Supporting Information

Solution Deposition of a Bournonite CuPbSbS₃ Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture

Kristopher M. Koskela, Brent C. Melot, and Richard L. Brutchey*

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States

* Email: brutchey@usc.edu

Characterization. Thermal gravimetric analysis (TGA) was performed on a TA Instruments TGA Q50 instrument and samples were run in an alumina crucible under a flowing nitrogen atmosphere with a heating rate of 5 °C min⁻¹. The TGA samples were prepared by drying the ink in an alumina crucible to 140 °C under a flowing nitrogen atmosphere in an aluminum annealing chamber prior to TGA analysis to avoid excess corrosion of the thermocouple in the TGA. Fourier transform infrared (FT-IR) spectra were measured on a Bruker Vertex 80 spectrometer. The samples were prepared by drop casting the CuPbSbS₃ ink onto a ZnSe window and drying to 100 °C before annealing to 450 °C under a flowing stream of nitrogen. FT-IR spectra were background corrected with ~20 iterations. Scanning electron microscopy (SEM) was performed on a JEOL JSM-7001F scanning electron microscope with an operating voltage of 10 kV. The films were scored with a diamond scribe and broke in half before they were sputtered with argon before SEM imaging. Inductively-coupled plasma optical emission spectroscopy (ICP-OES) was performed on an iCap 7400 ICP. All powder samples were digested with 2 mL of concentrated nitric acid and subsequently diluted to 25 mL with Millipore water in a volumetric flask. Copper, lead, and antimony ICP standards were prepared at different concentrations (0.1 ppm, 0.8 ppm, 2 ppm, 5 ppm, 10 ppm) to construct a five-point calibration curve from which the sample concentrations of Cu, Pb, and Sb could be determined. *Raman* spectra were conducted on 570 nm bournonite thin films on glass substrates annealed to 450 °C for 20 min using a Horiba XploRA confocal Raman microscope with 785 nm excitation. The Raman microscope was covered with a black tarp to reduce ambient light exposure. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra X-ray photoelectron spectrometer with a monochromatic aluminum anode. An operating current of 5 mA and voltage of 12 kV with a step size of 0.1 eV, a pass energy of 20 eV, and a pressure range of 9 \times 10⁻⁸ – 1 \times 10⁻⁹ Torr was used to acquire 20 high resolution scans for each element. XPS was done on thin films deposited on Si/SiO₂ substrates using the solution deposition method described in the main text. In situ Ar⁺ ion beam milling was done for 5 min. Photoconductivity measurements were performed on a basic device architecture whereby the absorber layer was deposited on a glass substrate patterned with parallel FTO electrodes with a spacing of ~20 µm that was pre-cleaned as described in the main text. The cleaned FTO substrates were masked with Kapton tape to leave bare FTO for the electrode connections and the CuPbSbS₃ absorber laver was deposited as described in the main text. The Kapton mask was peeled off and the final anneal to 450 °C for 20 min was done without Kapton tape. Photoconductivity measurements were performed in air at 25 °C using a Keithley 2420 Sourcemeter (sensitivity = 100 pA) in the dark and under white light illumination from an AM1.5G filtered 300 W Xe arc lamp (Asahi Spectra HAL-320W).

Figure S1. (a) Ex situ powder XRD patterns of a dropcast ink annealed to various temperatures and times showing the phase evolution of CuPbSbS₃ indexed with CuSbS₂ and PbS. (b) Powder XRD pattern of dropcast ink annealed to 400 °C for 30 min showing substantial PbS and CuSbS₂ impurities. (c) Powder XRD pattern of dropcast ink annealed to 450 °C for 12 h showing reduced PbS and CuSbS₂ impurities.

Space Group	$Pmn2_1$
a (Å)	7.8158(58)
b (Å)	8.1515(17)
<i>c</i> (Å)	8.6729(54)
$V(Å^3)$	552.5634(34)
$\alpha = \beta = \gamma$	90°
R_{wp}	4.96%
χ^2	2.48

Atom	Multiplicity	Occupancy	x	У	Ζ	$U_{\rm iso}({\rm \AA}^2)$
Cu ₁	4	1.0	0.25038(9)	0.26601(5)	0.40833(1)	0.0167(7)
Pb_1	2	1.0	0.0	0.07523(4)	0.994008	0.0102(9)
Pb ₂	2	1.0	0.0	0.44129(3)	0.67268(6)	0.00100
Sb_1	2	1.0	0.0	0.92307(8)	0.54000(1)	0.00100
Sb_2	2	1.0	0.0	0.50855(9)	0.15134(9)	0.00100
S_1	2	1.0	0.0	0.22264(8)	0.28514(1)	0.00100
S_2	2	1.0	0.0	0.75425(5)	0.75841(6)	0.00100
S_3	4	1.0	0.24232(8)	0.10121(2)	0.64531(3)	0.00100
S_4	4	1.0	0.26614(8)	0.58338(3)	0.45166(7)	0.00100

 Table S1. Structural parameters of phase-pure bournonite CuPbSbS3 extracted from Rietveld analysis.

