Bicyclic α -iminophosphonates as highly affinity imidazoline I₂ receptor ligands for Alzheimer's Disease

Sònia Abás,^{†, ∇} Sergio Rodríguez-Arévalo,^{†, ∇} Andrea Bagán,[†] Christian Griñán-Ferré,[‡] Foteini Vasilopoulou,[‡] Iria Brocos-Mosquera,[§] Carolina Muguruza,[§] Belén Pérez, [¶] Elies Molins,[⊥] F. Javier Luque,[#] Pilar Pérez-Lozano,[°] Steven de Jonghe,^Δ Dirk Daelemans,^Δ Lieve Naesens,^Δ José Brea,[•] M. Isabel Loza,[•] Elena Hernández-Hernández,[‡] Jesús A. García-Sevilla,[†] M. Julia García-Fuster,[†] Milica Radan,[#] Teodora Djikic,[#] Katarina Nikolic,[#] Mercè Pallàs,[‡] Luis F. Callado,[§] Carmen Escolano^{†, *}

[†] Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.

[‡] Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.

§ Department of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain. ^{II} Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, E-08193 Barcelona, Spain.

[⊥] Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, E-08193 Cerdanyola, Spain.

[#] Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, E-08921, Santa Coloma de Gramanet, Spain.

^o Unit of Pharmaceutical Technology, Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.

^A Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.

 Innopharma screening platform. BioFarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

[#] Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.

⁺ IUNICS University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands, IdISBa, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.

CONTENTS:

Synthesis of α-substituted PhosMic derivatives 10a-10e and 11	S4
Theoretical calculations	S8
3D-QSAR study	S25
In vitro Blood-Brain Barrier Permeation Assay	S35
Cytotoxicity assay	S37
Microsomal stability of human, rat and mice microsomes	S38
Solubility and chemical stability	S40
Cytochrome inhibition	S41
hERG ion channel inhibition	S42
Human and mouse plasma protein binding	S43
Receptor characterization panel	S44
5xFAD In vivo experimental design	S48
NMR spectra data	S49
Table S12. Representative data of ¹ H-NMR spectra of new compounds	S50
Table S13. Representative data of ¹³ C-NMR spectra of new compounds	S53
¹ H-NMR and ¹³ C-NMR spectra of new compounds 9a – 15	S56
³¹ P-NMR of 9d	S98
X-ray crystallographic data for 9b, 9c, 9d, 9v and 9ab	S99
HPLC/MS analysis of 9a, 14c, 15c, 9f, 9g, 9h, 9i, 9j, 9k, 9w and 9z	S125
References	S147
Molecular Formula Strings (Smiles)	S148

Synthesis of a-substituted PhosMic derivatives

General conditions for the synthesis of compounds (10a-10e and 11). Reagents, solvents, dry solvents and starting products were acquired from commercial sources. The organic phases were dried with anhydrous Na₂SO₄. All the reactions were performed in dry conditions (inert atmosphere) and using dry solvents. The term "concentration" refers to the vacuum evaporation using a Büchi rotavapor. When indicated, the reaction products were purified by "flash" chromatography on silica gel (35-70 µm) with the indicated solvent system. The melting points were measured in a MFB 59510M Gallenkamp instruments. IR spectra were performed in a spectrophotometer Nicolet Avantar 320 FTR-IR or in a Spectrum Two FT-IR Spectrometer, and only noteworthy IR absorptions (cm⁻¹) are listed. NMR spectra were recorded in CDCl₃ at 400 MHz (¹H) and 100.6 MHz (¹³C), and chemical shifts are reported in δ values downfield from TMS or relative to residual chloroform (7.26 ppm, 77.0 ppm) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant (\mathcal{J}) in hertz (Hz), integrated intensity and assignment (when possible). Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet; br s, broad signal. The accurate mass analyses were carried out using a LC/MSD-TOF spectrophotometer.

