyl)carbamate (S231a).

 Prepared using Method K from amine $\mathbf{S 1 7 1}$. The crude residue was purified by column chromatography, eluting in 30-80\% EtOAc/pet. ether, to give carbamate S231a (133 mg, $47 \%$ ) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.56$ (s, 1H, NH), 9.69 (s, 1H, NH-Boc), 8.39 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 7.70 (s, 1H, $=\mathrm{CH}$ ), 7.66 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.55 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 ', H-5 '), 7.18$ (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 6.97 (ddd, $J=7.6$, $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.81$ (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 1.50 (s, 9H, tBu).tert-Butyl (E/Z)-(4-((1-Methyl-2-oxoindolin-3-ylidene)methyl)phenyl)carbamate (S231b). Prepared using Method E from methyl iodide and carbamate S231a. The crude residue was purified by column chromatography, eluting in 20-30\% EtOAc/pet. ether, to give methylamine ( $E / Z$ )-S231b (93 mg, 86\%) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR [(CD3 $)_{2} \mathrm{SO}$ ] $\delta E-$ isomer (major) 9.72 (s, 1H, NHCO2), 7.60-7.73 (m, 6H, H-4, = CH, H-2', H-3', H-5', H-6'), 7.31 (ddd obscured, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $7.03-7.07$ (m, 1H, H-7), 6.94-7.00 (m, 1H, H5), 3.21 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$ ), 1.50 ( $\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}$ ); Z-isomer (minor) 9.72 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}_{2}$ ), 8.42 (d, J $=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 7.77 (s, 1H, =CH), 7.60-7.73 (m, 1H, H-4), 7.56 (d, J = 8.9 Hz , 2H, H-3', H-5'), 7.26-7.30 (m, 1H, H-6), 7.03-7.07 (m, 1H, H-5), 6.94-7.00 (m, 1H, H-7), 3.22 (s, 3H, NMe), 1.50 (s, 9H, tBu); MS m/z 351.2 ( $\mathrm{MH}^{+}, 100 \%$ ).
(Z)-3-(4-Aminobenzylidene)-1-methylindolin-2-one (S231). Prepared using Method F from carbamate S231b to give amine S231 ( $35 \mathrm{mg}, 58 \%$ ) was obtained as a brown solid: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] ס 8.36 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), 7.64-7.66 (m, 2H, H-4, =CH), 7.21 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.01 (ddd, $J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 6.96 (d, J = 7.6 Hz, 1H, H-7), 6.68 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ ', H-5'), 3.22 (s, $3 \mathrm{H}, \mathrm{NMe}$ ); MS m/z
$251.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+} 251.1158$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$, 251.1179).

SN38079 (Z)-3-(4-Methoxy-3-nitrobenzylidene)indolin-2-one (S232).


4-Methoxy-3-nitrobenzaldehyde (S232a). Prepared using Method E from methyl iodide and 4-hydroxy-3-nitrobenzaldehyde to give aldehyde S232a ( $146 \mathrm{mg}, 90 \%$ ) was obtained as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (d, J = 8.7, 2.1 Hz, 1H), $7.24(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-3-(4-Methoxy-3-nitrobenzylidene)indolin-2-one (S232). Prepared using Method N from oxindole and aldehyde S232a. The crude material was purified by column chromatography, eluting with 30-40\% EtOAc/pet. ether, to give Z-S232 (174 mg, 77\%) as a yellow solid: $m p 251-254{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 10.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.24$ (d, $\mathrm{J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 8.60 (dd, J = 9.0, 2.2 Hz, 1H, H-6'), 7.85 (s, 1H, =CH), 7.69 (d, J = 7.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.49$ (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.22 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H, H-6), 7.01 (ddd, J=7.5, 1.0 Hz, 1H, H-5), 6.84 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 4.01 (s, 3H, OMe); ${ }^{13} \mathrm{C}$ NMR [(CD3 $\left.)_{2} S O\right] \delta 167.2,153.2,140.8,138.7,138.4,134.1,129.1,128.1,126.7,126.6,124.7$, 121.2, 119.8, 114.1, 109.5, 57.0; MS m/z $297.1\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 64.86; H, 4.08; N, 9.46. Found: C, 64.84; H, 3.95; N, 9.50\%.

SN38082 (E)-3-(3-Methoxy-2-methylbenzylidene)indolin-2-one (S233).



3-Methoxy-2-methylbenzaldehyde (S233a). Prepared using Method E from methyl iodide and 3-hydroxy-3-methyl benzaldehyde to give aldehyde S233a (158 mg, 95\%) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.33$ (s, 1H, CHO), 7.43 (dd, J = 8.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 7.31$ (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.08$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.88$ (s, 3H, OMe), 2.54 (s, 3H, Me); MS m/z $151.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
(E)-3-(3-Methoxy-2-methylbenzylidene)indolin-2-one (S233). Prepared using Method N from oxindole and aldehyde S233a. The crude material was purified by column chromatography, eluting with 20-30\% EtOAc/pet. ether, to give S234 (157 mg, 79\%) as a yellow solid: mp $192-194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.66$ (s, 1H, $=\mathrm{CH}$ ), 7.29 (dd, J = 7.9, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.19 (ddd, J=7.7, 7.7, 1.1 Hz, 1H, H-6), 7.017.10 (m, 3H, H-4, H-4', H-6'), 6.85 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.77 (ddd, J = 7.7, 7.7, 1.1 Hz , 1H, H-5), 3.85 (s, 3H, OMe), 2.12 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right] \delta 168.2,157.5,142.8$, 135.0, 134.7, 130.0, 128.7, 126.7, 124.4, 122.6, 121.1 (2), 120.2, 111.2, 110.0, 55.5, 12.4; MS m/z 266.2 ( $\mathrm{MH}^{+}, 100 \%$ ); (+)-HRESIMS $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 266.1176$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}$, 266.1176).

SN38146 (E/Z)-6-Amino-3-(4-methoxy-3-methylbenzylidene)-1-methylindolin-2-one (S234).

(E/Z)-6-Amino-3-(4-methoxy-3-methylbenzylidene)-1-methylindolin-2-one (S234). Prepared using Method F from carbamate S226 to give amine (E/Z)-S234 (28 mg, 37\%) as an orange solid: $\mathrm{mp} 180-182{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta \mathrm{E}$-isomer (major) 7.53 (dd, $J$ $\left.=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}^{\prime}\right), 7.44\left(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.40(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.20$ (s, 1H, =CH), 7.05 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 6.19 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 6.10 (dd, J = $8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 5.67 (br s, 2H, NH2), 3.85 (s, 3H, OMe), 3.11 (s, 3H, NMe), 2.19 (s, 3H, Me); Z-isomer (minor) 8.19-8.22 (m, 2H, H-2', H-6'), 7.32 (d, J = 8.1 Hz, 1H, H-4), 7.29 (s, 1H, =CH), 6.99 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.22$ (dd, $\left.J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.16$ (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 5.47 (br s, 2H, NH2), 3.85 (s obscured, 3H, OMe), 3.12 (s obscured, $3 \mathrm{H}, \mathrm{NMe}$ ), 2.17 (s, 3H, Me); ${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 168.7, $157.9,150.9,145.5,131.6,129.1,128.5,127.1,125.8,124.9,123.2,110.3,108.3,106.3$, 94.4, 55.4, 25.7, 16.0; MS m/z $295.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ : $\mathrm{C}, 73.45$; H, 6.16; N, 9.52. Found: C, 73.49; H, 6.40; N, 9.40\%.

SN38147 (E)-3-(3-(4-Methoxy-3-methylphenyl)propylidene)indolin-2-one (S235).


