Multi-laboratory validation of a new marine biodegradation screening test for chemical persistence assessment

Amelie Ott ^{a*}, Timothy J. Martin ^{a,1}, Kishor Acharya ^a, Delina Y. Lyon ^b, Nik Robinson ^c, Bob
Rowles ^d, Jason R. Snape ^{a,e,f}, Ian Still ^{c,2}, Graham F. Whale ^{g,3}, Vurtice C. Albright III ^h, Petra
Bäverbäck ⁱ, Nicola Best ^j, Ruth Commander ^k, Curtis Eickhoff ¹, Sarah Finn ^m, Björn Hidding ⁿ,
Heiko Maischak ^o, Katherine A. Sowders ^p, Masanori Taruki ^q, Helen E. Walton ^d, Aina Charlotte
Wennberg ^r, Russell J. Davenport ^a

9

10	^a Newcastle University, School of Engineering, Newcastle upon Tyne, NE1 7RU, United Kingdom

^b Shell Oil Company, 150 N. Dairy Ashford Rd, Houston, TX 77079, United States

^c European Oilfield Specialty Chemicals Association (EOSCA), Aberdeen, AB11 6YQ, United
Kingdom

^d Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft,
 NR33 0HT, United Kingdom

- ¹⁶ ^e AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TF,
- 17 United Kingdom

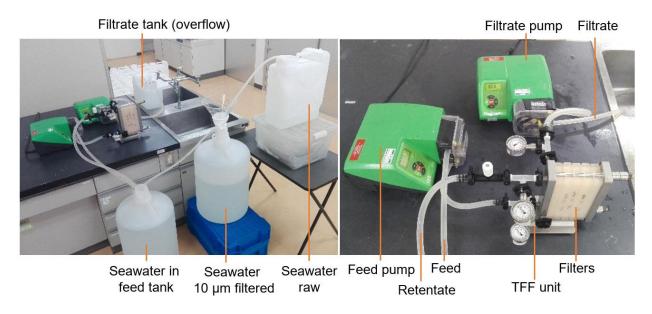
- ^fUniversity of Warwick, School of Life Sciences, Gibbet Hill Campus, Coventry CV4 7AL, United
 Kingdom
- 20 ^g Shell International Ltd, Risk Science Team, 4 York road, London, SE1 7NA, United Kingdom
- ^h The Dow Chemical Company, Midland, Toxicology & Environmental Research & Consulting,
 MI 48674, United States
- ⁱ Schlumberger, Sandslikroken 140, 5254 Sandsli, Norway
- 24 ^j Covance CRS Research Limited, Shardlow Business Park, London Road, Derby, DE72 2GD,
- 25 United Kingdom
- 26 ^k Scymaris Ltd., Brixham Laboratory, Brixham, TQ5 8BA, United Kingdom
- ¹ Nautilus Environmental Company Inc., Burnaby, BC, V5A 4N7, Canada
- ^m National Oilwell Varco (NOV), Flotta, Stromness, Orkney, KW16 3NP, United Kingdom
- 29 ⁿ BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
- 30 ° Noack Laboratorien GmbH, Käthe-Paulus-Straße 1, 31157 Sarstedt, Germany
- 31 ^p Baker Hughes Environmental Services Group, 369 Marshall Ave., Webster Groves, Missouri
- 32 63119, United States
- ^qChemicals Evaluation and Research Institute, Japan, Kurume (CERI Kurume), 3-2-7 Miyanojin,
- 34 Kurume-shi, Fukuoka 839-0801, Japan
- 35 ^rNorwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway

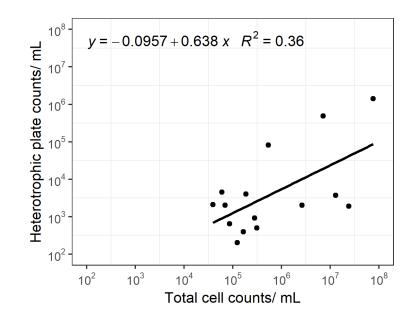
36	Present Addresses
37	¹ Department for Environment, Food and Rural Affairs, Lancaster House, Newcastle upon Tyne,
38	NE4 7JB, United Kingdom
39	² Nalco Champion, WSW Building, Peterseat Drive, Aberdeen, AB12 3HT, United Kingdom
40	³ Whale Environmental Consultancy Ltd., 55 Earlsway Curzon Park, Chester, CH4 8AZ, United
41	Kingdom
42	
43	
44	SUPPORTING INFORMATION
45	Pages: 38
46	Figures: 21
47	Tables: 16
48	
49	Biodegradation data supporting this publication is openly available under
50	http://doi.org/10.25405/data.ncl.9938198.

51 Methods M1: Test protocol modifications in the imBST_{MR} from the pre-validated marine 52 erBST.

53 The new test (imBST_{MR}) was based on a previous intra-laboratory validated marine 54 environmentally relevant BST (erBST) ¹, but differed in following aspects to incorporate 55 recommendations from stakeholders and other studies:^{1–3}

- Terminology: While the microbiome in the erBST and imBST_{MR} aims to better represent
 the samples environment, other BST conditions still do not represent the environment
 well e.g. high test chemical concentrations and high incubation temperatures.
 Consequently, the terminology "environmentally relevant" was replaced with
 improved/new for the imBST_{MR}.
- Biodegradation measurement: To overcome potential biodegradation underestimations
 in OECD 301B tests ^{1,4-6}, the imBST_{MR} monitored biodegradation with MRs in a
 modified OECD 301F test.
- TFF: In the imBST_{MR}, the TFF protocol was optimized to incorporate an additional
 filtrate pump to reduce membrane wall pressures. No backflushing was performed to
 preserve membrane integrity.
- Test chemicals: Due to equipment and licensing limitations at CROs, test chemicals were
 not radiolabeled (¹⁴C) in the ring test. Higher test chemical concentrations were
 employed in the new and revised MR test in comparison to the pre-validation study.¹ In
 MR tests, chemical stock solutions were prepared with seawater instead of OECD
 mineral medium to circumvent seawater dilution in the test vessel (of bacterial cell
 concentrations and salinity).¹ However, it should be noted that the high salt


- concentrations in seawater can modify the solubility and related properties of some
 organic chemicals.⁷
- 75 Test medium: Phosphate nutrient additions (OECD mineral medium solution a) in the • MR tests followed the OECD 301F protocol ⁸ and were $10 \times$ higher than in the pre-76 validation study which followed the OECD 306 recipe.^{1,9} The OECD guidelines do not 77 explain this difference, but the OECD 306 method probably requires less phosphate due 78 to the natural buffering capacity of seawater ¹⁰ and lower test chemical concentrations 79 80 employed. To account for increased test chemical levels, more phosphate was added in 81 the MR tests. However, it should be noted that this alteration was expected to have little 82 or no effect as phosphate is added to excess in all OECD BSTs and no adverse effects have been observed with increased phosphate levels in BSTs.^{10,11} 83


86 Figure S1. Locations of laboratories participating in the ring test.

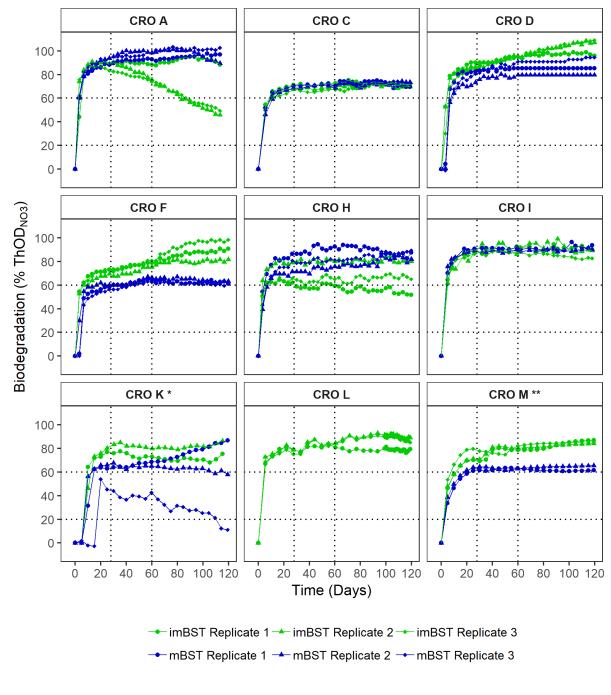
87

88 89

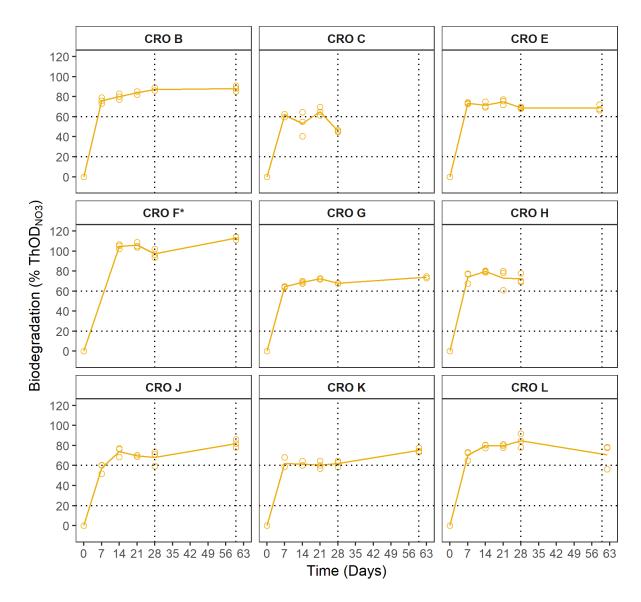
Figure S2. Example tangential flow filtration setup to increase bacterial cell numbers in seawater.