Diethyl α-phenylisocyanomethylphosphonate (10a).¹

Diethyl [amino(4-fluorophenyl)methyl]phosphonate (step 1-10b).² A mixture of 4-fluorobenzaldehyde (3.32 mL, 31.0 mmol), HMDS (3.20 mL, 15.5 mmol), diethyl phosphite (2.0 mL, 15.5 mmol) and I₂ (393 mg, 1.55 mmol) was stirred at rt overnight. Then, the reaction mixture was evaporated and EtOAc was added to the resulting residue. The organic phase was washed with a 10% solution of Na₂S₂O₄, dried and evaporated. Then, the residue (imine intermediate), THF (7 mL) and HCl 2N (10 mL) was heated at 70°C overnight. The THF was evaporated, water was added and the aqueous phase was washed with EtAOc. The aqueous phase was basified with NaOH 2N and the product was extracted with EtOAc. The organic phases were combined, dried and evaporated to give **step 1-10b** (1.17 g, 35%) as yellowish oil. IR (ATR) 3373, 3303, 2988, 1735, 1601, 1506, 1224, 1157, 1015, 961, 841, 790 cm⁻¹. representative peaks: ¹H NMR (400 MHz, CDCl₃) δ 1.20 (t, 3H, CH₂CH₃), 1.28 (t, 3H, CH₂CH₃), 3.59 (t, 1H, CH₂CH₃), 3.89-4.09 (m, 3H, CH₂CH₃), 4.25 (d, *J* = 16.0 Hz, 1H, CH), 7.02-7.13 (m, 2H, ArH), 7.41-7.47 (m, 1H, ArH), 7.62-7.70 (m, 1H, ArH). HRMS C₁₁H₁₈FNO₃P [M+H]⁺ 262.1003; found, 262.0999.

Diethyl [amino(4-methoxyphenyl)methyl]phosphonate (step 1-10c).² A mixture of 4methoxybenzaldehyde (4.22 mL, 31.0 mmol), HMDS (3.20 mL, 15.5 mmol), diethyl phosphite (2.0 mL, 15.5 mmol) and I₂ (393 mg, 1.55 mmol) was stirred at rt overnight. Then, the reaction mixture was evaporated and EtOAc was added to the resulting residue. The organic phase was washed with a 10% solution of Na₂S₂O₄, dried and evaporated. Then, the residue (imine intermediate), THF (7 mL) and HCl 2N (10 mL) was heated at 70°C overnight. The THF was evaporated, water was added and the aqueous phase was washed with EtAOc. The aqueous phase was basified with NaOH 2N and the product was extracted with EtOAc. The organic phases were combined, dried and evaporated to give **step 1-10c** compound (1.78 mg, 42%) as yellowish oil. IR (ATR) 3382, 3296, 2902, 1610, 1509, 1243, 1179, 1023, 909, 833, 727 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.18 (t, 3H, CH₂CH₃), 1.27 (t, 3H, CH₂CH₃), 3.79 (s, 3H, OCH₃), 3.82-3.89 (m, 1H, CH₂CH₃), 3.95-4.04 (m, 3H, CH₂CH₃), 4.19 (d, *J* = 16.0 Hz, 1H, CH), 6.86-6.89 (m, 2H, ArH), 7.35-7.38 (m, 2H, ArH). HRMS C₁₂H₂₁NO₄P [M+H]⁺ 274.1203; found, 274.1206.

Diethyl [(4-fluorophenyl)(formamido)methyl]phosphonate (step 2-10b).¹ To a solution of **step 1-10b** (722 mg, 2.76 mmol) in formic acid (5.20 mL), acetic anhydride (1.84 mL, 19.31 mmol) was added dropwise. The reaction was stirred at rt for 1 h and the mixture was concentrated *in vacuo* to give **step 2-10b** compound (798 mg, 100%) as yellowish solid. IR (ATR) 3254, 3034, 2878, 1674, 1506, 1380, 1215, 1160, 1015, 960, 812 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.11 (t, 3H, CH₂CH₃), 1.33 (t, 3H, CH₂CH₃), 3.70-3.78 (m, 1H, CH₂CH₃), 3.90-3.96 (m, 1H, CH₂CH₃), 4.12-4.17 (m, 2H, CH₂CH₃), 5.55 (dd, *J* = 9.5, 21.0 Hz, 1H, CH), 7.01-7.06 (m, 2H, ArH), 7.43-7.47 (m, 2H, ArH), 7.71 (br s, 1H, NH), 8.23 (s, 1H, CHO). HRMS C₁₂H₁₈FNO₄P [M+H]⁺ 290.0952; found, 290.0953.