Methyl (E)-3-(4-Methoxy-3-methylphenyl)acrylate (S235a). 3-Methyl-p-anisaldehyde ( $500 \mathrm{mg}, 3.33 \mathrm{mmol}$ ) and carbomethoxymethylene triphenyl phosphorane ( $1.22 \mathrm{~g}, 3.66$ $\mathrm{mmol})$ were stirred in toluene ( 10 mL ) at $120{ }^{\circ} \mathrm{C}$ for 4 h . A second equivalent of carbomethoxymethylene triphenyl phosphorane ( $1.22 \mathrm{~g}, 3.66 \mathrm{mmol}$ ) was added and the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for another 4 h . Once cooled, the reaction mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$, washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, then brine $(50 \mathrm{~mL})$, dried and concentrated in vacuo. The crude residue was purified by column chromatography, eluting with $5-10 \% \mathrm{EtOAc} / \mathrm{pet}$. ether, to give acrylate S235a ( 703 mg , quant.) as a white solid: $\mathrm{mp} 75-77{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.63$ (d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHAr}\right), 7.33-$ 7.35 (m, 2H, H-2, H-6), 6.81-6.83 (m, 1H, H-5), 6.30 (d, J = 16.0 Hz, 1H, COCH=), 3.86 (s, 3H, OMe-4), 3.79 (s, 3H, OMe), 2.22 (s, 3H, Me); MS m/z 207.2 (MH ${ }^{+}, 100 \%$ ).

Methyl 3-(4-Methoxy-3-methylphenyl)propanoate (S235b). Prepared using Method M from alkene S235a to give ester S235b ( $384 \mathrm{mg}, 68 \%$ ) as a white solid: $\mathrm{mp} 40-41^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ס 6.97-6.99 (m, 2H, H-2, H-6), 6.74 (d, J = $7.88 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.80 (s, 3H, OMe-4), 3.67 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), $2.86\left(\mathrm{t}, \mathrm{J}=7.84 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57-2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.19(\mathrm{~s}$, 3H, Me); MS m/z 209.2 ( $\mathrm{MH}^{+}, 100 \%$ ).

3-(4-Methoxy-3-methylphenyl)propan-1-ol (S235c). $\mathrm{NaBH}_{4}$ ( $38 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) was added to asolution of ester $\mathbf{S 2 3 5 b}$ ( $209 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 7 h . Additional $\mathrm{NaBH}_{4}(387 \mathrm{mg}, 10.2 \mathrm{mmol})$ was added portionwise
over 2 days. The resulting mixture was diluted with EtOAc ( 50 mL ), washed with water $(50 \mathrm{~mL})$ and brine ( 50 mL ). The organic layer was dried and concentrated in vacuo. The crude residue was purified over column chromatography, eluting with $30 \%$ EtOAc/pet.ether, to give alcohol S235c (121 mg, 67\%) as a white solid: mp $46-48{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.97-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 6.74-6.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.67$ (td, $J=6.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$ ), $2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.83-1.90(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $1.22(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$.

3-(4-Methoxy-3-methylphenyl)propanal (S235d). IBX ( $466 \mathrm{mg}, 1.66 \mathrm{mmol}$ ) was added to a solution of alcohol $\mathbf{S 2 3 5 c}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ in DMSO $(1.6 \mathrm{~mL})$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 1.5 h . The resulting mixture was diluted with water ( 20 mL ) and the precipitate removed by filtration. The solid was washed with DCM ( 20 mL ) and the filtrate was partitioned. The organic layer was collected, dried and concentrated in vacuo. Solvent was removed to obtain aldehyde S235d ( $81 \mathrm{mg}, 82 \%$ ) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.81$ (t, J = $1.50 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$ ), 6.96-6.99 (m, 2H, H-2, H-6), 6.75 (d, J = 7.9 Hz , $1 \mathrm{H}, \mathrm{H}-5$ ), 3.80 (s, 3H, OMe), 2.88 (m, 2H, CH2), 2.72-2.76 (m, 2H, CH2CO), 2.19 (s, 3H, Me ).
(E)-3-(3-(4-Methoxy-3-methylphenyl)propylidene)indolin-2-one (S235). Prepared using Method N from oxindole and aldehyde S235d. The crude material was purified by column chromatography, eluting with 5\% EtOAc/DCM, to give S235 (37 mg, 28\%) as a yellow solid: mp $132-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2} \mathrm{SO}\right] \delta 10.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.55(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.21$ (ddd, J=7.6, 7.6, 1.0 Hz, 1H, H-6), 7.06-7.07 (m, 2H, H-2', H-6'), 6.97 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H, H-5), 6.82-6.85 (m, 2H, H-7, H-5'), 6.76 (t, J = 7.3 Hz, 1H, $=\mathrm{CH}$ ), 3.74 (s, 3H, OMe), 2.93 (m, 2H, CHCH2), $2.80\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, Me); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right]$ 167.9, 155.7, 142.1, 140.0, 132.2, 130.5, 129.0, 128.2, 126.6, $125.3,123.6,122.0,121.4,110.2,109.7,55.1,32.9,30.3,16.0 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 294.2\left(\mathrm{MH}^{+}\right.$, 100\%); (+)-HRESIMS $m / z[M+H]^{+} 294.1497$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}, 294.1489$ ).

SN38211 (E/Z)-N-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)pivalamide (S236).

$\mathbf{N}$-(2-Oxoindolin-6-yl)pivalamide (236a). Aminooxindole S219a (200 mg, 1.35 mmol ) and TEA ( $374 \mu \mathrm{~L}, 2.70 \mathrm{mmol}$ ) were stirred in DCM ( 5 mL ). Trimethylacetyl chloride (166 $\mu \mathrm{L}, 1.35 \mathrm{mmol}$ ) was added and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$. for 3 h . A pale purple solid appeared in the solution, which was removed by filtration and washed with DCM to give amide S236a ( $220 \mathrm{mg}, 70 \%$ ) as a pale purple solid: mp $261-264{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR [(CD $\left.)_{2}\right)_{2} \mathrm{SO}$ ] 10.37 (s, 1H, NH-1), 9.12 (s, 1H, NH-6), 7.32 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.13 (dd, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.08$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $3.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.20$ (s, 9H, tBu); MS m/z $233.2\left(\mathrm{MH}^{+}, 100 \%\right)$.
(E/Z)-N-(3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)pivalamide (S236). Prepared using Method N from oxindole S236a and 3-methyl- $p$-anisaldehyde. The crude
material was purified by column chromatography, eluting with 30-40\% EtOAc/pet. ether, to give (E/Z)-S236 (208 mg, 83\%) as a yellow solid: mp 136-139 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta E$-isomer (major) 10.56 (s, 1H, NH-1), 9.27 (s, 1H, NH-6), 7.56-7.61 (m, 2H, H-4, H-6'), 7.51 (m, 1H, H-2'), 7.44 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), $7.40(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $5, \mathrm{H}-5$ '), 3.87 (s, 3H, OMe), 2.20 (s, 3H, Me), 1.22 (s, 9H, tBu); Z-isomer (minor) 10.56 (s, 1H, NH-1), 9.21 (s, 1H, NH-6), 8.35 (dd, J = 8.6, 2.1 Hz, 1H, H-6'), 8.25 (d, J = 2.1 Hz , 1H, H-2'), 7.56-7.61 (m, 1H, H-4), 7.54 (s, 1H, =CH), 7.36 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.21 (dd, J = 8.3, 1.8 Hz, 1H, H-5), 7.04 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 3.87 (s, 3H, OMe), 2.18 (s, $3 \mathrm{H}, \mathrm{Me}), 1.22$ (s, $9 \mathrm{H}, t \mathrm{Bu}$ ); ${ }^{13} \mathrm{C}$ NMR [( $\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$ (both isomers) 176.6, 176.4, 169.5, $167.8,159.1,158.5,143.2,140.7,140.4,139.6,135.3,134.4,133.8,132.1,131.9,129.0$, $126.8,126.4,126.0,125.2,125.1,123.8,122.2,120.4,119.2,116.1,112.5,112.2,110.5$, 110.0, 101.9, 101.4, 55.5, 27.2 (3), 27.1 (3), 16.1, 15.9, 2 signals obscured by DMSO peaks); MS m/z 365.2 ( $\mathrm{MH}^{+}$, 100\%); (+)-HRESIMS m/z [M+H]+ 365.1861 (calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}, 365.1860$ ).

SN38212 (E/Z)-2-Methoxy-N-(3-(4-methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)acetamide (S237).