92 Figure S3. Correlation and linear regression between heterotrophic plate counts (measured using different

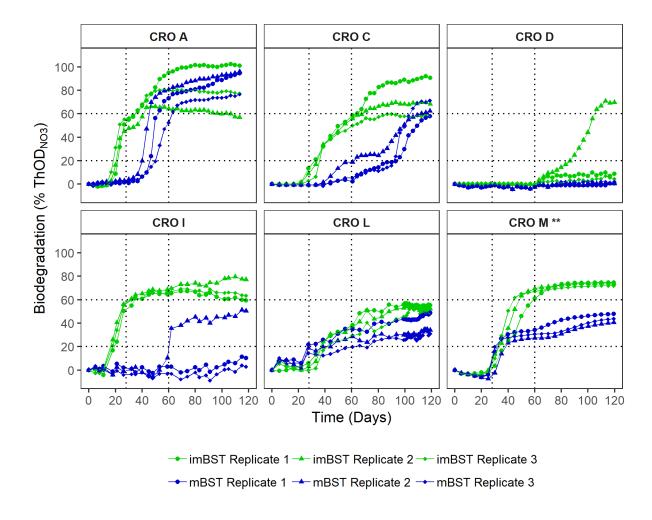
culture methods) and total cell concentrations (measured by flow cytometry) in seawater samples (S1, S2,
S3) where both measurement methods were conducted.


95

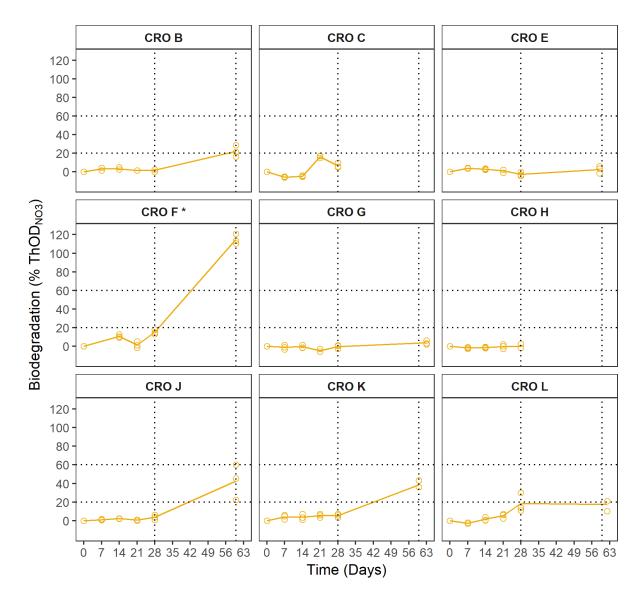
96


97

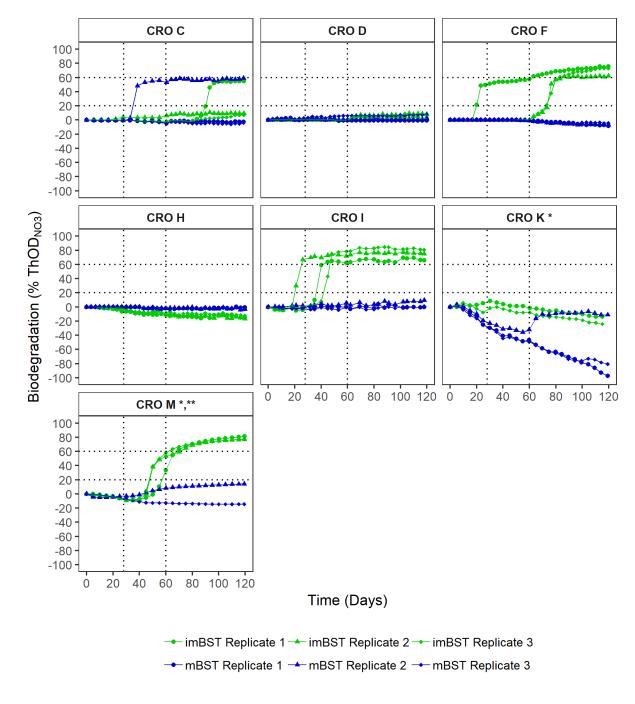
98


99 Note: For the following imBST_{MR} and mBST_{MR} biodegradation plots, every 20th data point was plotted for 100 CRO A, C, D, F, H, K, L, M (automatic recordings every 4- 7 hours) and every 3rd data point for CRO I 101 (manual daily recordings on weekdays). For the OECD306_{CB} biodegradation plots, individual 102 measurements of the sacrificial BOD bottles are plotted together with a line representing the arithmetic 103 mean.

105 **Figure S4.** Biodegradation of sodium benzoate in the mBST_{MR} and imBST_{MR}. * For removed outlier, see 106 Figure S20. ** Biodegradation based on CO_2 production instead of O_2 consumption.


Figure S5. Biodegradation of sodium benzoate in the OECD306_{CB}. * For removed outlier, see Figure S19.

111


112 Figure S6. Biodegradation of triethanolamine in the mBST_{MR} and imBST_{MR}. ** Biodegradation based on

113 CO_2 production instead of O_2 consumption.

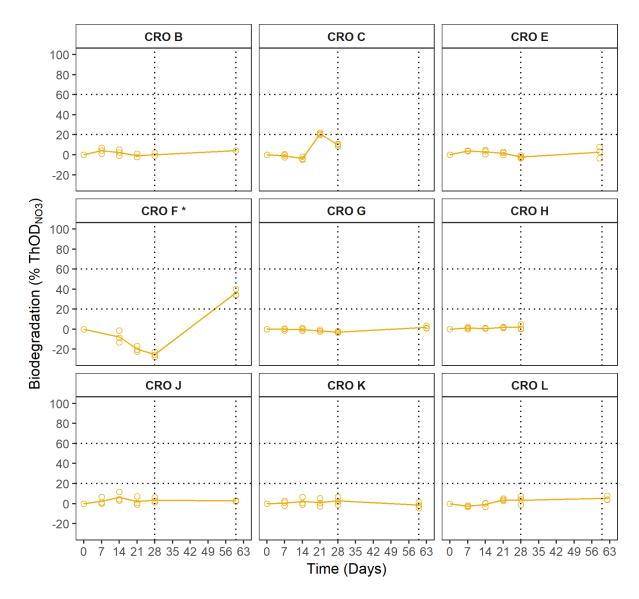
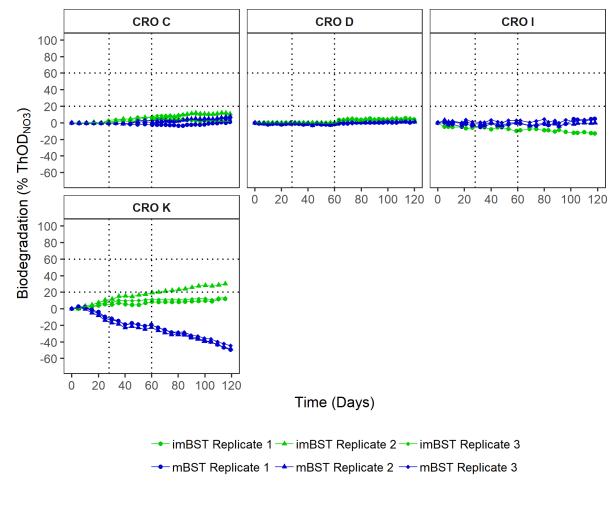

114

Figure S7. Biodegradation of triethanolamine in the OECD306_{CB}. * For removed outlier, see Figure S19.



118 **Figure S8.** Biodegradation of 4-nitrophenol in the mBST_{MR} and imBST_{MR}. * For removed outlier, see 119 Figure S20. ** Biodegradation based on CO_2 production instead of O_2 consumption.

Figure S9. Biodegradation of 4-nitrophenol in the OECD306_{CB}. * For removed outlier, see Figure S19.

Figure S10. Biodegradation of anionic polyacrylamide in the mBST_{MR} and imBST_{MR}.

