Supporting Information

Removal of hazardous contaminants from water by natural and zwitterionic surfactant modified clay

Hany H. Abdel Ghafar ^{a,b}, Emad K. Radwan ^{b*}, Shaimaa T. El-Wakeel ^b

Contents

Table S1. Some properties of the zwitterionic surfactant cocamidopropyl betaine and reacti	ve
yellow 160 dye.	. 2
Table S2. The non-linear form of the studied kinetics and equilibrium isotherm models	. 3
Figure S1. UV-Visible spectrum of the RY160 dye.	. 4
Figure S2. Standard calibration curve of RY160.	. 5

^a University of Jeddah, college of Science and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia.

^b Water Pollution Research Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, Egypt. 12622.

^{*} Corresponding author. Tel. +202 33370931; Fax: +202 33371211. E-mail emadk80@gmail.com, ek.hafez@nrc.sci.eg.

Table S1. Some properties of the zwitterionic surfactant cocamidopropyl betaine and reactive yellow 160 dye.

	Cocamidopropyl Betaine (CAPB)	Reactive yellow 160 dye (RY160)
Formula	$C_{19}H_{38}N_2O_3$	$C_{25}H_{22}ClN_9Na_2O_{12}S_3$
Structure		Na O NH NH
Molar mass	342.52 g/mol	818.12 g/mol

Table S2. The non-linear form of the studied kinetics and equilibrium isotherm models.

Kinetic models	Equation	Parameters
Pseudo-first-order	$q_t = q_e (1 - e^{-k_I t})$	q_t and q_e (mg/g) are the amount of adsorbate per gram of adsorbent at time t and equilibrium, respectively; k_I (1/min) is the pseudo-first-order rate constants, and t (min) is the contact time.
Pseudo-second-order	$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}$	k_2 (g/mg.min) is the pseudo-second-order rate constants.
Isotherm models	Equation	Parameters
Langmuir	$q_e = \frac{Q_L k_L C_e}{1 + k_L C_e}, R_L = \frac{1}{1 + k_L C_i}$	C_e (mg/L) is the concentration of adsorptive at equilibrium, Q_L (mg/g) is the Langmuir theoretical monolayer saturation capacity, k_L (L/mg) is the equilibrium constant and R_L (–) is the separation factor.
Freundlich	$q_e = k_F C_e^{1/n}$	$k_F (\text{mg}^{(1-1/n)} L^{(1/n)}/\text{g})$ and $n (-)$ are Freundlich constants
Dubinin-Radushkevich	$q_e = Q_{DR} e^{\left[-\beta \left(RT \ln\left(1 + \frac{1}{C_e}\right)\right)^2\right]},$ $E = \frac{1}{\sqrt{-2\beta}}$	Q_{DR} (mg/g) is the D–R maximum adsorption capacity, β (mol ² /J ²) is a constant related to the mean free energy of adsorption, R is the universal gas constant, T (K) is the absolute temperature and E (kJ/mol) is the mean free energy
Temkin	$q_e = \left(\frac{RT}{b_T}\right) ln A_T C_e$	b_T (–) is constant related to the adsorption heat, and A_T is the Temkin isotherm equilibrium binding constant (L/g)
Redlich-Peterson	$q_e = \frac{k_{RP} C_e}{1 + a_{RP} C_e^g}$	k_{RP} (L/mg) is constant related to the adsorption capacity, a_{RP} (L/mg) is constant related to the affinity of the binding sites and g (g) is an exponent related to the adsorption intensity.

Figure S1. UV-Visible spectrum of the RY160 dye.

Figure S2. Standard calibration curve of RY160.