2-Methoxy-N-(2-oxoindolin-6-yl)acetamide (S237a). Oxalyl chloride ( $282 \mu \mathrm{~L}, 3.33$ mmol ) was added to a solution of methoxy acetic acid ( $170 \mu \mathrm{~L}, 2.22 \mathrm{mmol}$ ) and DMF ( 1 drop) in DCM ( 5 mL ) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $20^{\circ}$ for 19 h . The solvent was evaporated to give a yellow oil. The acid chloride was diluted in DCM (1 mL) and was added to a stirred suspension of aminooxindole S219a ( $100 \mathrm{mg}, 0.67 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(470 \mu \mathrm{~L}, 3.37 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h , then diluted with water ( 20 mL ) and extracted with DCM ( 50 mL ). The organic layer was washed with brine ( 20 mL ), dried and concentrated in vacuo. The crude mixture was purified by column chromatography, eluting with EtOAc, to give amide S237a ( 65 mg , $44 \%$ ) as an orange solid: mp 202-204 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.28$ (br s, 1H), 7.70 (br s, 1H), 7.58 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H})$, 3.51 (s, 3H), 3.49 (s, 2H); MS m/z 221.2 ( $\mathrm{MH}^{+}$, 100\%).
(E/Z)-2-Methoxy-N-(3-(4-methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)acetamide (S237). Prepared using Method N from amido-oxindole S237a and 3-methyl-p-anisaldehyde. The crude residue was purified by column chromatography, eluting with $75 \% \mathrm{EtOAc} / \mathrm{pet}$. ether. Solvent was removed and the residue was triturated with EtOAc/pet. ether to give alkene ( $E / Z$ )-S237 ( $66 \mathrm{mg}, 83 \%$ ) as a yellow solid: mp 132$135^{\circ} \mathrm{C}, \mathrm{H}-6^{\prime}$ ), $7.50-7.51$ (m, 2H, H-7, H-2'), 7.42 (s obscured, $1 \mathrm{H},=\mathrm{CH}$ ), 7.02-7.09 (m, $2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-5$ ) , 4.00 (s, 2H, CH2), 3.87 (s, 3H, OMe-4'), 3.36 (s, 3H, CH2OMe), 2.20 (s, 3H, Me-3'); ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta \mathrm{Z}$ isomer (minor) 10.55 (s, 1H, NH-1), 9.80 (s, 1H, NH6 ), 8.35 , (dd, $J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '), 8.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 '), 7.55-7.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4,=\mathrm{CH}$ ), $7.42-7.44$ (m, 1H, H-7), 7.17 (dd, J= $8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), $7.02-7.09$ (m, 1H, H-5'), 4.00 (s, 2H, CH2), 3.86 (s, 3H, OMe-4'), 3.37 (s, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OMe}$ ), 2.18 (s, 3H, Me-3');
${ }^{13} \mathrm{C}$ NMR [(CD3)2SO] $\delta$ (both isomers) 169.4, 168.2, 168.0, 167.7, 159.2, 158.5, 143.3, 140.6, 139.7, 138.6, 135.5, 134.5, 134.2, 132.1, 131.9, 129.0, 126.7, 126.4, 126.0, 125.1 (2), 123.7, 122.4, 120.8, 119.4, 116.5, 112.1, 111.8, 110.4, 110.0, 101.4, 100.9, 71.7 (2), 58.6 (2), 55.5 (2), 16.1, 15.9; MS m/z $353.2\left(\mathrm{MH}^{+}, 100 \%\right) ;(+)-H R E S I M S ~ m / z[M+H]^{+}$ 353.1500 (calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}, 353.1496$ ).

SN38303 Benzyl (E/Z)-(3-(4-methoxy-3-methylbenzylidene)-2-oxoindolin-6yl)carbamate (S238).


Benzyl (2-oxoindolin-6-yl)carbamate (S238a). Benzyl chloroformate (90 $\mu \mathrm{L}, 0.63$ mmol ) was added dropwise to a solution of aminooxindole S219a ( $85 \mathrm{mg}, 0.57 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(160 \mu \mathrm{~L}, 1.15 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The solution was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was diluted with EtOAc $(20 \mathrm{~mL})$, washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried and concentrated in vacuo. The crude residue was purified by column chromatography, eluting with $50 \%$ EtOAc/pet. ether, to give oxindole S238a ( $58 \mathrm{mg}, 36 \%$ ) as a pale purple solid: mp 188 $190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.42$ (m, 6H, H-7, H-2', H-3', H-4', H-5', H-6'), 7.30 (br s, 1H, NH), 7.10 (d, J=8.0 Hz, 1H, H-4), 6.73 (dd, J = 8.0, 2.0 Hz, 1H, H-5), 6.68 (br s, 1H, NH), 5.20 (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), $3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 283.1\left(\mathrm{MH}^{+}, 100 \%\right)$.

## Benzyl (E/Z)-(3-(4-methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)carbamate

 (S238). Prepared using Method $N$ from oxindole 238a and 3-methyl-p-anisaldehyde. The resulting residue was purified by column chromatography, eluting with $40 \% \mathrm{EtOAc} / \mathrm{pet}$. ether to obtain ( $E / Z$ )-S238 (75 mg, quant.) as a yellow solid: mp 200-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta$ E-isomer (major) 7.68 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 7.66 (s, 1H, =CH), 7.48-7.54 (m, 3H, H2", H-6", NH-1), 7.33-7.43 (m, 5H, H-2', H-3', H-4', H-5', H-6'), 7.31 (br s, 1H, H-7), 6.89 (d, J=8.5 Hz, 1H, H-5'), 6.76 (m, 1H, NH-6), 6.62 (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.21$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), $3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 2.26 (s, 3H, Me); Z-isomer (minor) 8.32 (dd, J = 8.5, 2.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 8.06$ (d, J = 2.0 Hz, 1H, H-2"), 7.48-7.54 (m, 1H, $=\mathrm{CH}$ ), 7.33-7.43 (m, 6H, H-4, H-2', H-3', H-4', H-5', H-6'), 6.89 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ "), 6.76-6.78 (m, 2H, H-5, H7), $5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, exchangeable protons were not observed; ${ }^{13} \mathrm{C}$ NMR $\delta$ (both isomers) 170.6, 168.3, 160.1, 159.3, 153.2 (2), 142.4, $140.0,139.0,138.1,137.1,136.7,136.1,136.0,135.2,132.4,132.2,129.2,128.9$ (2), 128.7 (3), 128.6 (4), 127.2, 127.1, 126.8, 126.7, 124.8, 123.5, 123.0, 121.5, 119.5, 117.7, 111.4, 110.0, 109.8, 100.7, 100.5, 67.5, 67.4, 55.7 (2), 16.4, 14.4, 2 signals not observed; MS m/z $413.2\left(\mathrm{MH}^{+}, 100 \%\right)$. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 72.45; H, 5.35; N, 6.76. Found: C, 72.17; H, 5.61; N, 6.63\%.SN38304 tert-Butyl (E/Z)-(5-((3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)amino)-5-oxopentyl)carbamate (S239).