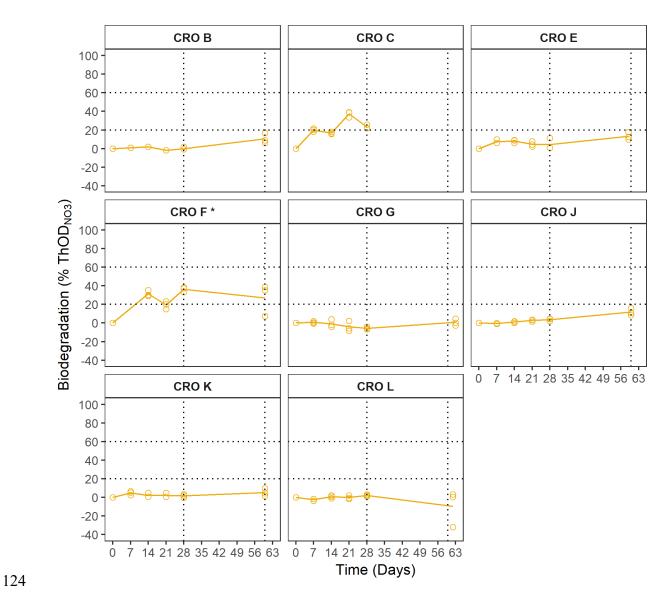
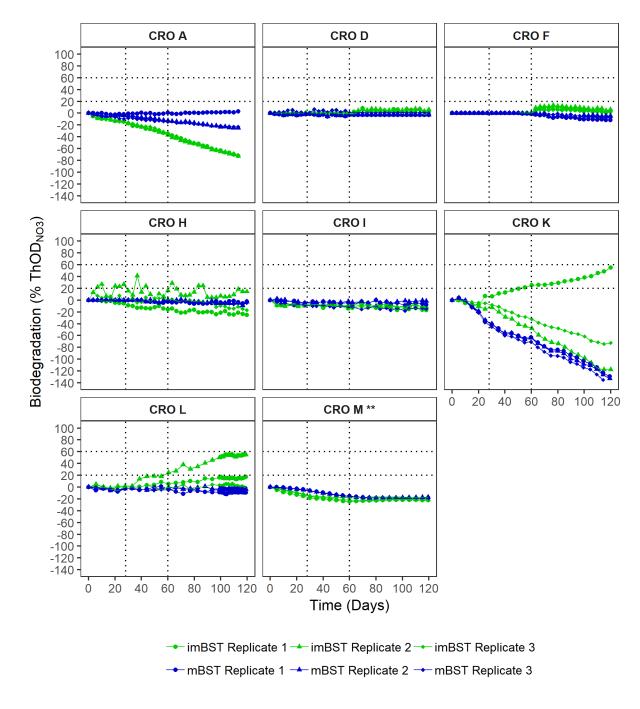



Figure S11. Biodegradation of anionic polyacrylamide in the OECD306_{CB}. * For removed outlier, see
 Figure S19.

128 **Figure S12.** Biodegradation of pentachlorophenol in $mBST_{MR}$ and $imBST_{MR}$. ** Biodegradation based on 129 CO₂ production instead of O₂ consumption.

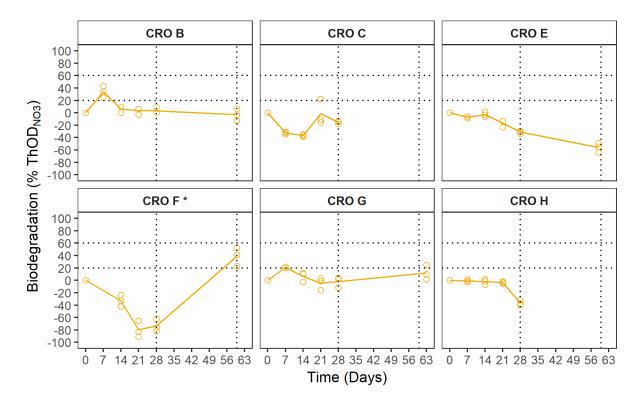
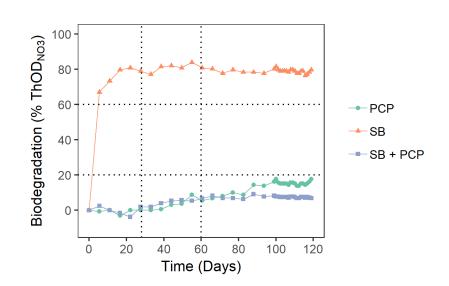
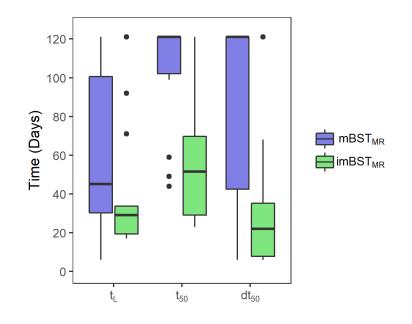
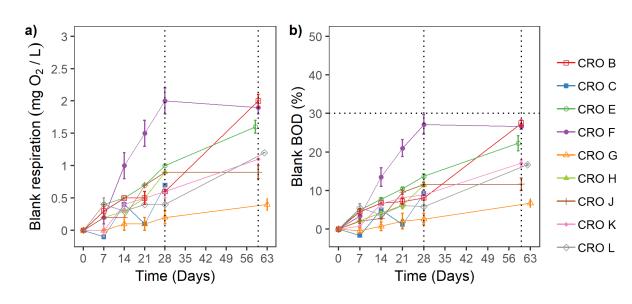



Figure S13. Biodegradation of pentachlorophenol in the OECD306_{CB}. * For removed outlier, see Figure
 S19.

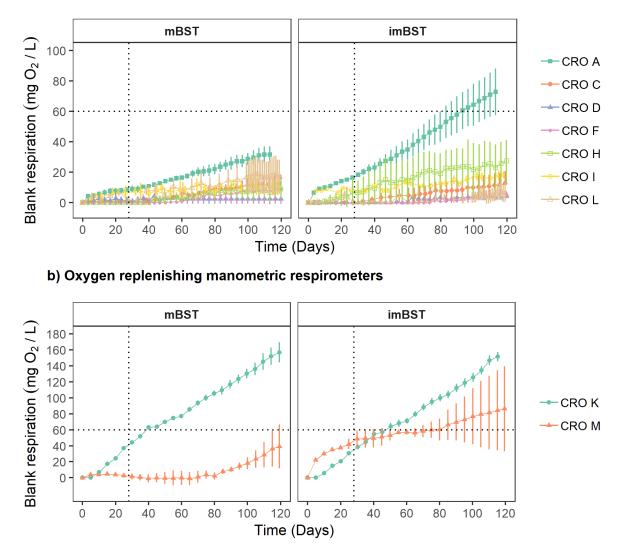


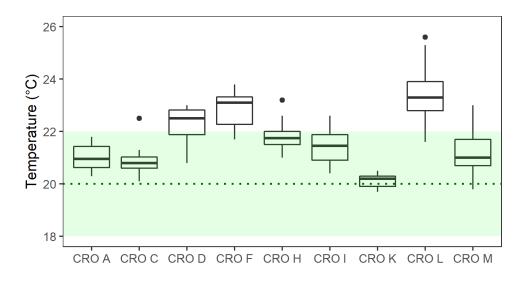
136

Figure S14. Pentachlorophenol (PCP) toxicity control with sodium benzoate (SB) for the imBST_{MR} by
 CRO L.


139

142 Figure S15. Increased cell numbers in the new test reduce t_L (time to 10% degradation), t_{50} (time


143 to 50% degradation) and dt_{50} ($t_{50} - t_L$) for triethanolamine. For non-degrading mBST_{MR} and 144 imBST_{MR} replicates, descriptor values were set to 121 days.



147Figure S16. $OECD306_{CB}$ blank respiration over 60 days across CROs expressed in mg $O_2 L^{-1}$ (a) and %148(b). Dotted horizontal line at 30% BOD (b) refers to blank threshold defined in test guideline OECD 306.9

a) Closed system manometric respirometers

Figure S17. imBST_{MR} and mBST_{MR} blank respiration in closed manometric respirometer systems (a and b) and oxygen replenishing manometric respirometer systems (c and d). Dotted horizontal line at 60 mg O_2 L⁻¹ blank respiration and 28 days refers to blank threshold defined in test guideline OECD 301F.⁸

154 Figure S18. Boxplots showing temperatures measured in mBST_{MR} and imBST_{MR} test media after 120 day

155 incubation period across CROs. Green indicates $20 \pm 2^{\circ}$ C range.