Diethyl [(4-methoxyphenyl)(formamido)methyl]phosphonate (step 2-10c).¹ To a solution of **step 1-10c** (1.36 g, 4.98 mmol) in formic acid (9.39 mL), acetic anhydride (3.30 mL, 34.87 mmol) was added dropwise. The reaction was stirred at rt for 1 h and the mixture was concentrated *in vacuo* to give **step 2-10c** compound (1.50 g, 100%) as a yellowish solid. IR (ATR) 3269, 3009, 2881, 1676, 1504, 1379, 1212, 1010, 964, 793, 727 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.10 (t, 3H, CH₂CH₃), 1.33 (t, 3H, CH₂CH₃), 3.66-3.72 (m, 1H, CH₂CH₃), 3.79 (s, 3H, OCH₃), 3.88-4.19 (m, 1H, CH₂CH₃), 4.09-4.19 (m, 2H, CH₂CH₃), 5.53 (dd, *J* = 9.5, 20.5 Hz, 1H, CH), 6.86-6.88 (m, 2H, ArH), 7.38-7.40 (m, 2H, ArH), 7.55 (br s, 1H, NH), 8.23 (s, 1H, CHO). HRMS C₁₃H₂₁NO₅P [M+H]⁺ 302.1152; found, 302.1157.

Diethyl [(4-fluorophenyl)isocyanomethyl]phosphonate (10b).¹ Et₃N (2.0 mL, 13.8 mmol) and POCl₃ (0.4 mL, 4.15 mmol) were added dropwise to a cooled solution (-78°C) of **step 2-10b**

compound (800 mg, 2.77 mmol) in THF (7.5 mL). The reaction mixture was allowed to warm to rt. After 2 h, cold water (0 °C) was added and the mixture was extracted with Et₂O. The combined organic layers were dried and concentrated *in vacuo* to give a residue which was purified by column chromatography (EtOAc-Hexane 4:1) to afford **10b** (616 mg, 82%) as yellowish oil. IR(ATR) 2975, 2911, 1679, 1510, 1247, 1177, 1016, 963, 836, 743 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, 3H, CH₂CH₃), 1.31 (t, 3H, CH₂CH₃), 4.00-4.19 (m, 4H, CH₂CH₃), 5.00 (d, *J* = 21.0 Hz, 1H, CH), 7.09-7.13 (m, 2H, ArH), 7.44-7.48 (m, 2H, ArH). ¹³C NMR (100.6 MHz) δ 16.4 (d, *J* = 5.5 Hz, CH₂CH₃), 16.5 (d, *J* = 5.5 Hz, CH₂CH₃), 55.0 (d, *J* = 152.0 Hz, CH), 64.6 (d, *J* = 7.0 Hz, CH₂CH₃), 65.1 (d, *J* = 7.5 Hz, CH₂CH₃), 116.0 (d, *J* = 2.5 Hz, CHAr), 116.2 (d, *J* = 2.5 Hz, CHAr), 125.8 (C-*ipso*), 129.3 (d, *J* = 5.0 Hz, CHAr), 129.4 (d, *J* = 5.0 Hz, CHAr), 161.6 (*C-ipso*), 162.0 (d, *J* = 3.0 Hz, NC). HRMS C₁₂H₁₆FNO₃P [M+H]⁺ 272.0846; found, 272.0854.