5-((tert-Butoxycarbonyl)amino)pentanoic acid (S239a). Prepared using Method K from 5 -aminovaleric acid to give acid S239a ( $213 \mathrm{mg}, 20 \%$ ) as an off-white solid: $\mathrm{mp} 45-$ $47^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.59$ (br s, 1H), $3.71(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.63-1.68 (m, 2H), 1.52-1.57(m, 2H), 1.44 (br s, 9H); MS m/z 216.2 (M-H-100\%).
tert-Butyl (5-Oxo-5-((2-oxoindolin-6-yl)amino)pentyl)carbamate (S239b). Prepared using Method H from acid S239a aminooxindole S219a to give oxindole S239b ( 253 mg , $74 \%$ ) as a pale purple solid: $\mathrm{mp} 205-208{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta 10.34$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 9.81 (s, 1H, NH-6), 7.35 (d, J=1.7 Hz, 1H, H-7), 7.08 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 6.99 (d, J $=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.80(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-1$ '), 3.38 (s, 2H, CH2-3), 2.92 (td, $\mathrm{J}=$ $6.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-1$ '), 2.27 (t, J=7.40 Hz, 2H, CH2-4'), $1.50-1.58$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3^{\prime}$ ), 1.37-1.42 (m, 2H, CH2-2'), 1.37 (s obscured, $9 \mathrm{H}, \mathrm{tBu}$ ).
tert-Butyl (E/Z)-(5-((3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)amino)-5oxopentyl)carbamate (S239). Prepared using method N from oxindole S239b and 3-methyl- $p$-anisaldehyde. The resulting residue was purified by column chromatography, eluting with 60-70\% EtOAc/pet. ether, to give (E/Z)-S239 (210 mg, 76\%) as a yellow solid: mp 197-200 ${ }^{\circ} \mathrm{C}$; E-isomer (major) ${ }^{1} \mathrm{H}$ NMR [(CD3)2SO] $\delta$ E-isomer (major) 10.51 (s, 1H, NH-1), 9.98 (s, 1H, NH-6), 7.52-7.60 (m, 2H, H-4, H-6"), 7.50 (m, 1H, H-2'), 7.45 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 7.40 (s, 1H, =CH), 7.09 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}$ ), 6.94 (dd, J = $8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.80(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-1$ '), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 2.92 (td, J = 6.4, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1$ '), $2.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{l}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.51-1.59(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-3$ '), 1.37-1.41 (m, 2H, CH2-2'); Z-isomer (minor) 10.51 (s, 1H, NH-1), 9.91 (s, 1H, NH-6), 8.34 (dd, J = 8.63, 2.2 Hz, 1H, H-6"), 8.24-8.25 (m, 1H, H-2"), 7.52-7.60 (m, 2H, $\mathrm{H}-4,=\mathrm{CH}$ ), 7.37-7.40 (m, 1H, H-7), 7.02-7.05 (m, 2H, H-5, H-5'), 6.80 (t, J = 6.1 Hz, 1H, $\mathrm{NH}-1$ '), 3.86 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 2.92 (td, $J=6.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-1$ '), $2.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-4^{\prime}\right), 2.18$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$ ), 1.51-1.59 (m, 2H, CH2-3'), 1.37-1.41 (m, 2H, CH2-2'); ${ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta$ (both isomers) 171.3, 169.4, 158.5, 155.6, 143.4, 140.6, 133.8, 131.9, 129.0, 126.4, 126.0, 125.1, 122.5, 115.9, 111.1, 110.4, 100.9, 77.3, 55.5, 36.2, 29.1, 28.3 (3), 22.4, 15.9, 1 signal not observed; MS m/z 478.2 (M-Hं, 100\%) ; (+)-HRESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+} 380.1972$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}, 380.1969$ ) - loss of tert-butyl-carbamate group.

SN38305 tert-Butyl (E)-(2-((3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)amino)-2-oxoethyl)carbamate (S240).

tert-Butyl (2-Oxo-2-((2-oxoindolin-6-yl)amino)ethyl)carbamate (S240a). Prepared using Method H using N -(tert-butoxycarbonyl)glycine and aminooxindole S219a. The crude residue was triturated in EtOAc to give the oxindole S240a ( $112 \mathrm{mg}, 54 \%$ ) as a pale purple solid: mp $215^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR [(CD $)_{2}$ 2SO] $\delta 10.35$ (s, $1 \mathrm{H}, \mathrm{NH}-1$ ), 9.86 (s, 1H, NH-6), 7.33 (s, 1H, H-7), 7.09 (d, J = 8.0 Hz, 1H, H-4), 6.99-7.03 (m, 2H, H-5, NHBoc ), 3.69 ( $\mathrm{d}, \mathrm{J}=6.12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$ ), 3.39 (s, 2H, CH2-3), 1.39 ( $\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$ ); MS m/z 304.2 (M-H-, 100\%).
tert-Butyl (E)-(2-((3-(4-Methoxy-3-methylbenzylidene)-2-oxoindolin-6-yl)amino)-2oxoethyl)carbamate (S240). Prepared using Method N from oxindole S240a and 3-methyl- $p$-anisaldehyde. The crude residue was purified by column chromatography, eluting with 60-100\% EtOAc/pet. ether, to give alkene E-S240 ( 149 mg , quant.) as an orange solid: mp 205-208 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR [(CD $)_{3} \mathrm{SO}$ ] $\delta 10.53$ (s, 1H, NH-1), 10.05 (s, 1H, NH-6), 7.58-7.61 (m, 2H, H-4, H-6'), 7.50 (d, J= $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ ), 7.41-7.43 (m, 2H, H$7,=C H), 7.09$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $7.02-7.06$ (m, 1H, NH-Boc), 6.94 (dd, J = 8.4, 2.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.87 (s, 3H, OMe), 3.71 (d, J = $6.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 2.20 (s, 3H, Me), 1.39 (s, 9H, tBu); ${ }^{13} \mathrm{C}$ NMR [(CD $\left.\left.{ }_{3}\right)_{2} \mathrm{SO}\right] \delta 169.4,168.4,158.5,155.9,143.4,140.2,134.0$, 131.9, 129.0, 126.4, 126.0, 125.1, 122.6, 116.1, 111.2, 110.5, 100.9, 78.0, 55.5, 43.9, 28.2 (3), 15.9; MS m/z 436.2 (M-H-, 100\%); (+)-HRESIMS m/z [M+H] 438.2027 (calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}, 438.2023$ ).

## Supplemental Biology Methods

## CHO-K1 cAMP assays

CHO-K1 cells expressing $\mathrm{AM}_{1}$ or CGRP receptors (CHO-AM 1 or CHO-CGRP cells respectively) were plated at 20,000 cells per well into 96 -well SpectraPlates (PerkinElmer). Assays were completed the following day.

The experimental protocol is similar to cAMP assays for Cos7 and HMEC-1 cells, with the following modifications. On the day of assay, growth medium was replaced with assay medium (DMEM with $0.1 \%$ BSA and 1 mM 3-isobutyl-1-methylxanthine) containing compound or vehicle. Cells were serum starved for 30 minutes at room temperature, followed by addition of antagonists or compounds where relevant, and agonists. Cells were stimulated for 30 minutes at room temperature. Wells were then aspirated and 50 $\mu \mathrm{L}$ of ice-cold absolute ethanol added. Plates were stored at $-30^{\circ} \mathrm{C}$ before processing continued using the ALPHAScreen assay (PerkinElmer). Manufacturer's directions were followed with modifications for adherent cell lines as previously described. ${ }^{6}$ The ethanol in plates was evaporated, and $50 \mu \mathrm{~L} /$ well of lysis buffer was added. Plates were gently shaken for 15 minutes, then $10 \mu \mathrm{~L} /$ well of cell lysate was transferred to a white 384 -well OptiPlate (PerkinElmer). cAMP detection reagents were added, the plate was incubated for 18-24 h, then signal was read using an EnVision plate reader (PerkinElmer) and compared to a cAMP standard curve generated for each assay.

## Application of an operational model of allostery

Concentration-response data using multiple concentrations of compound were fitted with an operational model of allostery to estimate a co-operativity factor ( $\beta$ ) as a guide to quantify compound activity. The equation is described in Leach et al., 2007 and reproduced below. ${ }^{7,8}$ GraphPad Prism 8 was used. Parameters were either constrained ( $\alpha, \mathrm{n}$, basal) or initial values for fitting were manually entered ( $\tau_{A}, \tau_{B}, K_{A}, K_{B}, \beta$ ) as described below.