156

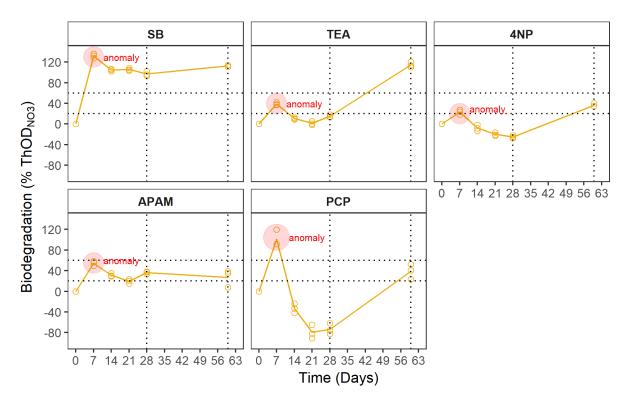
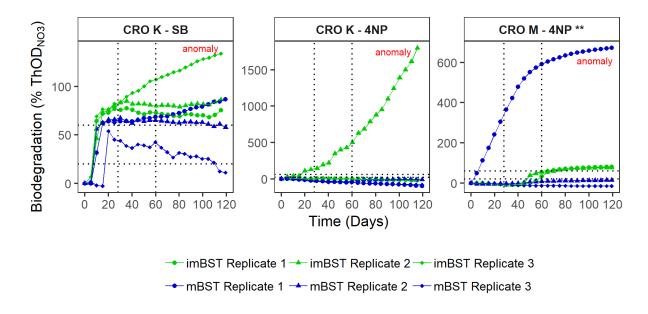
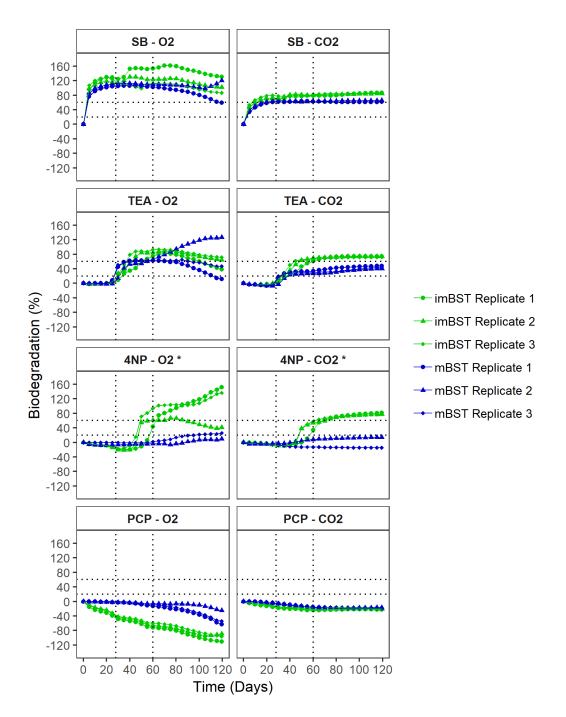



Figure S19. Systematic anomalous results (marked with a red circle) observed in the OECD306_{CB} at CRO 159 F. SB: sodium benzoate. TEA: triethanolamine. 4NP: 4-nitrophenol. APAM: anionic polyacrylamide. PCP:



163 **Figure S20.** Outliers observed in the mBST_{MR} and imBST_{MR}. SB: sodium benzoate. 4NP: 4-nitrophenol.

164 ** Biodegradation based on CO₂ production instead of O₂ consumption.

167 Figure S21. Comparison of biodegradation values calculated based on O₂ consumption and CO₂ production

- 168 for CRO M. SB: sodium benzoate. TEA: triethanolamine. 4NP: 4-nitrophenol. PCP: pentachlorophenol. *
- 169 For removed outlier, see Figure S20.

CRO →	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
			•			mBST _{MR} and	l imBST _{MR}						
Manometric respirometer	WTW OxiTop Control		WTW OxiTop Control	WTW OxiTop Control		WTW OxiTop IS		WTW OxiTop Control	WTW OxiTop Control		CES multi- channel aerobic respire- meter	WTW OxiTop Control	Columbus Instrument Micro- Oxymax Respiro- meter
						OECD.	306св						
Removing coarse particles		Filtration (11 μm)	Filtration (10 μm)		Filtration	Not performed	Sedimen- tation	Sedimen- tation		Sedimen- tation	Filtration (coarse filter paper)	Sedimen- tation and siphoning	
Ageing conditions		7 days ageing with 3 days aeration; 20°C; dark	6 days with full aeration; 20°C; dark		7 days with full aeration; 20°C; dark	7 days with full aeration; 20°C; dark	7 days with full aeration 18°C± 2°C; dark	7 days with full aeration; 20°C; dark		7 days with no aeration; 18.4- 19°C; dark	10 days with full aeration; 21°C; dark	6 days with aeration for 2h 15 min; 20°C; dark	
DO (mg/L)		YSI 58	Days 0-14: YSI DO; Days 21-28: Mettler Toledo SevenGo pro DO		Hach HQ40d LDO101	Winkler Titration Method	YSI Oximeter model 5100	WTW Oxi 1970i		Hach HQ30d	YSI Model 57	WTW inoLab Oxi 7310	

170 **Table S1.** Instruments and methods employed at the CROs for the $mBST_{MR}$, $imBST_{MR}$ and $OECD306_{CB}$.

171 —: test setup not conducted. DO: dissolved oxygen.

CRO →	A	В	С	D	Е	F	G	Н	Ι	J	K	L	М
рН	WTW Multi 350i	Orion Star A111	Hanna HI113 pH/ mV	HM-25R, DKK-TOA Corpor- ation	Hach PHC101 probe	Fisher Scientific AP 115	WTW InoLab pH 730	Fisher Scientific Meter 0503		Handylab pH	Hach HQ30D	WTW pH 340i, PHM220 lab pH	Orion Star A221
T (°C)	WTW Multi 350i	YSI Pro 30	Mercury thermo- meter	Alcohol thermo- meter	Hach CDC401 probe	Hach sension5	Total immersion glass thermo- meter	Thermo Scientific Orion Star		Testo 110	Hach HQ30D	WTW Multi 3430, WTW InoLab Oxi 7310	Alcohol thermo- meter
DO (mg/L)	Hach HQ 40d	YSI 58 DO Meter	YSI 55 DO	ID-150, Iijima Electronics	Hach LDO101 probe	Hach sension5	YSI Oximeter 5100	Fisher Scientific Meter 0503	seawater was used	Hach HQ30d	Hach HQ30D	WTW Multi 3430, WTW Inolab Oxi 7310	HQ40d meter LBOD101r
Conduc- tivity (mS/cm)	WTW Multi 340i	YSI Pro 30	Mettler Toledo Seven Multi	CM-31P, DKK-TOA Corpor- ation	Hach CDC401 probe	Hach sension5	Not measured	Fisher Scientific Meter 0503	CRO A as same seawater	WTW Conducto- meter	Hach HQ30D	WTW Multi 3430, WTW inoLab Terminal Level 3 Tetracon 325 probe	YSI 3200
Salinity (ppt)	WTW Multi 340i	YSI Pro 30	Mettler Toledo Seven Multi	CM-31P, DKK-TOA Corpor- ation	Hach CDC401 probe	Hach sension5	Thermo- balance Satorius MA35	Fisher Scientific Meter 0503	See CR	WTW Conducto- meter	Hach HQ30D	WTW Multi 3430, WTW inoLab Terminal Level 3 Tetracon 325 probe	YSI 3200
HPC/mL	DEV nutrient agar	Serial extinction marine broth bottle test	np.	Trypticase soy agar	Marine Agar	APHA Method 9215	Total viable count	Marine agar	9 9	np.	Trypticase soy agar	PCA with seawater	np.

173 **Table S2.** Instruments and methods employed at the CROs to characterize the seawater.

174 DO: dissolved oxygen. HPC: heterotrophic plate counts. np: not performed. T: temperature.

176 Table S3. Chemical and physical properties of reference chemicals. All data for APAM provided by

177 chemical supplier SNF. Information for other chemicals obtained from PhysProp¹², except for calculated

178 ThCO₂ and ThOD_{NH3/NO3} values ⁹ and chemical structures (obtained from ChemSpider ¹³). All chemicals

179 except APAM purchased from Sigma Aldrich, St. Louis, USA.