Diethyl [(4-methoxyphenyl)isocyanomethyl]phosphonate (10c).¹ Et₃N (3.5 mL, 24.9 mmol) and POCl₃ (0.7 mL, 7.47 mmol) were added dropwise to a cooled solution (-78°C) of **step 2-10c** (1.50 g, 4.98 mmol) in THF (13.8 mL). The reaction mixture was allowed to warm to rt. After 2 h, cold water (0 °C) was added and the mixture was extracted with Et₂O. The combined organic layers were dried and concentrated *in vacuo* to give a residue which was purified by column chromatography (EtOAc-Hexane 4:1) to afford **10c** (1.13g, 80%) as yellowish oil. IR(ATR): 2978, 2917, 1610, 1514, 1455, 1293, 1250, 1176, 1013, 963, 839, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, 3H, CH₂CH₃), 1.31 (t, 3H, CH₂CH₃), 3.82 (s, 3H, OCH₃), 4.03-4.16 (m, 4H, CH₂CH₃), 4.95 (d, *J* = 20.5 Hz, 1H, C*H*), 6.92-6.95 (m, 2H, Ar*H*), 7.38-7.41 (m, 2H, Ar*H*); ¹³C NMR (100.6 MHz) δ 16.4 (d, *J* = 5.5 Hz, CH₂CH₃), 16.5 (d, *J* = 5.5 Hz, CH₂CH₃), 55.5 (OCH₃), 55.6 (d, *J* = 156.0 Hz, CH), 64.4 (d, *J* = 7.0 Hz, CH₂CH₃), 64.9 (d, *J* = 7.0 Hz, CH₂CH₃), 114.4 (d, *J* = 2.5 Hz, 2xCHAr), 121.8 (C-*ipso*), 128.8 (d, *J* = 5.0 Hz, 2xCHAr), 160.3 (*C-ipso*), 160.8 (d, *J* = 5.0 Hz, NC); HRMS C₁₃H₁₉NO₄P [M+H]⁺ 284.1046; found, 284.1052.

Diethyl (1-isocyano-2-phenylethyl)phosphonate (10d).³ Potassium *tert*-butoxide (492 mg, 4.4 mmol) was added to a cooled solution (-78 °C) of diethyl isocyanomethylphosphonate (672 mg, 4 mmol) in dichloromethane (DCM) (6.0 mL) and the mixture was stirred for 15 min at – 78 °C. Then, a solution of benzyl bromide (476 μ L, 4 mmol) in DCM (2.0 mL) was added. The reaction mixture was stirred for additional 30 min at -78 °C and allowed to warm to rt. After 30 min stirring the mixture at rt, the organic phase was washed with water, dried and concentrated. The resulting residue was purified by column chromatography (AcOEt/Hexane 4:6 to 1:1) to furnish **10d** (516 mg, 45%) as yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 1.38 (t, *J* = 7.0 Hz, 6H, CH₂CH₃), 2.80-3.06 (m, 1H, CH₂), 3.23-3.29 (m, 1H, CH₂), 3.80-4.20 (m, 1H, CH), 4.10-

4.50 (m, 4H, CH₂CH₃), 7.27-7.38 (m, 5H, Ar*H*). ¹³C NMR (100.6 MHz) δ 16.3 (CH₂CH₃), 16.4 (CH₂CH₃), 36.0 (CH₂Ar), 52.0 (d, *J* = 155.0 Hz, CH), 63.8 (d, *J* = 7.0 Hz, CH₂CH₃), 64.4 (d, *J* = 7.0 Hz, CH₂CH₃), 127.5 (CHAr), 129.0 (d, *J* = 38.0 Hz, 2xCHAr), 135.4 (d, *J* = 14.0 Hz, 2xCHAr), 160.8 (CN).

