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Mathematical models

Pseudo-reactions and deterministic model

The model of the synthetic toggle switch we considered in our analysis was originally devel-

oped in Lugagne et al.S1 The model captures the pseudo-reactions describing transcription
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those describing translation
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and those related to dilution/degradation
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In the above equations, fL(TetR, aTc) and fT(LacI, IP TG) are the gene regulation functions

defined as:

fL(TetR, aTc) := κm0
L + κm

L · h−(TetR · h−(aTc, θaTc, ηaTc), θTetR, ηTetR),

fT(LacI, IP TG) := κm0
T + κm

T · h−(LacI · h−(IP TG, θIPTG, ηIPTG), θLacI, ηLacI),

the paramenters κm0
L/T, κm

L/T, κp
L/T, gm

L/T, gp
L/T are leakage transcription, transcription, trans-

lation, mRNA degradation, and protein degradation rates, respectively, and h−(x, θ, η) =

1/(1 + (x/θ)η) represents a decreasing Hill function.

The pseudo-reactions listed above can be put together to obtain the following determin-

istic model of the toggle switch dynamics:
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The model is completed by considering the diffusion dynamics of the inducer molecules,

aTc and IPTG, across the cells’ membranes with a non-symmetrical exchange dynamicsS1

given by:

d aTc

dt
=





kin
aTc(uaTc − aTc), if uaTc > aTc

kout
aTc(uaTc − aTc), if uaTc ≤ aTc

, (5)

d IP TG

dt
=





kin
IPTG(uIPTG − IP TG), if uIPTG > IP TG

kout
IPTG(uIPTG − IP TG), if uIPTG ≤ IP TG

, (6)

where aTc and IP TG denote the concentrations of the inducer molecules inside the cell,

while uaTc and uIPTG those in the growth medium of the cells.

The values of all model parametersS1 are listed in Table S1.

Table S1: Value of the parameters of the model (1)-(6).

κm0
L 3.20e-2 mRNA min−1 gm

L , gm
T 1.386e-1 min−1

κm0
T 1.19e-1 mRNA min−1 gp

L, gp
T 1.65e-2 min−1

κm
L 8.30 mRNA min−1 θLacI 31.94 a.u.

κm
T 2.06 mRNA min−1 ηLacI 2.00

κp
L 9.726e-1 a.u. mRNA min−1 θTetR 30.00 a.u.

κp
L 9.726e-1 a.u. mRNA min−1 ηTetR 2.00

kin
IPTG 2.75e-2 min−1 θIPTG 9.06e-2 mM

kout
IPTG 1.11e-1 min−1 ηIPTG 2.00
kin

aTc 1.62e-1 min−1 θaTc 11.65 ng/ml
kout

aTc 2.00e-2 min−1 ηaTc 2.00

Average Model

By assuming (i) instantaneous diffusion of the inducers across the cell membrane, (ii) equal

degradation rates for LacI and TetR (that is, gp
L = gp

T = gp), and (iii) exploiting the fact

that the time scales of the mRNA dynamics are notably faster than those of the proteins,S2



we can obtain the following non-dimensional quasi-steady state model of the toggle switch:

dx1

dt′
= k0

1 +
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1 + x2
2 · w1(t′/gp)

− x1

dx2

dt′
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(7)

where

t′ = gp t, x1 =
LacI

θLacI
, x2 =

TetR

θTetR
, (8)

are rescaled time and states, and the dimensionless parameters are defined as
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.

The nonlinear functions w1(t) and w2(t) take into account the static relationship between

each repressor protein (TetR or LacI) and its corresponding regulator molecule (aTc or IPTG,

respectively). They are defined as

w1(aTc(t)) :=
1

(
1 +

(
aT c(t)
θaTC

)ηaTc
)ηTetR

(9)

w2(IP TG(t)) :=
1

(
1 +

(
IP T G(t)

θIPTG

)ηIPTG
)ηLacI

(10)

System (7) can be averaged when fed with two mutually exclusive pulsatile inputs, of the

form

uaTc(t) = ūaTc · (1 − sq(t/T ))

uIPTG(t) = ūIPTG · sq(t/T )

(11)

where sq(t/T ) is a periodic square wave of period T with duty-cycle d ∈ [0, 1]. Such averaging



analysis yields the following average model:
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[
k0

1 + k1

(
d

1 + x2
2

+
1 − d

1 + x2
2 · w̄1(ūaTc)
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where τ = t′/gpT and ε = Tgp.

The most relevant property of model (12) is that when it possesses a unique exponentially

stable equilibrium point x̄av, then the solutions of the original time-varying system (7), from

which (12) is derived, will converge at steady-state to a neighborhood of x̄av. Therefore, x̄av

can be used as good approximation of the average value of the response of (7) when subject

to mutually exclusive pulsatile inputs (11).S2

Curves of equilibria of the average model

The number and position in state space of the equilibrium points x̄av = [x̄1, x̄2] of the

average vector field (12) depend on the specific choice of the amplitudes ūaTc and ūIPTG of

the mutually exclusive pulsatile inputs, and on the value of the duty-cycle d. For example,

for the reference values ūaTc = 50 ng/ml and ūIPTG = 0.5 mM, system (12) is monostable and

the position of the equilibrium point x̄av varies monotonically with d as reported in Figure

5 in our previous workS2 (blue dots). Hence, given certain values of ūaTc and ūIPTG, it is

possible to move the position of x̄av on the corresponding curve by varying d, as reported in

Figure S1 in our previous work.S2



Supplementary details on designed controllers and sim-

ulations

PI-PWM

The PI-PWM relies on an ensemble of analytical approximations.S2 Firstly, the curves of

equilibria ΓūaTc,ūIPTG
of the average model used by the projector Π are computed by assuming

quasi-steady state of the transcription dynamics of mRNAs and instantaneous diffusion of

inducer molecules through the cell membrane. Secondly, the equilibrium point x̄av of the

average model is an approximation of the mean value of the oscillations of LacI and TetR.