Response $=($ Emax - Basal $) \frac{\left(\tau_{A}[A]\left(K_{B}+\alpha \beta[B]\right)+\tau_{B}[B] K_{A}\right)^{n}}{\left([A] K_{B}+K_{A} K_{B}+K_{A}[B]+\alpha[A][B]\right)^{n}+\left(\tau_{A}[A]\left(K_{B}+\alpha \beta[B]\right)+\tau_{B}[B] K_{A}\right)^{n}}+$ Basal

| Parameter | Initial value | Constraint | Note |
| :--- | :--- | :--- | :--- |
| Log $\tau_{A}$ | 0.5 |  | Shared value for all data sets. |
| Log $\tau_{B}$ | -0.5 |  | Shared value for all data sets. |
| Log $\mathrm{K}_{\mathrm{A}}$ | -9 | Binding affinity for orthosteric ligand (AM), similar to that observed with <br> radioligand binding. ${ }^{9}$ Shared value for all data sets. |  |
| Log $\mathrm{K}_{B}$ | -6 | Binding affinity for the allosteric ligand was assumed to be weak. Shared <br> value for all data sets. |  |
| Log $\alpha$ |  | Set to 0 <br> i.e. $\alpha=1$ | The pattern of modulation indicated that the compounds had minimal <br> effect on binding co-operativity ${ }^{10}$, hence $\alpha$ was constrained to 1. |
| $\log \beta$ | 3 | Set to 1 | Shared value for all data sets. |
| n |  | Set to 0\% | Shared value for all data sets. <br> Emaseline without orthosteric or allosteric ligand. Initially this was not <br> constrained and was set to 1*YMIN, which resulted in very small or <br> negative numbers. Therefore for consistency this was constrained to zero, <br> with minimal impact on other parameters. |
| Basal | $1^{*} \mathrm{YMAX}$ |  |  |

## Binding assays

## RAMP1/2 ECD-CLR ECD fusion proteins

Plasmid construction, expression in HEK293T cells, and purification of MBP-RAMP1.24-111-(GS) ${ }_{5}$-CLR.29-144-H ${ }_{6}$ and MBP-RAMP2.55-140[L106R]-(GS) 5 -CLR.29-144-H6 fusion proteins are described elsewhere. ${ }^{11}$

## Peptides/Compounds

All peptides were custom synthesized and HPLC purified by RS Synthesis (Louisville, KY). The sequences for the human peptides FITC-Ahx-AM(37-52) NH2 S45W/Q50W, $\alpha \operatorname{CGRP}(8-37) \mathrm{NH}_{2}$ and $\mathrm{AM}(22-52) \mathrm{NH}_{2}$ are available upon request. Compounds were reconstituted in 100\% DMSO to a final concentration of 10 mM (compounds 4 and 6) or 5 mM (telcagepant, 1) and stored at $-20^{\circ} \mathrm{C}$.

## Fluorescence polarization/anisotropy (FP) peptide binding assay

Binding of peptides/compounds to receptor ECDs was performed as previously described. ${ }^{11}$ Competition binding used 7 nM of FITC-Ahx-AM(37-52) NH2 S45W/Q50W and either 40 nM of MBP-RAMP2 ECD-(GS) 5 -CLR ECD or 60 nM MBP-RAMP1 ECD(GS) ${ }_{5}$-CLR ECD fusion proteins with a 2 h incubation at room temperature. Equilibrium dissociation constants for the unlabeled peptides/compounds were determined using exact analytical equations of Roehrl et al. (2004) ${ }^{12}$ in GraphPad Prism v. 7.03 as previously described ${ }^{13}$. Equilibrium dissociation constants of the FITC-Ahx-AM(3752) $\mathrm{NH}_{2}$ S45W/Q50W probe were reported elsewhere. ${ }^{11}$ Any background fluorescence of compounds was corrected using reactions containing the same compound serial dilution in reaction buffer and indicated fusion protein concentration. For peptide competition binding assays in the presence/absence of compound 6, an equal volume of $100 \%$ DMSO was added to master mix containing no compound as a vehicle control.

## Supplemental Results

## CHO-K1 cell line validation

CHO-K1 cells were validated using both $\beta$-arrestin assays (protocol described in main text) and assays measuring cAMP accumulation (method described in Supplemental Biology Methods, page S161).

As shown in Figure S1 and Table S5, AM was the most potent ligand when measuring $\beta$-arrestin recruitment in the $\mathrm{CHO}-\mathrm{AM}_{1}$ cells. CGRP was 278 -fold less potent than AM at this receptor. Although we have fitted a curve to the data, the effect is partial compared to AM. We could not use higher concentrations to achieve a greater response. To confirm the pharmacology we also measured cAMP production at the AM 1 receptor in these cells. AM was again the most potent ligand. In this case CGRP was at least 1000 -fold less potent than AM, although it was not possible to determine a potency value.

In the CHO-CGRP cells, both CGRP and AM stimulated $\beta$-arrestin recruitment to the CGRP receptor. AM was 17 -fold less potent than CGRP (Figure S1). When measuring cAMP production in the CHO-CGRP cells, CGRP and AM were both potent ligands, with CGRP being 43 -fold more potent than AM. We also observed a response to calcitonin in both cell types when measuring cAMP. Calcitonin did not have an effect on $\beta$-arrestin recruitment for either receptor. CHO cells are known to contain an endogenous calcitonin receptor ${ }^{14}$. Given the functional calcitonin response within the cells, care should be taken when measuring cAMP or signaling pathways other than $\beta$-arrestin recruitment using the PathHunter system.

Continuing our validation of the $\mathrm{CHO}-\mathrm{AM}_{1}$ and $\mathrm{CHO}-\mathrm{CGRP}$ cell lines, we characterized AM and CGRP receptor antagonists using AM22-52, telcagepant and olcegepant (Figure S2). In the $\mathrm{CHO}-\mathrm{AM}_{1}$ cells, $1 \mu \mathrm{M}$ of $\mathrm{AM}_{22-52}$ was able to antagonize AM -mediated $\beta$ arrestin recruitment producing a parallel, rightward shift in the concentration-effect curve. The calculated $\mathrm{pA}_{2}$ was $7.05 \pm 0.05(\mathrm{n}=3)$, consistent with literature values for antagonism of cAMP production ${ }^{15-18}$. No change in AM activity was seen with $10 \mu \mathrm{M}$ telcagepant or olcegepant.

The effects of telcagepant and olcegepant on CGRP-stimulated $\beta$-arrestin recruitment to the CGRP receptor are shown in Figure S2. Telcagepant was tested at a concentration of 50 nM , which resulted in a parallel, rightward shift of the concentration-effect curve, consistent with its expected competitive antagonism at the CGRP receptor ${ }^{19}$. The resulting $\mathrm{pA}_{2}$ value was $8.30 \pm 0.10(\mathrm{n}=3)$. In contrast, increasing concentrations of olcegepant resulted in successive reductions in Emax. This suggests olcegepant is behaving as a non-competitive antagonist in this assay, which prevents the calculation of a $\mathrm{pA}_{2}$ for these data.

Overall the pharmacology of these cells is consistent with the known pharmacology of these receptors, which enabled their use in screening.

|  | $\beta$-arrestin recruitment |  | cAMP accumulation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CHO-AM 1 | CHO-CGRP | CHO-AM 1 | CHO-CGRP |
| AM | $8.52 \pm 0.12$ | $7.08 \pm 0.15^{\mathrm{a}}$ | $9.08 \pm 0.12$ | $8.06 \pm 0.10^{\mathrm{b}}$ |
| CGRP | $6.08 \pm 0.11^{\mathrm{c}}$ | $8.32 \pm 0.15$ | $<6$ | $9.70 \pm 0.15$ |
| Calcitonin | $<6$ | $<6$ | d | $8.41 \pm 0.11$ |
| Amylin | ND | ND | $<6$ | $<6$ |

Table S5. Cell line validation
Potency ( $\mathrm{pEC}_{50}$ ) values for AM, CGRP, calcitonin and amylin in CHO-AM 1 or CHO-CGRP cells, measuring either $\beta$-arrestin recruitment or cAMP accumulation. $n=3-6$. ND: experiments not done. ${ }^{a} p<0.05$ by unpaired $t$-test compared to CGRP in the CHO-CGRP cells, measuring $\beta$-arrestin. ${ }^{\text {b }} \mathrm{p}<0.05$ by unpaired $t$-test compared to CGRP in the CHOCGRP cells, measuring cAMP. ${ }^{c} p<0.05$ by unpaired $t$-test compared to AM. ${ }^{d}$ A weak response to calcitonin was observed in two of the four experiments.


Figure S1
Validation of DiscoveRx CHO-AM 1 and CHO-CGRP cell lines measuring (A,B) $\beta$-arrestin recruitment or (C,D) cAMP production in response to peptide agonists (AM, CGRP, calcitonin or amylin). Data points are the mean $\pm$ s.e.m. of three to six independent experiments and are normalized to the maximal reponse with AM (A,C) or CGRP (B,D). Further experimental details are provided on page S161.