Diethyl [2-(4-fluorophenyl)-1-isocyanoethyl]phosphonate (10e).³ Potassium *tert*-butoxide (711 mg, 5.8 mmol) was added to a cooled solution (-78 °C) of diethyl isocyanomethylphosphonate (937 mg, 5.3 mmol) in DCM (9.0 mL) and the mixture was stirred for 15 min at - 78°C. Then, a solution of 4-fluorobenzyl bromide (660 μ L, 5.3 mmol) in DCM (3.0 mL) was added. The reaction mixture was stirred for additional 30 min at -78 °C and allowed to warm to rt. After 30 min stirring the mixture at rt, the organic phase was washed with water, dried and concentrated. The resulting residue was purified by column chromatography (AcOEt/hexane 4:6 to 1:1) to furnish **10e** (662 mg, 44%) as yellowish oil. IR (ATR) 2984, 2914, 2140, 1735, 1510, 1264, 1224, 1106, 974, 801, 761 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.38-1.42 (m, 6H, CH₂CH₃), 2.96-3.04 (m, 1H, CH₂), 3.19 – 3.26 (m, 1H, CH₂), 3.75 – 3.79 (d, *J* = 16.0 Hz, 1H, CH), 4.22-4.31 (m, 4H, CH₂CH₃), 7.02-7.06 (m, 2H, ArH). HRMS C₁₃H₁₈FNO₃P [M+H]⁺ 286.1003; found, 286.1011.

Theoretical calculations

Table S1. Relative stabilities $(kcal \cdot mol^{-1})$ between reactants, transition states and products for the *cis* and *trans* [3+2] cycloadditions between *N*-methyl maleimide and PhosMic in the gas phase and in solution. These latter values were obtained by combining the relative stabilities in the gas phase with the solvation free energies in acetonitrile. All values relative to the *trans* reactants.

Cycloaddition	Reactant	Transition State	Product
Gas phase			
cis	2.0	19.0	-13.7
trans	0.0	16.7	-15.5
Solvation free energy			
cis	-0.2	1.7	0.1
trans	0.0	1.7	0.9
Solution (acetonitrile)			
cis	1.8	20.7	-13.6
trans	0.0	18.4	-14.6

Optimized parameters of reactants, transition states and products derived for the cis [3+2] cicloaddition (geometry in Å; energy in atomic units) **from B3LYP calculations**

Reactant

1	7	0	1.268649	-2.808851	-1.346528
2	6	0	-0.076617	-3.023722	-1.700851
3	6	0	-0.579982	-1.717882	-2.238770
4	6	0	0.421592	-0.830149	-2.201931
5	6	0	1.627629	-1.494282	-1.610865
6	6	0	2.138597	-3.806413	-0.750263
7	8	0	2.729924	-1.007908	-1.382954
8	8	0	-0.664703	-4.081493	-1.592616
9	1	0	-1.602018	-1.587918	-2.569039
10	1	0	0.421207	0.209273	-2.501502
11	1	0	1.608165	-4.760406	-0.768818
12	1	0	3.067658	-3.887353	-1.322072
13	1	0	2.378814	-3.543071	0.285257
14	6	0	-2.032266	0.748012	0.431563
15	7	0	-0.704665	0.918878	0.589769
16	6	0	0.455087	1.084434	0.702369
17	47	0	2.515176	1.136068	0.600470