	Positive control:		Variable degradati	on:	Negative control:
	Sodium benzoate (SB)	Triethanolamine (TEA)	4-Nitrophenol (4NP)	Anionic polyacrylamide (APAM)	Pentachlorophenol (PCP)
CAS	532-32-1	102-71-6	100-02-7	25937-30-8	87-86-5
Formula	C7H5NaO2	$C_6H_{15}NO_3$	C ₆ H ₅ NO ₃	$[C_{3}H_{5}NO]_{m} [C_{3}H_{3}NaO_{2}]_{l}$	C ₆ H ₅ Cl ₅ O
Purity Structure	≥ 99.0%	98% но	>=99%	$ \begin{bmatrix}CH-CH_2 - \\ 0 & M_1 \end{bmatrix}_m \begin{bmatrix}CH-CH_2 - \\ 0 & M_2 \end{bmatrix}_n $	97%
Molecular weight (g/mol)	144.11	149.19	139.11	7.6 M Da	266.34
Water solubility (mg/L)	5.56 x 10 ⁵ at 25°C, exp.	1.00 x 10 ⁶ at 22°C, exp.	1.16 x 10 ⁴ at 20°C, exp.	100%	14 at 25℃, exp.
Vapour pressure (mm Hg)	3.67 x 10 ⁻⁹ at 25°C, est.	3.59 x10 ⁻⁶ at 25℃, exp.	9.79 x 10⁻⁵ at 20°C, exp.	information not available	1.10 x 10 ⁻⁴ at 25°C, exp.
Henry's law constant at 25°C (atm-m ³ /mol)	1.09 x 10 ⁻⁷ , est.	7.05 x 10 ⁻¹³ , est.	4.15 x 10 ⁻¹⁰ , exp.	information not available	2.45 x 10 ⁻⁸ , exp.
Log K _{ow}	-2.27, est.	-1, exp.	1.19, exp.	-2.34, exp.	5.12, exp.
ThOD _{NH3} and ThOD _{NO3} (mg O_2 /mg test substance)	1.67 1.67	1.61 2.04	1.15 1.61	1.25 1.88	0.54 0.54
ThCO ₂ (mg CO ₂ /mg test substance)	2.14	1.77	1.90	information not available	0.99

180 est: estimated data. exp: experimental data.

182 **Table S4.** Explanation on test chemical selection and assigned "correct" biodegradation classification to

183 compare the results of the standard OECD 306 test, the revised test and the new test. Note that these

184 assigned biodegradation classifications are not definitive as they are restricted by the quality and scope of

185 the evaluated data.^{1,14}

Assigned reference biodegradation classification	Previously reported biodegradation data and explanation on test chemical selection
Sodium benzoate (SB); rapidly biodegradable – non persistent	 ECHA database: Readily biodegradable;¹⁵ Comber and Holt (2010) grouped SB in bin 1 (would normally pass a BST and enhanced BST);¹⁶ Positive control in BSTs OECD 301, 306, 310;^{4,8,9}
Triethanolamine (TEA); rapidly biodegradable – non persistent	 ECHA database: Readily biodegradable;¹⁷ Recommended by regulators for testing in ring test; Variable degradation observed in BSTs ranging from 0-100%: Eide-Haugmo et al. (2012) found TEA to degrade 20% in 28 days in OECD 306 Closed Bottle test;¹⁸ Unpublished results vary from under 20% to over 60% biodegradation after 28 days for OECD 306 Closed Bottle test (Cefas, personal communication, 2016); Gerike and Fisher (1979) found TEA to degrade 91-100% in 28 days in Sturm test, 97% in 42 days in AFNOR test, 96% in 19 days in precursor to OECD 301E test, 0-2% in 14 days in MITI test and 0-9% in 30 days in Closed Bottle test;¹⁹
4-nitrophenol (4NP); inherently biodegradable – non persistent	 ECHA database: Inherently biodegradable;²⁰ Comber and Holt (2010) grouped 4NP in bin 2 (would normally fail a current BST, but pass an enhanced BST);¹⁶ Previously tested during intra-laboratory activated sludge and marine BST validation;^{1,21} Variable degradation observed in BSTs ranging from 0-100%: Nyholm and Kristensen (1987) found 4NP to degrade in OECD 306 Closed Bottle tests 38% in 28 days and 0-64% in 60 days; 4NP degraded in OECD 306 Shake Flask tests 35-54% in 28 days and 0-100% in 60 days (results from OECD 306 ring test 1984-85);^{22,23} Ott et al. (2019) found 4NP to degrade 3-91% in 60 days in marine OECD 301B tests with varying cell concentrations;¹ Martin et al. (2017) found 4NP to degrade 84-91% in 60 days in activated sludge OECD 301B tests with varying cell concentrations;²¹ Gerike and Fisher (1979) found 4NP to degrade 90-98% in 28 days in Sturm test, 97% in 42 days in AFNOR test, 100% in 19 days in precursor to OECD 301E test, 1-3% in 14 days in MITI test and 0-60% in Closed Bottle test;¹⁹
Anionic polyacrylamide (APAM); no reference biodegradation classification assigned	 No information available in ECHA database as polymers are exempt from REACH;²⁴ Recommended by industry for testing in ring test: polyacrylamides (PAMs) are widely used in several industrial fields such as for water treatment, agriculture and oil recovery;²⁵ Previous research found PAM macromolecules resistant to microbial attack, requiring initial physical-chemical break-down;^{26,27} Unpublished biodegradability data shows no degradation for OECD 306 Closed Bottle test, marine BODIS test or Zahn Wellens test (SNF, personal communication, 2018); Variable degradation reported in unpublished imBST_{MR}-similar industry study with 100-fold increased bacterial cell concentrations from seawater measuring O₂ consumption with MRs and 400 mg/L APAM (Equinor, personal communication, 2016): Study 1, April: over 20% biodegradation measured in 120 days; Study 2, November: no biodegradation detected in 90 days; Due to a lack of peer-reviewed reference literature for APAM, it was not possible to assign a "correct" biodegradation classification; consequently, APAM results in the ring test were discussed separately to data of SB, TEA, 4NP and PCP;
Pentachlorophenol (PCP); potentially persistent	 Not registered under REACH ²⁸, but the Finish Environment Institute (SYKE) database indicates potential persistence based on BST results;²⁹ Comber and Holt (2010) grouped PCP in bin 3 (should normally fail a BST and enhanced BST);¹⁶ Previously tested during intra-laboratory activated sludge and marine BST validation;¹²¹ Variable degradation observed in different biodegradation test, depending on PCP concentration and adaptation: Ott et al. (2019) found radiolabeled PCP at 10 mg/L to not degrade (0-1%) in 60 days in marine OECD 301B tests with varying cell concentrations;¹ Martin et al. (2017) found radiolabeled PCP at 10 mg/L to not degrade (0-1%) in 60 days in activated sludge OECD 301B tests with varying cell concentrations;²¹ Lapertot and Pulgarin (2006) found PCP to not degrade (0%) in 28 days in inherent test OECD 302B, but concluded that this may have been the result of substrate inhibition;³⁰ Ingerslev et al. (1998) observed PCP degradation in shake flask simulation tests in unadapted systems only after long acclimation phases (14-85 days in river water tests), but PCP degradation rates increased in adapted systems; no or little degradation was observed at inhibitory PCP concentrations above 20 mg/L, but PCP degraded quickly (t₅₀ = 3-10 days) at concentrations under 2.5 mg/L;³¹ Toxicity ^{31,32} and low solubility concerns; however, PCP was most suitable negative control after screening 34 potential compounds proposed from regulators and recommendations from previous report;^{16,33}

- 187 **Table S5.** Chemical and test strategy. Overview of the test setups and chemicals tested at each anonymised
- 188 CRO, labelled CRO A-M. The total number of each test method, per chemical, is included in the last row

189 of the table.

			OE	C D306	бсв				mB	BST _{MR}					iml	BSTm	R	
CRO	B	SB	TEA	4NP	APAM	PCP	В	SB	TEA	4NP	APAM	PCP	В	SB	TEA	4NP	APAM	PCP
А							X	Х	Х			X	Х	Х	Х			X
В	Х	Χ	Χ	Χ	X	Χ												
С	Х	X	X	X	Χ	X	Χ	X	X	X	X	X	Х	X	X	X	X	X
D							Χ	X	Χ	Χ	X	X	Х	X	X	X	X	X
Е	Х	Χ	Χ	Χ	Χ	Χ												
F	Х	X	X	Χ	Χ	Χ	Χ	X		Χ		X	Х	X		X		X
G	Х	Χ	Χ	Χ	X	Χ												
Н	Х	X	X	Х		Χ	Х	Χ		Χ		X	Х	X		X		X
Ι							X	X	X	X	X	X	X	X	X	X	X	X
J	Χ	Χ	Χ	Χ	Χ													
K	Х	X	X	X	Χ	Χ	Χ	X		Χ	Χ	X	Х	X		X	X	X
L	Χ	Χ	X	Χ	Χ		X		Χ			X	X	X	X			X
М							X	X	Х	X		X	X	X	X	X		X
Total:	9	9	9	9	8	7	9	8	6	7	4	9	9	9	6	7	4	9

190 B: blank. SB: sodium benzoate. TEA: triethanolamine. 4NP: 4-nitrophenol. APAM: anionic

191 polyacrylamide. PCP: pentachlorophenol.

