Supporting information

Coupling conversion of n-hexane and CO over an HZSM-5 zeolite: Tuning the H/C balance and achieving high aromatic selectivity

Changcheng Wei^{ab}, Qijun Yu^{ab}, Jinzhe Li^a, Zhongmin Liu^{*a}

^a National Engineering Laboratory for Methanol to Olefins, Dalian National

Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding Authors: * E-mail: liuzm@dicp.ac.cn (Z.L.).

		Pore volume	Micropore volume	BET surface	face Micropore area (t-	
	S1O ₂ /Al ₂ O ₃ "	$(cm^3g^{-1})^b$	(t-plot, cm ³ g ⁻¹) ^b	area (m ² g ⁻¹) ^b	plot, cm ³ g ⁻¹) ^b	
HZSM-5	33.6	0.23	0.12	406	256	
	A .: 1		Bronsted acid con	ncentration	Lewis acid concentration	
	Acia amount (mmoig ')		(mmolg ⁻¹) ^d		(mmolg ⁻¹) ^d	
HZSM-5		0.82	0.67		0.15	

Table S1. SiO₂/Al₂O₃ and textural properties of H-ZSM-5

a: SiO_2/Al_2O_3 was determined by XRF. b: BET surface area and pore volume was determined by nitrogen sorption experiments recorded at 77K on a Micromeritics ASAP-2020 analyzer. c: Acid amount was calculated from the results of NH₃-TPD. d: Bronsted acid amount and Lewis acid amount were determined by Py-FTIR.

Figure S1. SEM images of HZSM-5.

Figure S2. IR spectra recorded over HZSM-5 zeolite before pyridine adsorption (back line) and after pyridine adsorption (red line).

Figure S3. Contrast of the n-hexane conversion and the products selectivity with TOS for n-hexane cracking in (a) CO and (b) He atmospheres over HZSM-5. Detailed comparison of (c) aromatics and (d) paraffins. Reaction conditions: T=400 °C, n-hexane WHSV=0.17 h⁻¹, (CO + Ar _{internal standard} + He _{balance})/n-hexane=120, P=3 MPa, time on stream=3 h. PS: the C9+ aromatics are composed of indene, naphthalene, methylnaphthalene and dimethylnaphthalene. And the carbon balance was calculated, which was between 97% and 99%.

According to element conservation, the equations for the transformation of n-hexane to aromatics (toluene as an example) and different alkanes are presented.

- (1) $9.5C_6H_{14} \rightarrow C_7H_8 + 12.5C_4H_{10}$
- (2) $16C_6H_{14} \rightarrow 3C_7H_8 + 25C_3H_8$
- (3) $3.25C_6H_{14} \rightarrow C_7H_8 + 6.25 C_2H_6$
- $(4) \quad 2C_6H_{14} \rightarrow C_7H_8 + 5CH_4$
- $(5) \quad 7C_6H_{14} \to 6C_7H_8 + 25H_2$

Table S2. Theoretical value of aromatics selectivity of five reaction equations.

Reaction equation	(1)	(2)	(3)	(4)	(5)
Aromatic selectivity (C%)	12	22	36	58	100

Because the amount of hydrogen generated is very small at this temperature range, the theoretical maximum of aromatics selectivity is 58 % for sole n-hexane conversion when n-hexane completely converted to aromatics and methane.

Figure S4. IR difference spectra recorded over HZSM-5 zeolite for the coupling nhexane with carbon monoxide at 200 °C.

Figure S5. GC-MS results (retention time from 30 min to 58 min) of retained species at different temperature for the coupling reaction.

Figure S6. MS spectra of 2-cyclopenten-1-one (a), 2-methyl-2-cyclopenten-1-one (b), 3-methyl-2-cyclopenten-1-one (c), 2,3-dimethyl-2-cyclopenten-1-one (d) and 2,3,4-trimethyl-2-cyclopenten-1-one (e) in ¹³CO (bottom) and ¹²CO (top) of the retained species in spent zeolite for the coupling reaction of n-hexane and CO. Reaction conditions: T=250 °C; n-hexane WHSV=1.2 g*g⁻¹h⁻¹; CO/n-hexane=21; P=1 bar. The catalysts were removed at 10 min during the reaction.

Figure S7. Contrast of MS spectra of butane, toluene, p-xylene and 1,2,3trimethybenzene of the products in 13 CO (bottom) and 12 CO (top) atmosphere for the coupling reaction at 250 °C.

Figure S8. GC-MS analysis of retained species at different CO partial pressure for the coupling C3H6 with CO over HZSM-5. (a) Retention time from 0 min to 35 min, (b) Retention time from 35 min to 58 min.

Figure S9. The m/e=18 signals of on-line mass spectrometry as a function of TOS. Reaction conditions: T=500 °C; n-hexane WHSV=2.44 h⁻¹, He or CO/n-hexane=94, P=1 bar, n-hexane reacted in He atmosphere for 80 min before switching to CO for 80 min, and then switching to He for 70 min.

Figure S10. The water volume ratio as a function of the signal of m/e=18 in He (a) and

CO (b) atmospheres.

Figure S11. The water volume ratio calculated from the calibration curve as a function of TOS.

 Table S3. Thermodynamics equilibrium of water-gas shift reaction at different temperature.

	Temperature /°C	453	477	501	524	548		
	CO volume ratio	9.3E-01	9.3E-01	9.3E-01	9.3E-01	9.3E-01		
	CO2 volume ratio	6.6E-03	6.6E-03	6.6E-03	6.6E-03	6.6E-03		
	H2 volume ratio	6.6E-03	6.6E-03	6.6E-03	6.6E-03	6.6E-03		
	H2O volume ratio	6.4E-06	7.8E-06	9.4E-06	1.1E-05	1.3E-05		

 $\mathrm{CO} + \mathrm{H}_2\mathrm{O} = \mathrm{CO}_2 + \mathrm{H}_2$

Assuming that the conversion of carbon monoxide is 0.7% (<1%), which could generate 0.7% volume of water.

Figure S12. Contrast of MS spectra of CO_2 of the effluent products in ¹²CO (bottom) and ¹³CO (top) atmosphere for the coupling reaction.