18	7	0	4.672354	1.271934	0.539087
19	6	0	5.820565	1.259409	0.405786
20	6	0	7.267567	1.239506	0.232561
21	1	0	7.751178	0.937920	1.167112
22	1	0	7.535258	0.528069	-0.555270
23	1	0	7.623177	2.235812	-0.048768
24	15	0	-2.725881	-0.574442	1.375203
25	8	0	-4.216108	-0.622123	1.466013
26	8	0	-2.037777	-1.928346	0.781170
27	6	0	-2.427462	-3.204148	1.329722
28	8	0	-1.977790	-0.550928	2.833494
29	6	0	-2.442209	0.386322	3.816607
30	1	0	-2.014034	-3.960659	0.660203
31	1	0	-2.015077	-3.322400	2.337729
32	1	0	-3.518111	-3.288996	1.360866
33	1	0	-3.504147	0.227092	4.028989
34	1	0	-2.287409	1.416638	3.473775
35	1	0	-1.848991	0.207145	4.716607
36	6	0	-2.719921	1.578414	-0.563379
37	6	0	-2.009322	2.557835	-1.298996
38	6	0	-4.104337	1.445711	-0.834071
39	6	0	-2.644834	3.355763	-2.252240
40	1	0	-0.949273	2.707038	-1.113348
41	6	0	-4.726184	2.245537	-1.790972
42	1	0	-4.685397	0.718087	-0.278518
43	6	0	-4.009519	3.207800	-2.513302
44	1	0	-2.063360	4.100802	-2.792199
45	1	0	-5.791449	2.115258	-1.970502
46	1	0	-4.504273	3.828855	-3.255613

Sum	of	electronic	and	zero-poi	nt Er	nergies=	-1686.455391	a.u.
Sum	of	electronic	and	thermal	Free	Energies=	-1686.530633	a.u.

Transition state (C⁻⁻C distances in Å; C-N-C angle in degrees)

1	7	0	0.237719	-2.379755	-1.613651
2	6	0	-1.102910	-1.932468	-1.794359
3	6	0	-1.044656	-0.465336	-1.914438
4	6	0	0.303233	-0.085596	-1.866392
5	6	0	1.124620	-1.324705	-1.708990
6	6	0	0.597613	-3.762417	-1.376312
7	8	0	2.352743	-1.409856	-1.623783
8	8	0	-2.045310	-2.705832	-1.878293
9	1	0	-1.869927	0.091598	-2.333640
10	1	0	0.727220	0.762734	-2.392668
11	1	0	0.169796	-4.401604	-2.154793
12	1	0	1.687281	-3.833788	-1.393795
13	1	0	0.219876	-4.098631	-0.404097
14	6	0	-1.677116	0.607524	0.336772
15	7	0	-0.356719	0.795744	0.511483
16	6	0	0.736991	0.690532	-0.003597
17	47	0	2.820033	0.768162	0.252874
18	7	0	4.990329	0.825244	0.459198
19	6	0	6.144135	0.772160	0.509296
20	6	0	7.599018	0.701562	0.568879

21	1	0	7.917118	0.404437	1.573246
22	1	0	7.963384	-0.034994	-0.154365
23	1	0	8.030008	1.679431	0.331810
24	15	0	-2.341260	-0.691538	1.429517
25	8	0	-2.812729	-0.267916	2.780686
26	8	0	-3.438170	-1.372129	0.474764
27	6	0	-4.138537	-2.563752	0.875974
28	8	0	-1.163007	-1.811992	1.491133
29	6	0	-0.360658	-1.972508	2.674538
30	1	0	-4.849631	-2.774343	0.076268
31	1	0	-3.435405	-3.396801	0.965366
32	1	0	-4.664491	-2.399542	1.822142
33	1	0	-0.937120	-1.728091	3.570438
34	1	0	0.520759	-1.325506	2.611597
35	1	0	-0.048285	-3.019524	2.698293
36	6	0	-2.494710	1.770874	-0.068406
37	6	0	-1.887214	3.014871	-0.339953
38	6	0	-3.891314	1.665633	-0.238337
39	6	0	-2.643535	4.105202	-0.768878
40	1	0	-0.817023	3.130356	-0.198824
41	6	0	-4.641193	2.759526	-0.668697
42	1	0	-4.386563	0.720099	-0.049187
43	6	0	-4.026477	3.986593	-0.937514
44	1	0	-2.149112	5.053845	-0.964773
45	1	0	-5.715699	2.649811	-0.793579
46	1	0	-4.616067	4.836964	-1.270056

Negative frequency: -353.8

Sum	of	electronic	and	zero-poi	nt E	nergies=	-	-1686.432693
Sum	of	electronic	and	thermal	Free	Energies=	-	-1686.503549