Figure S2
Validation of DiscoveRx CHO-AM 1 and $\mathrm{CHO}-\mathrm{CGRP}$ cell lines using antagonists. Effects of antagonists on (A,B) $\beta$-arrestin recruitment or (C,D) cAMP production in response to AM or CGRP. Data points are the mean $\pm$ s.e.m. of three to six independent experiments and are normalized to the maximal response with AM or CGRP.
AM $\mathbf{1}_{1}$ - $\boldsymbol{\beta}$-arrestin
A


| 0 | -9 | -8 | -7 | -6 | -5 | -4 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | Log[drug] (M) |  |  |  |  |

B

## CGRP - $\beta$-arrestin



Figure S3
Validation of primary screening approach in (A) CHO-AM 1 cells or (B) CHO-CGRP cells. Effects of antagonists on $\beta$-arrestin recruitment in response to 20 nM AM or CGRP. Data points are the combined mean $\pm$ s.e.m. of two to eight independent experiments and are normalized to the maximal response with AM or CGRP.


Figure S4
Compound 9 is a structurally-related inactive compound that does not positively modulate ligand-induced $\beta$-arrestin recruitment in $\mathrm{CHO}_{-\mathrm{AM}_{1}}(\mathrm{~A})$ or $\mathrm{CHO}-\mathrm{CGRP}$ cells (B). Concentration-response curves are the combined mean $\pm$ s.e.m. from three independent experiments in triplicate wells comparing vehicle control with $50 \mu \mathrm{M}$ of compound 9.


Figure S5
Weak modulation of CGRP-induced $\beta$-arrestin recruitment in CHO-CGRP cells by selected active compounds (3-8, 10-12). Concentration-response data shown are the mean $\pm$ s.e.m. from three to five independent experiments in triplicate wells, normalized to the response with CGRP + vehicle. Compounds 6 and 8 could not be tested at $50 \mu \mathrm{M}$ due to solubility constraints.

|  |  | [Compound] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | $0.78125 \mu \mathrm{M}$ | $1.5625 \mu \mathrm{M}$ | $3.125 \mu \mathrm{M}$ | $6.25 \mu \mathrm{M}$ | $12.5 \mu \mathrm{M}$ | $25 \mu \mathrm{M}$ | $50 \mu \mathrm{M}$ |
| 3 | pEC50 | $9.06 \pm 0.060$ |  | $8.89 \pm 0.24$ | $8.96 \pm 0.049^{*}$ | $8.91 \pm 0.0075$ | $9.19 \pm 0.18$ | $9.17 \pm 0.061$ | $9.63 \pm 0.13$ |
|  | $\mathrm{E}_{\text {min }}$ | $0.00 \pm 0.00$ |  | $1.15 \pm 2.13$ | $0.66 \pm 2.23$ | $0.20 \pm 1.80$ | $2.33 \pm 0.63$ | $4.05 \pm 0.81$ | $34.1 \pm 11.3$ |
|  | $E_{\text {max }}$ | 100. $\pm 0.00$ |  | $97.0 \pm 4.55$ | $102 \pm 1.53$ | $121 \pm 5.30$ | $138 \pm 2.63 *$ | $155 \pm 11.2$ | $205 \pm 44.5$ |
| 4 | pEC50 | $8.96 \pm 0.11$ |  | $8.96 \pm 0.027$ | $9.11 \pm 0.052$ | $9.10 \pm 0.057$ | $9.42 \pm 0.12$ | $9.58 \pm 0.047^{*}$ | $9.60 \pm 0.12$ |
|  | Emin | $0.00 \pm 0.00$ |  | $-5.07 \pm 1.36$ | $-1.91 \pm 3.45$ | $-0.30 \pm 1.91$ | $4.01 \pm 4.98$ | $12.3 \pm 7.05$ | $43.0 \pm 23.1$ |
|  | $E_{\text {max }}$ | 100. $\pm 0.00$ |  | $105 \pm 5.63$ | $110 \pm 14.2$ | $143 \pm 17.0$ | $184 \pm 29.6$ | $227 \pm 44.4$ | $240 \pm 52.6$ |
| 5 | pEC50 | $8.78 \pm 0.11$ |  | $8.98 \pm 0.12^{*}$ | $9.01 \pm 0.27$ | $9.05 \pm 0.25$ | $9.29 \pm 0.18$ | $9.35 \pm 0.091^{*}$ | $9.52 \pm 0.13^{*}$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ |  | $-0.56 \pm 1.01$ | $-0.24 \pm 0.54$ | $-0.36 \pm 0.49$ | $0.88 \pm 3.05$ | $9.16 \pm 3.22$ | $22.9 \pm 4.75^{*}$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ |  | $106 \pm 4.57$ | $120 \pm 2.62$ | $142 \pm 5.21^{*}$ | $169 \pm 9.27^{*}$ | $214 \pm 20.3^{*}$ | $205 \pm 9.84^{*}$ |
| 6 | pEC50 | $8.86 \pm 0.020$ |  | $8.90 \pm 0.18$ | $9.05 \pm 0.16$ | $9.00 \pm 0.18$ | $9.32 \pm 0.15$ | $9.39 \pm 0.19$ |  |
|  | Emin | $0.00 \pm 0.00$ |  | $0.142 \pm 0.813$ | $0.504 \pm 1.50$ | $\begin{gathered} -0.0212 \pm \\ 0.851 \\ \hline \end{gathered}$ | $0.777 \pm 0.704$ | $4.61 \pm 2.71^{*}$ |  |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ |  | $110 \pm 7.87$ | $129 \pm 7.25$ | $156 \pm 5.97^{*}$ | $171 \pm 1.49^{*}$ | 200. $\pm 6.04^{*}$ |  |
| 7 | pEC50 | $8.96 \pm 0.079$ |  | $9.09 \pm 0.089$ | $9.13 \pm 0.084$ | $9.23 \pm 0.12$ | $9.34 \pm 0.027^{*}$ | $9.47 \pm 0.14$ | $9.48 \pm 0.070$ |
|  | $\mathrm{Emin}^{\text {min }}$ | $0.00 \pm 0.00$ |  | $0.455 \pm 1.08$ | $-0.301 \pm 0.445$ | $0.782 \pm 2.93$ | $-2.36 \pm 1.07$ | $5.44 \pm 1.73$ | $7.84 \pm 5.86$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ |  | $109 \pm 1.88$ | $118 \pm 3.55^{*}$ | $143 \pm 4.41^{*}$ | $165 \pm 11.4^{*}$ | $195 \pm 8.70^{*}$ | $217 \pm 14.0^{*}$ |
| 8 | pEC50 | $8.90 \pm 0.18$ |  | $8.98 \pm 0.035$ | $9.07 \pm 0.10$ | $8.96 \pm 0.090$ | $9.16 \pm 0.039$ | $9.20 \pm 0.20$ |  |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ |  | $-4.38 \pm 2.30$ | $0.257 \pm 2.00$ | $0.171 \pm 1.09$ | $2.47 \pm 0.872$ | $1.78 \pm 2.17$ |  |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ |  | $79.7 \pm 6.92$ | $99.4 \pm 8.31$ | $105 \pm 3.27$ | $112 \pm 7.32$ | $114 \pm 12.0$ |  |
| 10 | pEC 50 | $8.20 \pm 0.12$ | $8.37 \pm 0.14$ | $8.85 \pm 0.21$ | $8.32 \pm 0.19$ | $8.70 \pm 0.32$ | $8.77 \pm 0.18$ | $8.70 \pm 0.13$ | $8.37 \pm 0.12$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $-2.27 \pm 0.77$ | $-3.64 \pm 2.78$ | $8.76 \pm 3.42$ | $3.66 \pm 3.56$ | $16.3 \pm 11.7$ | $41.0 \pm 21.6$ | $65.4 \pm 24.5^{*}$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $127 \pm 22.8$ | $132 \pm 28.6$ | $171 \pm 38.2$ | $209 \pm 42.2$ | $262 \pm 90.2$ | $334 \pm 126$ | $359 \pm 102$ |
| 11 | pEC50 | $8.12 \pm 0.035$ | $8.40 \pm 0.16$ | $8.71 \pm 0.17$ | $8.90 \pm 0.15$ | $8.73 \pm 0.16$ | $9.11 \pm 0.10^{*}$ | $9.05 \pm 0.038^{*}$ | $8.90 \pm 0.070^{*}$ |
|  | $\mathrm{E}_{\text {min }}$ | $0.00 \pm 0.00$ | $5.94 \pm 3.62$ | $21.9 \pm 23.1$ | $21.3 \pm 22.3$ | $31.9 \pm 27.3$ | $20.2 \pm 17.6$ | $43.6 \pm 35.2$ | $60.4 \pm 43.1$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $129 \pm 20.2$ | $181 \pm 53.7$ | $236 \pm 106$ | $330 \pm 159$ | $317 \pm 91.5$ | $548 \pm 250$ | $409 \pm 159$ |
| 12 | pEC 50 | $8.20 \pm 0.10$ | $8.01 \pm 0.36$ | $8.38 \pm 0.085$ | $8.81 \pm 0.062$ | $8.77 \pm 0.030$ | $8.72 \pm 0.10$ | $8.81 \pm 0.10$ | $8.58 \pm 0.062$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $11.0 \pm 9.50$ | $14.8 \pm 12.6$ | $21.6 \pm 24.6$ | $32.0 \pm 28.4$ | $45.1 \pm 32.5$ | $91.2 \pm 72.0$ | $187 \pm 119$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $155 \pm 28.5$ | $200 \pm 64.0$ | $203 \pm 68.7$ | $289 \pm 95.2$ | $391 \pm 146$ | $701 \pm 301$ | $1,010 \pm 444$ |