This accuracy depends on the parameter ε = T gp in the average model equations, where T

is the period of the forcing inputs, and we fixed its value to 240 min that represented a good

trade-off between the time scales of the toggle switch itself and diffusion effects of the cell

membrane. Moreover, the desired setpoint x̄ref = [LacIref/θLacI, T etRref/θTetR], to which we

want regulate the measured mean value 〈xk〉 of the toggle switch response, does not exactly

lie on the curve ΓūaTc,ūIPTG
returned by the Model Based Inversion algorithm and employed

to compute the error signal eπ
k for the PI (see Supplementary Figure S3). Therefore, the

curve represents an additional constraint to the performance of the control system.

The tuning of the PI gains was carried out heuristically via numerical simulations in

MATLAB. Specifically, the closed loop system was simulated for 50 periods for 40,000 pairs

of gain values kP and kI selected uniformly in the ranges kP ∈ [10−4, 1] and kI ∈ [10−5, 0.1];

both intervals were divided in 200 uniformly distributed samples. Fig. S1 shows the value

of the settling time of the duty-cycle dk and the norm of steady-state projected error e∞

π for

each pair of gain values. The values of kP = 0.0101 and kI = 0.0401 were selected as those

giving the best compromise between speed of the transient and residual steady-state error.



Model Predictive Control

Genetic algorithms1 were used to numerically find the (sub)optimal control solution at each

step. We adopted the MATLAB genetic algorithm toolbox by setting the initial population to

50 individuals randomly chosen in the interval [0, dref]. The maximum number of generations

was set to 150, while the maximum number of stall generations was set to 30. All the other

parameters were kept to their default values. Using the parallel computation toolbox and

utilizing 12 logical cores of an INTEL XEON E5-2640v3 CPU, the optimization routine

(setting Tp = 720 minutes, that is, N = 3) takes about 3 minutes to converge towards a

solution.

The control parameters KLacI and KTetR in the cost function Jk were selected heuristically

to KLacI = 1 and KTetR = 4, after an extensive numerical search in MATLAB. Specifically,

the control evolution was simulated for 18 periods fixing KLacI = 1 and varying KTetR over

37 values chosen uniformly in the interval [0.01, 100], so as to vary the ratio between the two

gains. The best values given above were then selected for the in-silico experiments reported

in the main text.

Simulations

Stochastic simulations were also performed in MATLAB using the Gillespie’s Stochastic

Simulation Algorithm. 2

1https://it.mathworks.com/help/gads/ga.html
2https://it.mathworks.com/matlabcentral/fileexchange/34707-gillespie-stochastic-simulation-algorithm



Supplementary Figures
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Figure S1: Tuning of the PI controller. (a) Settling time of the duty-cycle at the 10% of its final value,
computed as a number of periods, for all pairs (kP, kI) ∈ [10−4, 1] × [10−5, 0.1]. Note that the performance
was evaluated over a simulation time of 50 periods and yellow colored squares denote values of settling time
≥ 50 periods. (b) Zoom of the most significant parameter region in panel a (highlighted within the red box);
(c) Norm of the steady-state projected error e∞

π for the same range of values of control gains as in panel b.
The red box in panels b and c indicates the values of PI gains that were selected and used for all in-silico
control experiments.
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Figure S2: Agent-based simulation in BSim of the cells evolution in open-loop. The pulsatile inputs’
amplitudes were set to ūaTc = 35, ūIPTG = 0.35, while the duty-cycle was kept constant (without any
adaptation) to dref = 0.4. The period was selected as usual to be T = 240 min. Total simulation time is
72 hours. We considered E. coli cells growing in a single chamber of a “mother machine”-like microfluidic
device:S3 the simulations start with a single cell located at the bottom of the chamber; as the cell grows and
duplicates, it pushes outside of the chamber new cells that exceed the maximum capacity of the chamber
(around 10 cells). (a) Evolution over time of LacI; the dashed line representing the setpoint LacIref = 750,
while lighter lines the evolution of the state for each cell in the simulation, and the darker solid line the
mean trajectory computed over the population, evaluated through a moving window of period T . Panel
(b) Evolution over time of T etR; the dashed line representing the setpoint T etRref = 300, lighter lines are
the evolution of the state for each cell in the simulation, while the dark solid line represents the evolution of
the mean trajectory across the population in the period, evaluated using a moving window of period T .



TetR

x̄ref

x̂ref

eπ
k

LacI

〈x̂k〉

〈xk〉

0
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Figure S3: Working principle of the nonlinear projector block. (a) The red curve ΓūaTc,ūIPTG
represents

the closest one to the setpoint x̄ref selected by the Model Based Inversion algorithm; black curves are other
equilibrium curves that are farther from the setpoint. The setpoint x̄ref and the mean value of the state in
the k-th period 〈xk〉 are projected onto the curve on the points x̂ref and 〈x̂k〉, respectively. The length of the
curve between x̂ref and 〈x̂k〉, highlighted in blue, is the projection error eπ

k at the time instant k. (b) Even if
the projected error eπ

k is zero, that is ‖〈x̂k〉 − x̂ref‖ = 0, this does not necessarily imply zero regulation error,
indeed in the case represented here ‖〈xk〉 − x̄ref‖ 6= 0.
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