Figure S2. Raman spectra of a 570 nm CuPbSbS₃ thin film on glass annealed to 450 °C for 20 min, along with a blank borosilicate substrate.

Figure S3. XPS survey scan of thin film CuPbSbS₃ on Si/SiO₂ before in situ Ar⁺ ion beam milling.

Figure S4. XPS survey scan of thin film CuPbSbS₃ on Si/SiO₂ after in situ Ar⁺ ion beam milling.

Figure S5. High-resolution XPS spectra for (a) Cu 2p before in situ Ar⁺ ion beam milling, and (b) Cu 2p after milling.

Figure S6. High-resolution XPS spectra for (a) Pb 4*f* before in situ Ar^+ ion beam milling, and (b) Pb 4*f* after milling.

Figure S7. High-resolution XPS spectra for (a) Sb 3d before in situ Ar⁺ ion beam milling, and (b) Sb 3d after milling.

Figure S8. High-resolution XPS spectra for (a) S 2p before in situ Ar⁺ ion beam milling, and (b) S 2p after milling.

Table S2. Peak positions and peak splitting from the high-resolution XPS spectra of CuPbSbS₃ thin films on Si/SiO₂ before in situ Ar^+ ion beam milling.

Element	Peak Splitting (eV)	Peak ID	Binding Energy (eV)
Cu	19.8	$2p_{1/2}$	951.3
		$2p_{3/2}$	931.5
Pb	4.8	$4f_{5/2}$	142.7
		$4f_{7/2}$	137.9
Pb (surface PbO_x)	4.9	$4f_{5/2}$	143.0
		$4f_{7/2}$	138.1
Sb	9.3	3 <i>d</i> _{3/2}	538.3
		3d _{5/2}	529.0
Sb (surface Sb_xO_y)	9.6	3 <i>d</i> _{3/2}	539.5
		3d _{5/2}	529.9
S	1.1	$2p_{1/2}$	162.5
		$2p_{3/2}$	161.4
S (surface SO_x)		2 <i>p</i>	163.1

Table S3. Peak positions and peak splitting from the high-resolution XPS spectra of $CuPbSbS_3$ thin films on Si/SiO₂ after in situ Ar⁺ ion beam milling.

Element	Peak Splitting (eV)	Peak ID	Binding Energy (eV)
Cu	19.8	$2p_{1/2}$	951.3
		$2p_{3/2}$	931.5
Pb	4.8	$4f_{5/2}$	142.7
		$4f_{7/2}$	137.9
Pb (surface PbO_x)	4.9	$4f_{5/2}$	143.0
		$4f_{7/2}$	138.1
Sb 9.3		3 <i>d</i> _{3/2}	538.3
		3 <i>d</i> _{5/2}	529.0
Sb (surface Sb_xO_y)	9.5	3 <i>d</i> _{3/2}	539.4
		3 <i>d</i> _{5/2}	529.9
S	1.1	$2p_{1/2}$	162.5
		$2p_{3/2}$	161.4
S (surface SO_x)		2 <i>p</i>	163.1

Figure S9. (a,b) Natural bournonite sample obtained from the Los Angeles County Natural History Museum (catalog number: NHMLA 67450, mined from Chihuahua, Mexico), and (c) powder XRD pattern of natural sample indexed to CuPbSbS₃ (PDF: 01-073-5993). Inset shows fully dissolved ink.

Figure S10. Photograph of CuPbSbS₃ inks prepared from the dissolution of CuO, PbO, and Sb₂S₃ in a 1:4 (v/v) mixture of EDT and en (left), and an ink of a natural bournonite sample (right) dissolved in the same solvent mixture with the same concentration (~60 mg mL⁻¹). Solid components of inks are shown in front of vials.

Figure S11. Powder XRD pattern of ink of natural bournonite sample annealed to 450 °C for 96 h and indexed to CuPbSbS₃ (PDF: 01-073-5993) and PbS (PDF: 01-077-0244).

Figure S12. Cross-sectional SEM image of a $\sim 1 \mu m$ CuPbSbS₃ thin film derived from 3 coats spun at 2000 rpm and annealed to 390 °C for 10 min between each coat.

Figure S13. Transmittance spectrum in an integrating sphere using a 570 nm thin film of $CuPbSbS_3$.

Figure S14. Representative resistivity measurements on different solution processed bournonite thin film samples. Plots are representative of semiconducting nature of CuPbSbS₃. Resistances were collected until ohmic contact was lost (data omitted).

Figure S15. Transient photoresponse at 25 °C under ambient conditions of a CuPbSbS₃ thin film deposited on patterned FTO. The device was tested under chopped white light at -500 mV. A 300 W Xe arc lamp calibrated to AM1.5G was employed for this measurement. Arrows indicate when light was turned on or off.

Figure S16. Powder XRD pattern of aikinite CuPbBiS₃ ink annealed to 450 °C for 48 h and indexed to CuPbBiS₃ (PDF: 01-071-0643) and PbS (PDF: 01-077-0244).