## Table S6

Parameters for $\mathrm{AM}_{1}$ receptor $\beta$-arrestin recruitment experiments conducted with multiple concentrations of compound and AM. Data are the same as Figure 5, but fitted with three parameter nonlinear regression and the $\mathrm{pE} \mathrm{C}_{50}$, $\mathrm{E}_{\text {min }}$ and $\mathrm{E}_{\text {max }}$ derived. Data are the mean $\pm$ s.e.m of three experiments as per Figure 5. pEC50 values were statistically tested using a repeated measures mixed-effects model with Dunnett's post hoc test compared to AM only. For testing differences in the $E_{\text {min }}$ and $E_{\text {max }}$, the raw values were log-transformed, then the resultant values were analyzed using a repeated measures mixed-effects model with post hoc Dunnett's test compared to AM. Significance (*) was accepted at $p<0.05$.

|  |  | [Compound] |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | $25 \mu \mathrm{M}$ | $50 \mu \mathrm{M}$ |
| 3 | pEC50 | $8.81 \pm 0.17$ | $8.98 \pm 0.26$ | $9.48 \pm 0.076$ |
|  | $\mathrm{E}_{\text {min }}$ | $0.00 \pm 0.00$ | $-0.0511 \pm 0.457$ | $7.37 \pm 1.98^{*}$ |
|  | $\mathrm{E}_{\text {max }}$ | $100 . \pm 0.00$ | $92.0 \pm 4.35$ | $112 \pm 9.32$ |
| 4 | pEC50 | $9.13 \pm 0.047$ | $9.43 \pm 0.067^{*}$ | $9.44 \pm 0.033^{*}$ |
|  | $\mathrm{E}_{\text {min }}$ | $0.00 \pm 0.00$ | $0.517 \pm 0.496$ | $4.59 \pm 1.54$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $103 \pm 4.53$ | $113 \pm 1.98$ |
| 5 | pEC 50 | $8.87 \pm 0.12$ | $9.22 \pm 0.29$ | $9.47 \pm 0.024^{*}$ |
|  | $\mathrm{E}_{\text {min }}$ | $0.00 \pm 0.00$ | $1.40 \pm 1.40$ | $2.45 \pm 0.231^{*}$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $102 \pm 3.17$ | $90.2 \pm 11.9$ |
| 6 | pEC 50 | $9.01 \pm 0.090$ | $9.46 \pm 0.032^{\#}$ |  |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $0.690 \pm 0.893$ |  |
|  | $\mathrm{E}_{\text {max }}$ | $100 . \pm 0.00$ | $110 \pm 3.12$ |  |
| 7 | pEC50 | $8.78 \pm 0.13$ | $9.07 \pm 0.18^{*}$ | $9.45 \pm 0.085^{*}$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $0.0347 \pm 0.261$ | $1.37 \pm 0.749$ |
|  | $\mathrm{E}_{\text {max }}$ | $100 . \pm 0.00$ | $95.7 \pm 2.22$ | $114 \pm 6.45$ |
| 8 | pEC 50 | $8.83 \pm 0.084$ | $8.98 \pm 0.095$ |  |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $0.439 \pm 0.117^{\#}$ |  |
|  | $\mathrm{E}_{\text {max }}$ | $100 . \pm 0.00$ | $106 \pm 0.0667^{\#}$ |  |
| 10 | pEC50 | $8.44 \pm 0.025$ | $8.74 \pm 0.051^{*}$ | $8.69 \pm 0.071^{*}$ |
|  | Emin | $0.00 \pm 0.00$ | $2.61 \pm 1.41$ | $6.20 \pm 1.70^{*}$ |
|  | $\mathrm{E}_{\text {max }}$ | $100 . \pm 0.00$ | $120 \pm 12.1$ | $129 \pm 12.5$ |
| 11 | pEC50 | $8.43 \pm 0.033$ | $8.83 \pm 0.084^{*}$ | $8.65 \pm 0.072$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $1.95 \pm 0.521$ | $4.52 \pm 0.406^{*}$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $130 \pm 4.46{ }^{*}$ | $128 \pm 8.20$ |
| 12 | pEC50 | $8.43 \pm 0.033$ | $8.74 \pm 0.11$ | $8.68 \pm 0.096$ |
|  | $E_{\text {min }}$ | $0.00 \pm 0.00$ | $6.27 \pm 1.74$ | $12.2 \pm 1.49^{*}$ |
|  | $E_{\text {max }}$ | $100 . \pm 0.00$ | $171 \pm 25.7$ | $195 \pm 12.5 *$ |

Table S7
Parameters for CGRP receptor $\beta$-arrestin recruitment experiments conducted with multiple concentrations of compound and CGRP. Data are shown in Figure S5, fitted with a three parameter nonlinear regression and the $\mathrm{pEC}_{50}$, $\mathrm{E}_{\text {min }}$ and $\mathrm{E}_{\text {max }}$ derived. Data are the mean $\pm$ s.e.m. of three to five experiments as per Figure S5. For compounds 3-5, 7 and $10-12, \mathrm{pEC}_{50}$ values were statistically tested using a repeated measures mixedeffects model with Dunnett's post hoc test compared to AM only. For testing differences in the $E_{\text {min }}$ and $E_{\text {max }}$, the raw values were log-transformed, then the resultant values were analyzed using a repeated measures mixed-effects model with post hoc Dunnett's test compared to AM. Significance (*) was accepted at $p<0.05$. Data from compounds 6 and 8 were similarly analyzed, using a paired $t$-test for pEC 50 and ratio paired $t$-test for $\mathrm{E}_{\text {min }}$ and Emax. Significance (\#) was accepted at p<0.05.

[cmpd] ( $\mu \mathrm{M}$ )

- 0 - 25 - 50

Figure S6
Ability of compounds $\mathbf{1 0 - 1 2}$ to modulate AM-induced $\beta$-arrestin recruitment in CHO CGRP cells (A-C) or CGRP-induced $\beta$-arrestin recruitment in CHO-AM1 cells (D-F). Concentration-response curves are the combined mean data from three to four independent experiments in triplicate wells, normalized to the response with CGRP or AM with vehicle. The mean $\pm$ s.e.m. has been plotted.