192

Table S6. Oxygen available in the OECD306_{CB} and closed system MR systems.

ity (ocean water), the solubility of dissolved oxygen is neubation temperature 20°C;											
ncubation temperature 20°C;											
1 ,											
space 260 mL, incubation temperature 20°C;											
nly relevant for closed MR systems (OxiTop), as the other (x) replenish oxygen immediately after consumption;											
 Molecular mass O₂: 32 g/mol; 21% O₂ in air; ideal gas at 20°C, 1 atm: 24.04 L/ mol; 											
mBST _{MR} and imBST _{MR}											
$\frac{O_2 \text{ in liquid phase:}}{0.25 \text{ L x 7.4 mg } O_2/L} = 1.85 \text{ mg } O_2$											
$\frac{O_2 \text{ in headspace:}}{Volume O_2 \text{ in headspace:} 0.26 \text{ L x } 0.21 = 0.055 \text{ L } O_2;}$ n(O_2) = 0.055 L O_2 ÷ 24.04 L/mol = 2.29 x 10 ⁻³ mol O_2 m(O2) = 32 g/mol x 2.29 x 10 ⁻³ mol O_2 = 7.33 x 10 ⁻² g = 73.28 mg O_2											
Total O₂ in imBST_{MR} or mBST_{MR} bottle: 1.85 mg $O_2 + 73.28$ mg $O_2 =$ 75.13 mg O₂											
2.22 mg $O_2 = 33.84$ 4-times more O_2 than the OECD306 _{CB} test setup.											

Desc	ription	CRO A	CRO B	CRO C	CRO D	CRO E	CRO F	CRO G	CRO H	CRO I	CRO J	CRO K	CRO L	CRO M
	Collection date OECD306 _{CB}		01.06.17	09.03.17		30.05.17	01.05.17	23.05.17	06.04.17		02.06.17	24.04.17	14.03.17	
	Collection date MR tests	27.03.17		07.03.17	08.05.17		01.05.17		04.04.17	V O		24.04.17	14.03.17	14.08.17
	Depth (m)	6	3	nr.	10	2	10	50	nr.	CRO	10	nr.	60	0.5
Seawater	Distance offshore (m)	40-50	45	67	300	100	250	5000	nr.	See	100	nr.	nr.	200
concetion	Water appearance	Clear	Clear	Clear	Clear	Clear	Slightly turbid	Clear	Clear		Clear	Clear	Clear	Clear
	Date setup OECD306 _{CB}		14.06.17	15.03.17		06.06.17	11.05.17	30.05.17	13.04.17		09.06.17	04.05.17	21.03.17	
	Date setup MR tests	31.03.17		08.03.17	13.05.17		04.05.17		06.04.17	31.03.17		26.04.17	15.03.17	17.08.17
	pН	8.0	7.8	8	8.1	7.9	7.40	8	7.70		8.2	7.8	8	7.9
	T (°C)	10.4	24.9	18.7	17.8	19.2	9.0	22.0	15.6		12.0	10.4	14.9	2.8
	DO (mg/L)	10.3	6.0	8	9.5	9.19	7.9	7.4	7.85		9.6	11.1	7.9	12.
Raw seawater	Conductivity (mS/cm)	24.0	44.1	45.3	44.3	46.7	45.0	np.	48.10	See CRO A	43.8	45.8	53.3	42.7
(S1)	Salinity (ppt)	16.1	28.7	32.2	27.5	34.7	28.0	34.1	30.60	ee (31.1	29.6	34.6	27.5
	HPC x 10 ³ / mL	82	10	np.	0.92	0.48	0.5	2	4.5	×.	np.	2	Not countable	np.
	TCC x 10 ⁵ / mL	5.4 ± 0.4		$2\pm$ 0.094	$\begin{array}{c} 2.8 \pm \\ 0.21 \end{array}$		$\begin{array}{c} 3.1 \pm \\ 0.49 \end{array}$		$\begin{array}{c} 0.6 \pm \\ 0.034 \end{array}$			$\begin{array}{c} 0.7 \pm \\ 0.07 \end{array}$	1.1 ± 0.04	7.5 ± 0.21
	pН	8.7		8					7.80			6.76	8.	8
	T (°C)	19.1		18.7					16.00			19.7	10.7	0.9
10 µm	DO (mg/L)	8.8		8	np.		np.		7.72			9.3	8.3	13.4
filtered seawater for	Conductivity (mS/cm)	24.5		45.3	np.		np.		48.10	See CRO A		48.4	53.5	41.1
mBST _{MR}	Salinity (ppt)	16.7		32.2					30.60	ee (30.3	34.4	26.3
(S2)	HPC x 10 ³ / mL	Not countable		np.	0.39		0.2		2.1	Ň		0.65	4	np.
	TCC x 10 ⁵ / mL	$4.8 \pm$		2.4 ±	1.6 ±		1.2 ±		$0.4 \pm$			$0.86 \pm$	1.87±	$5.4 \pm$
		0.36		0.37	0.12		0.0094		0.02			0.12	0.12	0.15
TFF	pН	8.8		7.9					7.80	<u>ح</u>		7.1	8	7.6
processed	T (°C)	19.0		18.9	np.		np.		16.10	See CRO A		19.8	12.6	6.0
seawater for	DO (mg/L)	8.5		8.1					7.23	C		9	8.5	11.4

196 Table S7. Raw and processed seawater characterization. CRO A and I used seawater collected and processed from the same source. All analysis 197 except TCC performed by CROs (methods see Table S2). Temperature measurement S1 does not always represent original seawater temperature.

Desc	cription	CRO A	CRO B	CRO C	CRO D	CRO E	CRO F	CRO G	CRO H	CRO I	CRO J	CRO K	CRO L	CRO M
imBST _{MR} (S3)	Conductivity (mS/cm)	24.4		45.7					48.00			48.1	53.6	42.6
	Salinity (ppt)	16.6		33.2					30.60			31.3	34.6	27.4
	HPC x 10 ⁴ / mL	140		np.	0.19		0.37		49			Not countable	20	np.
	TCC x 10 ⁷ / mL	$7.6 \pm$		$0.37 \pm$	2.4 ±		1.3 ±		$0.71 \pm$			$0.16 \pm$	$0.26 \pm$	12 ±
	ICC X IU / ML	0.14		0.041	0.096		0.035		0.0036			0.0054	0.013	0.99
	pH		8.00	8		7.9	7.3	8	8.2		8.2	8.3	7.8	
	T (°C)		19.80	19.6		20.0	20.3	19.0	19.7		18.6	21.2	19.7	
Aged seawater for	DO (mg/L)		7.40	7.5		9.0	7.7	6.4	7.6		7.8	9	7.6	
OECD306 _{CB} (S4)	Conductivity (mS/cm)		44.1	49.0		46.1	44.6	np.	48.8		43.6	44.6	52.5	
(54)	Salinity (ppt)		28.50	34.7		33.1	31.0	34.1	31.6		31.4	31.5	34.4	
	HPC x 10 ⁴ / mL		10	np.		6.8	0.012	0.06	0.3		np.	0.33	10	

198 —: test setup not conducted. HPC: heterotrophic plate counts. nr: not recorded. np: not performed. T: temperature. TCC: total cell counts.

- 200 Table S8. Effect of pretreatment on bacteria concentrations in OECD306_{CB} and imBST_{MR}. Coloring
- 201 indicates fold cell increase (green) and fold cell reduction (red) between treatment steps. CRO A and I used
- 202 the same seawater.

Test	Fold	CRO	CRO	CRO	CRO	CRO	CRO	CRO	CRO	CRO	CRO	CRO	CRO
	change	A/I	В	С	D	Е	F	G	Н	J	K	L	Μ
ОЕСДЗО6св	S1→S4		94	np.		141.7	0.2	0.3	0.7	np.	1.7	25	
imBST _{MR}	\$1 → \$3	140.4		18.8	88		42	_	118.9		23.3	23.7	160.2
	S2→S3	156.2		14.8	148		103		180.6		19.1	14.1	221.8

-: test setup not conducted. S1: raw seawater. S2: 10 µm filtered seawater. S3: 10 µm filtered and TFF 204 treated seawater to increase bacteria concentrations 100-fold nominally. S4: seawater after OECD 306 205 pretreatment (filtered/sedimented and aged). np: analysis not performed.

206

- 207 Table S9. Chemical degradation of reference compounds in the three test systems in respect to CROs as
- 208 evaluated against two regulatory persistence thresholds. Cursive brackets state the number of CROs out of
- 209 all CROs where the reference compound degraded in at least 2/3 replicates to pass the stated persistence
- 210 criteria and classify as non-persistent.

	Curr	ent test:	OECD3	06св	Rev	vised test	: mBST _M	/IR	Ν	New test: imBST _{MR}				
	Not per unc OSP	ler	Not persistent under REACH ^b		unc	Not persistent under OSPAR ^a		Not persistent under REACH ^b		rsistent ler AR ª	Not persistent under REACH ^b			
SB	100%	(9/9)	100%	(7/7)	100%	(8/8)	100%	(8/8)	100%	(9/9)	100%	(9/9)		
TEA	0%	(0/9)	14%	(1/7)	0%	(0/6)	17%	(1/6)	33%	(2/6)	50%	(3/6)		
4NP	11%	(1/9)	0%	(0/7)	0%	(0/7)	0%	(0/7)	0%	(0/7)	14%	(1/7)		
APAM	25%	(2/8)	0%	(0/7)	0%	(0/4)	0%	(0/4)	0%	(0/3)	0%	(0/3)		
РСР	33%	(2/6)	0%	(0/4)	0%	(0/8)	0%	(0/8)	0%	(0/8)	0%	(0/8)		

^a OSPAR: Biodegradation $\geq 20\%$ over 28 days = non-persistent; biodegradation < 20% over 28 days = 211

persistent ³⁴ 212

- 213 ^b REACH: Biodegradation \geq 60% over 60 days = non-persistent; biodegradation < 60% over 60 days =
- 214 potentially persistent 35

- 216 **Table S10.** Overview of sodium benzoate (SB) degradation in the three test systems based on replicates.
- 217 The mean biodegradation values recorded on day 28, 60 and 120 are stated. Lag phase (t_L) , time to reach
- 218 50% degradation (t_{50}) and dt_{50} (t_{50} - t_L) were only determined for the mBST_{MR} and imBST_{MR} tests. Cursive
- 219 values state the number of SB replicates out of all performed SB replicates, which were used to calculate
- 220 the respective benchmark criteria.

	ОЕСДЗ06св		mBST _{MR}		imBST _{MR}			
	Mean ± SD	R	Mean ± SD	R	Mean \pm SD	R		
Day 28	73 ± 15 %	27/27	73 ± 14 %	22/22	77 ±9%	26/26		
Day 60	82 ± 15 % 21/21		77 ± 15 %	22/22	80 ± 9 %	26/26		
Day 120	ND		$76 \pm 20 \%$	22/22	81 ± 16 %	26/26		
tL	ND		$4 \pm 3 d$	22/22	2 ± 1 d	26/26		
t ₅₀	ND		7 ± 4 d	22/22	$4 \pm 2 d$	26/26		
dt50	ND		ND		$3 \pm 3 d$	22/22	2 ± 1 d	26/26

221 ND: not defined. R: replicate numbers. SD: standard deviation.

222

223 **Table S11.** Overview of triethanolamine (TEA) degradation in the three test systems in respect to

- 224 replicates. The mean biodegradation values recorded on day 28, 60 and 120 are stated. Lag phase (t_L),
- 225 time to reach 50% degradation (t_{50}) and dt_{50} (t_{50} - t_L) were only determined for the mBST_{MR} and imBST_{MR}
- tests. Cursive values state the number of TEA replicates out of all performed TEA replicates, which were
- 227 used to calculate the respective benchmark criteria.

	ОЕСДЗ06св		mBST _{MR}		imBST _{MR}		
	$Mean \pm SD$	R	$Mean \pm SD$	R	$Mean \pm SD$	R	
Day 28	$6 \pm 7 \%$	27/27	$4 \pm 6\%$	18/18	20 ± 24 %	18/18	
Day 60	28 ± 33 %	20/20	24 ± 25 %	18/18	51 ± 28 %	18/18	
Day 120	ND		43 ± 31 %	18/18	61 ± 24 %	18/18	
tL	ND		$42 \pm 19 \ d$	14/18	$32 \pm 20 \ d$	17/18	
t50	ND		$82 \pm 30 \ d$	7/18	$50 \pm 26 d$	16/18	
dt50	ND		$30 \pm 21 \text{ d}$	7/18	$21 \pm 17 \text{ d}$	16/18	

228 ND: not defined. R: replicate numbers. SD: standard deviation.

- 230 **Table S12.** Overview of 4-nitrophenol (4NP) degradation in the three test systems in respect to replicates.
- 231 The mean biodegradation values recorded on day 28, 60 and 120 are stated. Lag phase (t_L) , time to reach
- 232 50% degradation (t_{50}) and dt_{50} (t_{50} - t_L) were only determined for the mBST_{MR} and imBST_{MR} tests. Cursive
- values state the number of 4NP replicates out of all performed 4NP replicates, which were used to calculate
- the respective benchmark criteria.

	ОЕСДЗ06св		mBST _{MR}		imBST _{MR}		
	Mean ± SD	R	$Mean \pm SD$	R	Mean \pm SD	R	
Day 28	3 ±4%	27/27	0 ± 1 %	20/20	6 ± 18 %	20/20	
Day 60	8 ± 12 % 21/21		4 ± 13 %	20/20	21 ± 30 %	20/20	
Day 120	ND		5 ± 13%	20/20	38 ± 36 %	20/20	
tL	ND		$73 \pm 38 \ d$	3/20	53 ± 25 d	11/20	
t ₅₀	ND		39 d	1/20	56 ± 23 d	10/20	
dt50	ND		3 d	1/20	$6 \pm 3 d$	10/20	

235 ND: not defined. R: replicate numbers. SD: standard deviation.

236

- 237 **Table S13.** Overview of anionic polyacrylamide (APAM) degradation in the three test systems in respect
- 238 to replicates. The mean biodegradation values recorded on day 28, 60 and 120 are stated. Lag phase (t_L),
- 239 time to reach 50% degradation (t_{50}) and dt_{50} (t_{50} - t_L) were only determined for the mBST_{MR} and imBST_{MR}
- tests. Cursive values state the number of APAM replicates out of all performed APAM replicates, which
- 241 were used to calculate the respective benchmark criteria.

	ОЕСДЗ06св		mBST _{MR}		imBST _{MR}		
	$Mean \pm SD$	R	$Mean \pm SD$	R	$Mean \pm SD$	R	
Day 28	$9 \pm 13 \%$	24/24	$0 \pm 0 \%$	12/12	3 ±4%	10/10	
Day 60	$10 \pm 11\%$ 21/21		$0 \pm 1 \%$	12/12	6 ± 6 %	10/10	
Day 120	ND		2 ±2 %	12/12	8 ± 8 %	10/10	
tL	ND		ND	0/12	$62 \pm 30 \text{ d}$	5/10	
t50	ND		ND	0/12	ND	0/10	
dt ₅₀	ND		ND	0/12	ND	0/10	

242 ND: not defined. R: replicate numbers. SD: standard deviation.

- 244 Table S14. Overview of pentachlorophenol (PCP) degradation in the three test systems in respect to
- replicates. The mean biodegradation values recorded on day 28, 60 and 120 are stated. Lag phase (t_L) , time
- 246 to reach 50% degradation (t_{50}) and dt_{50} (t_{50} - t_L) were only determined for the mBST_{MR} and imBST_{MR} tests.
- 247 Cursive values state the number of PCP replicates out of all performed PCP replicates, which were used to
- 248 calculate the respective benchmark criteria.

	$\frac{OECD306_{CB}}{Mean \pm SD}$		mBST _{MR}		imBST _{MR}		
			$Mean \pm SD$	R	$Mean \pm SD$	R	
Day 28	1 ± 2 % 18/18		$0 \pm 0 \%$	24/24	1 ±4 %	24/24	
Day 60	13 ± 18 % 12/12		$0 \pm 0 \%$	24/24	3 ± 8 %	24/24	
Day 120	ND		$0 \pm 0 \%$	24/24	6 ± 14 %	24/24	
t∟	ND		ND	0/24	$35 \pm 29 \ d$	6/24	
t50	ND		ND	0/24	ND	0/24	
dt50	ND		ND ND 0/24		ND	0/24	

249 ND: not defined. R: replicate number. SD: standard deviation.

250

Table S15. Chemical degradation of reference compounds in the three test systems in respect to replicates as evaluated against two regulatory persistence thresholds. Cursive brackets state the number of replicates out of all replicates where the reference compound degraded to pass the stated persistence criteria and

254 classify as non-persistent.

	Current test: OECD306 _{CB}		Re	Revised test: mBST _{MR}			New test: imBST _{MR}					
	Not per uno OSP.	der	-	rsistent der CH ^b	Not per un OSP		un	rsistent der .CH ^b	Not per unc OSP.	der	Not per uno REA	
SB	100%	27/27	100%	21/21	100%	22/22	95%	21/22	100%	26/26	100%	26/26
TEA	4%	1/26	11%	2/19	0%	0/18	11%	2/18	33%	6/18	50%	9/18
4NP	7%	2/27	0%	0/21	0%	0/21	0%	0/21	10%	2/20	15%	3/20
APAM	25%	6/24	0%	0/21	0%	0/12	0%	0/12	0%	0/10	0%	0/10
РСР	39%	7/18	0%	0/12	0%	0/24	0%	0/24	4%	1/24	0%	0/24

^a OSPAR: Biodegradation $\ge 20\%$ over 28 days = non-persistent; biodegradation < 20% over 28 days = persistent ³⁴

257 ^b REACH: Biodegradation \geq 60% over 60 days = non-persistent; biodegradation < 60% over 60 days = 258 potentially persistent ³⁵

260	Table S16. Test variation per chemical across tests described by the coefficient of variation.
-----	--

	Current test: OECD306 _{CB}	Revised test: mBST _{MR}	New test: imBST _{MR}
SB	5%	11%	9%
TEA	55%	51%	25%
4NP	75%	69%	50%
APAM	57%	57%	36%
РСР	52%	21%	56%
Mean	49%	42%	35%
Mean excl. PCP	48%	47%	30%