Figure S7
Modulation of AM-induced cAMP production in CHO-AM 1 cells by selected active compounds $4(A)$ and $6(B)$. Concentration-response curves are the combined mean data from three to five independent experiments in triplicate wells, normalized to the response with $A M+$ vehicle. The mean $\pm$ s.e. $m$. has been plotted.

|  | + vehicle |  | + $25 \mu \mathrm{M}$ compound 6 |  |  |  | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | pEC50 | s.e.m. | pEC 50 | s.e.m. | $E_{\text {max }}$ | s.e.m. |  |
| Transfected Cos7 cells (Figure 6) |  |  |  |  |  |  |  |
| $A M$ at $A M_{1}$ receptor | 9.11 | 0.09 | 9.84* | 0.11 | 117\%*1 | 4.90 | $14^{2}$ |
| AM at CGRP receptor | 8.09 | 0.13 | 9.20* | 0.11 | 128\%*1 | 9.74 | 6 |
| AM at AM2 receptor | 9.43 | 0.17 | 9.95* | 0.12 | 118\% | 17.1 | 6 |
| CGRP at $\mathrm{AM}_{1}$ receptor | $6.87{ }^{2}$ | 0.33 | 7.63*3 | 0.42 | 148\%*1 | 17.1 | 4 |
| CGRP at CGRP receptor | 9.46 | 0.25 | 10.17* | 0.17 | 112\% | 7.37 | 6 |
| CGRP at AMY 1 receptor | 9.37 | 0.10 | 9.52 | 0.15 | 113\% | 8.50 | 7 |
| PACAP-38 at $\mathrm{PAC}_{1 \text { n }}$ receptor | 9.10 | 0.11 | 9.08 | 0.09 | 95.9\% | 4.01 | 5 |
| CRF at $\mathrm{CRF}_{1}$ receptor | 9.82 | 0.20 | 9.90 | 0.21 | 98.3\% | 11.3 | 5 |
| CT at CT receptor | 9.89 | 0.25 | 9.88 | 0.21 | 117\% | 11.2 | 7 |
| HMEC-1 cells (Figure 7) |  |  |  |  |  |  |  |
| AM at endogenous AM-responsive receptors | 8.99 | 0.12 | 10.4* | 0.11 | 106\% | 10.0 | 6 |

## Table S8

pEC 50 and $\mathrm{E}_{\text {max }}$ values for modulation of cAMP production by compound 6 in transfected Cos7 cells or HMEC-1 cells. * indicates a significant difference compared to vehicle only control, $\mathrm{p}<0.05$ by paired $t$-test. *1Significantly different from vehicle control by ratio paired $t$-test using $E_{\max }$ data before data was normalized to the $\mathrm{E}_{\max }$ of the control curve. ${ }^{2} \mathrm{AM}$ at the $A M_{1}$ receptor has a higher $n$ number because this was used as a control. Where two plates were processed on the same day, for statistical analysis the second AM curve was excluded. ${ }^{3}$ In a further two experiments, no curve could be fitted to the data and these experiments were excluded from the analysis.


Figure $\mathbf{S 8}$
(A, B) Telcagepant displaces peptide probe binding to the CGRP receptor ECD preparation. Compounds 4 and 6 did not affect peptide probe binding to ECD protein preparations of the CGRP or AM1 receptors. (C, D) Compound 6 does not affect binding of CGRP or AM probes to the CGRP or $\mathrm{AM}_{1}$ receptor ECD protein preparations respectively. Two independent experiments were performed and a representative graph is shown. Under these assay conditions, $\mathbf{4}$ and $\mathbf{6}$ were assumed to be soluble.

## References

[1] Burgey, C., Deng, Z., Nguyen, D., Paone, D., Shaw, A., and Williams, T. (2004) Cgrp Receptor Antagonists, MERCK \& CO., INC., BURGEY, Christopher, S., DENG, Zhengwu, J., NGUYEN, Diem, N., PAONE, Daniel, V., SHAW, Anthony, W., WILLIAMS, Theresa, M.
[2] Obase, H., Takai, H., Teranishi, M., and Nakamizo, N. (1983) Synthesis of (1-substituted piperidin-4-yl)-1H-benzimidazoles and (1-substituted piperidin-4-yl)-3, 4dihydroquinazolines as possible antihypertensive agents, Journal of Heterocyclic Chemistry 20, 565-573.
[3] Kislyi, V., and Semenov, V. (2001) Investigation of the regioselectivity of alkylation of 3-nitropyridin-2 (1H)-ones, Russian Chemical Bulletin 50, 460-463.
[4] Aciro, C., Bagal, S. K., Harvey, J. W., Jones, L. H., Mowbray, C. E., Owen, R. M., Sabnis, Y. A., Storer, R. I., and Yeap, S. K. (2010) Preparation of cyclobutenedione derivatives as modulators of CXCR-2 receptor for the treatment of asthma and COPD.
[5] McLaughlin, M., Palucki, M., and Davies, I. W. (2006) Efficient access to cyclic ureas via pdcatalyzed cyclization, Organic letters 8, 3311-3314.
[6] Gingell, J. J., Qi, T., Bailey, R. J., and Hay, D. L. (2010) A key role for tryptophan 84 in receptor activity-modifying protein 1 in the amylin 1 receptor, Peptides 31, 1400-1404.
[7] Leach, K., Sexton, P. M., and Christopoulos, A. (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology, Trends in pharmacological sciences 28, 382-389.
[8] Huang, X.-P., Karpiak, J., Kroeze, W. K., Zhu, H., Chen, X., Moy, S. S., Saddoris, K. A., Nikolova, V. D., Farrell, M. S., and Wang, S. (2015) Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65, Nature 527, 477.
[9] Hay, D. L., Poyner, D. R., and Walker, C. S. (2019) Calcitonin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database, IUPHAR/BPS Guide to Pharmacology 2019.
[10] Kenakin, T. P. (2014) Chapter 7 - Allosteric Modulation, In A Pharmacology Primer (Fourth Edition) (Kenakin, T. P., Ed.), pp 155-180, Academic Press, San Diego.
[11] Roehrkasse, A. M., Booe, J. M., Lee, S.-M., Warner, M. L., and Pioszak, A. A. (2018) Structure-function analyses reveal a triple $\beta$-turn receptor-bound conformation of adrenomedullin 2 /intermedin and enable peptide antagonist design, Journal of Biological Chemistry 293, 15840-15854.
[12] Roehrl, M. H., Wang, J. Y., and Wagner, G. (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein- protein interactions by fluorescence polarization, Biochemistry 43, 16056-16066.
[13] Lee, S.-M., Booe, J. M., Gingell, J. J., Sjoelund, V., Hay, D. L., and Pioszak, A. A. (2017) NGlycosylation of asparagine 130 in the extracellular domain of the human calcitonin receptor significantly increases peptide hormone affinity, Biochemistry 56, 3380-3393.
[14] Horie, K., and Insel, P. A. (2000) Retrovirally Mediated Transfer of a G Protein-coupled Receptor Kinase (GRK) Dominant-negative Mutant Enhances Endogenous Calcitonin Receptor Signaling in Chinese Hamster Ovary Cells. GRK inhibition enhances expression of receptors and receptor mRNA, Journal of Biological Chemistry 275, 29433-29440.
[15] Robinson, S. D., Aitken, J. F., Bailey, R. J., Poyner, D. R., and Hay, D. L. (2009) Novel Peptide Antagonists of Adrenomedullin and Calcitonin Gene-Related Peptide Receptors: Identification, Pharmacological Characterization, and Interactions with Position 74 in Receptor Activity-Modifying Protein 1/3, Journal of Pharmacology and Experimental Therapeutics 331, 513-521.
[16] Watkins, H., Au, M., Bobby, R., Archbold, J., Abdul-Manan, N., Moore, J., Middleditch, M., Williams, G., Brimble, M., and Dingley, A. (2013) Identification of key residues involved in adrenomedullin binding to the AM1 receptor, British journal of pharmacology 169, 143155.
[17] Hay, D. L., Howitt, S. G., Conner, A. C., Schindler, M., Smith, D. M., and Poyner, D. R. (2003) CL/RAMP2 and CL/RAMP3 produce pharmacologically distinct adrenomedullin receptors: a comparison of effects of adrenomedullin22-52, CGRP8-37 and BIBN4096BS, British journal of pharmacology 140, 477-486.
[18] Hay, D. L., Garelja, M. L., Poyner, D. R., and Walker, C. S. (2018) Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25, British journal of pharmacology 175, 3-17.
[19] Walker, C. S., Raddant, A. C., Woolley, M. J., Russo, A. F., and Hay, D. L. (2017) CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured, Cephalalgia, 0333102417691762.