S35

263 **REFERENCES.**

- (1) Ott, A.; Martin, T. J.; Snape, J. R.; Davenport, R. J. Increased Cell Numbers Improve Marine
 Biodegradation Tests for Persistence Assessment. *Sci. Total Environ.* 2020, 706, 135621.
 https://doi.org/10.1016/j.scitotenv.2019.135621.
- Martin, T. J.; Goodhead, A. K.; Snape, J. R.; Davenport, R. J. Improving the Ecological Relevance of Aquatic Bacterial Communities in Biodegradability Screening Assessments. *Sci. Total Environ.* 2018, *627*, 1552–1559. https://doi.org/10.1016/j.scitotenv.2018.01.264.
- (3) Ott, A.; Martin, T. J.; Whale, G. F.; Snape, J. R.; Rowles, B.; Galay-Burgos, M.; Davenport,
 R. J. Improving the Biodegradability in Seawater Test (OECD 306). *Sci. Total Environ.*272 2019, 666, 399–404. https://doi.org/10.1016/j.scitotenv.2019.02.167.
- (4) OECD. OECD 310 Ready Biodegradability CO2 in Sealed Vessels (Headspace Test);
 Paris, 2014. https://doi.org/10.1787/9789264016316-en.
- (5) Weytjens, D.; Van Ginneken, I.; Painter, H. The Recovery of Carbon Dioxide in the Sturm
 Test for Ready Biodegradability. *Chemosphere* 1994, 28 (4), 801–812.
 https://doi.org/10.1016/0045-6535(94)90232-1.
- Fiebig, S.; Maischak, H.; Maeß, C. Investigation of Alternative Test Designs for Testing the
 Biodegradability in Seawater Poster Presented at SETAC Europe 27th Annual Meeting,
 Brussels, Belgium; 2017.
- 281 (7) Xie, W. H.; Shiu, W. Y.; Mackay, D. A Review of the Effect of Salts on the Solubility of
 282 Organic Compounds in Seawater. *Mar. Environ. Res.* 1997, 44 (4), 429–444.
 283 https://doi.org/10.1016/S0141-1136(97)00017-2.
- 284 (8) OECD. OECD Guideline for Testing of Chemicals (301): Ready Biodegradability; Paris,
 285 1992.
- (9) OECD. OECD Guideline for Testing of Chemicals (306): Biodegradability in Seawater;
 Paris, 1992. https://doi.org/http://dx.doi.org/10.1787/9789264070486-en.
- (10) Painter, H. A. Detailed Review Paper on Biodegradability Testing. OECD Environ.
 Monogr. 1995, 98, 1–162.
- (11) Courtes, R.; Bahlaoui, a; Rambaud, a; Deschamps, F.; Sunde, E.; Dutrieux, E. Ready
 Biodegradability Test in Seawater: A New Methodological Approach. *Ecotoxicology and environmental safety*. 1995, pp 142–148. https://doi.org/10.1006/eesa.1995.1054.
- (12) Syracuse Research Corporation. Physprop http://esc.syrres.com/fatepointer/search.asp
 (accessed Jul 23, 2019).
- (13) Royal Society of Chemistry. ChemSpider https://www.chemspider.com/Default.aspx
 (accessed Jul 23, 2019).
- (14) Ingre-Khans, E.; Ågerstrand, M.; Beronius, A.; Rudén, C. Reliability and Relevance
 Evaluations of REACH Data. *Toxicol. Res. (Camb).* 2019, 8 (1), 46–56.
 https://doi.org/10.1039/c8tx00216a.
- 300 (15) ECHA. Brief profile sodium benzoate https://echa.europa.eu/brief-profile/ 301 /briefprofile/100.007.760 (accessed Nov 5, 2019).
- 302 (16) Comber, M.; Holt, M. Developing a Set of Reference Chemicals for Use in Biodegradability
 303 Tests for Assessing the Persistency of Chemicals; 2010.
- 304 (17) ECHA. Brief profile triethanolamine https://echa.europa.eu/fr/brief-profile/ 305 /briefprofile/100.002.773 (accessed Nov 5, 2019).
- 306 (18) Eide-Haugmo, I.; Brakstad, O. G.; Hoff, K. A.; da Silva, E. F.; Svendsen, H. F. Marine
 307 Biodegradability and Ecotoxicity of Solvents for CO2-Capture of Natural Gas. *Int. J.*308 *Greenh. Gas Control* 2012, *9*, 184–192. https://doi.org/10.1016/j.ijggc.2012.03.006.

- 309 (19) Gerike, P.; Fischer, W. K. A Correlation Study of Biodegradability Determinations with
 310 Various Chemicals in Various Tests. *Ecotoxicol. Environ. Saf.* 1979, 3 (1), 159–173.
 311 https://doi.org/10.1016/0147-6513(81)90045-2.
- 312 (20) ECHA. Brief profile 4-nitrophenol https://echa.europa.eu/fr/brief-profile/ 313 /briefprofile/100.002.556 (accessed Nov 5, 2019).
- Martin, T. J.; Snape, J. R.; Bartram, A.; Robson, A.; Acharya, K.; Davenport, R. J.
 Environmentally Relevant Inoculum Concentrations Improve the Reliability of Persistent
 Assessments in Biodegradation Screening Tests. *Environ. Sci. Technol.* 2017, *51* (5), 3065–
 3073. https://doi.org/10.1021/acs.est.6b05717.
- (22) Nyholm, N.; Kristensen, P. Screening Test Methods for Assessment of Biodegradability of Chemical Substances in Sea Water: Ring Test Programme 1984- 1985. Final Report;
 Hørsholm, Denmark, 1987.
- 321 (23) Nyholm, N.; Kristensen, P. Screening Methods for Assessment of Biodegradability of
 322 Chemicals in Seawater Results from a Ring Test. *Ecotoxicol. Environ. Saf.* 1992, 23 (2),
 323 161–172. https://doi.org/10.1016/0147-6513(92)90056-9.
- 324 (24) ECHA. Guidance for Monomers and Polymers Guidance for the Implementation of
 325 REACH. 2012, No. April, 1–25.
- (25) Caulfield, M. J.; Qiao, G. G.; Solomon, D. H. Some Aspects of the Properties and Degradation of Polyacrylamides. *Chem. Rev.* 2002, *102* (9), 3067–3084.
 https://doi.org/10.1021/cr010439p.
- 329 (26) Seybold, C. A. Polyacrylamide Review: Soil Conditioning and Environmental Fate.
 330 Commun. Soil Sci. Plant Anal. 1994, 25 (11–12), 2171–2185.
- (27) El-Mamouni, R.; Frigon, J. C.; Hawari, J.; Marroni, D.; Guiot, S. R. Combining Photolysis
 and Bioprocesses for Mineralization of High Molecular Weight Polyacrylamides.
 Biodegradation 2002, *13* (4), 221–227. https://doi.org/10.1023/A:1021272519714.
- ECHA. Substance information pentachlorophenol https://echa.europa.eu/fr/substance information/-/substanceinfo/100.001.617 (accessed Nov 5, 2019).
- 336 (29) SYKE. Data bank of environmental chemicals Pentachlorophenol
 337 http://wwwp.ymparisto.fi/scripts/Kemrek/Kemrek_uk.asp?Method=MAKECHEMdetailsf
 338 orm&txtChemId=245 (accessed Nov 5, 2019).
- (30) Lapertot, M. E.; Pulgarin, C. Biodegradability Assessment of Several Priority Hazardous
 Substances: Choice, Application and Relevance Regarding Toxicity and Bacterial Activity.
 Chemosphere 2006, 65 (4), 682–690. https://doi.org/10.1016/j.chemosphere.2006.01.046.
- 342 (31) Ingerslev, F.; Baun, A.; Nyholm, N. Aquatic Biodegradation Behavior of
 343 Pentachlorophenol Assessed through a Battery of Shake Flask Die-Away Tests. *Environ.*344 *Toxicol. Chem.* 1998, *17* (9), 1712–1719. https://doi.org/10.1897/1551345 5028(1998)017<1712:ABBOPA>2.3.CO;2.
- King, E. F.; Painter, H. A. The Effect of Acclimatisation on the Toxicity of Chemicals to
 Activated Sludge Microorganisms. *Environ. Pollut.* 1985, *39* (3), 267–280.
 https://doi.org/10.1016/0143-1471(85)90101-1.
- 349 (33) ECETOC. Refined Approaches for Risk Assessment of PBT/VPvB Chemicals Technical
 350 Report No.112; Brussels, 2011.
- 351 (34) OSPAR. Guidelines for Completing the Harmonised Offshore Chemical Notification
 352 Format (HOCNF) (OSPAR Agreement: 2012/05. Update 2015); 2015.
- 353 (35) Regulation (EC) No 1907. Of the European Parliament and of the Council of 18 December
 354 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals

355 356 (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/4; 2006.