Product

1	7	0	-0.416099	-2.738848	-1.295412
2	6	0	-1.588707	-1.976860	-1.289394
3	6	0	-1.202721	-0.496463	-1.357802
4	6	0	0.325574	-0.519313	-1.553468
5	6	0	0.736169	-1.983693	-1.477967
6	6	0	-0.431865	-4.189861	-1.204277
7	8	0	1.864331	-2.440430	-1.562555
8	8	0	-2.700402	-2.466456	-1.316036
9	1	0	-1.738490	-0.071007	-2.208253
10	1	0	0.669896	-0.112939	-2.511829
11	1	0	-1.034332	-4.610071	-2.015166
12	1	0	0.598968	-4.539833	-1.279562
13	1	0	-0.867675	-4.497373	-0.248972
14	6	0	-1.395093	0.464913	-0.104699
15	7	0	-0.024059	0.829908	0.339732
16	6	0	0.891989	0.318479	-0.397144
17	47	0	2.951552	0.548001	-0.061391
18	7	0	5.106902	0.771428	0.299024
19	6	0	6.245056	0.857990	0.484448
20	6	0	7.680433	0.965852	0.718227
21	1	0	7.881276	1.000583	1.793721

22	1	0	8.193694	0.100588	0.286795
23	1	0	8.066535	1.878582	0.253406
24	15	0	-2.129531	-0.265289	1.454758
25	8	0	-2.154192	0.615577	2.654120
26	8	0	-3.554623	-0.789368	0.926361
27	6	0	-4.484281	-1.425344	1.818897
28	8	0	-1.305726	-1.656596	1.690224
29	6	0	-0.299660	-1.737583	2.720495
30	1	0	-5.392719	-1.593210	1.237852
31	1	0	-4.083822	-2.385856	2.160022
32	1	0	-4.697715	-0.777774	2.675008
33	1	0	-0.632079	-1.216648	3.621841
34	1	0	0.635567	-1.296159	2.363912
35	1	0	-0.159148	-2.801721	2.925283
36	6	0	-2.209580	1.714158	-0.462460
37	6	0	-1.773789	2.987026	-0.068278
38	6	0	-3.417174	1.601219	-1.170330
39	6	0	-2.518778	4.123587	-0.395555
40	1	0	-0.853940	3.075313	0.498640
41	6	0	-4.160478	2.737937	-1.495491
42	1	0	-3.790403	0.620009	-1.451540
43	6	0	-3.712100	4.005795	-1.112441
44	1	0	-2.164587	5.103331	-0.083769
45	1	0	-5.092813	2.630141	-2.044633
46	1	0	-4.290449	4.891050	-1.365641

Sum	of	electronic	and	zero-poi	.nt E	nergies=	-1686.486683
Sum	of	electronic	and	thermal	Free	Energies=	-1686.555692

Optimized parameters of reactants, transition states and products derived for the trans [3+2] cicloaddition (geometry in Å; energy in atomic units) from B3LYP calculations

Reactant

1	7	0	2.186282	3.276484	0.716704
2	6	0	1.058999	4.027968	1.089597
3	6	0	-0.021349	3.034991	1.396232
4	6	0	0.463830	1.800216	1.213572
5	6	0	1.893743	1.917323	0.768711
6	6	0	3.459585	3.855061	0.325226
7	8	0	2.681910	1.019487	0.496387
8	8	0	1.021361	5.241470	1.141834
9	1	0	-1.014728	3.336501	1.703127
10	1	0	-0.043529	0.851771	1.344989
11	1	0	3.858259	4.477531	1.131927
12	1	0	4.147568	3.033733	0.116614
13	1	0	3.339818	4.473174	-0.569926
14	6	0	-2.244245	-0.637324	-0.343125
15	7	0	-0.990267	-1.088005	-0.557117
16	6	0	0.103601	-1.487679	-0.734587

17	47	0	2.171907	-1.517824	-0.644104
18	7	0	4.329549	-1.802504	-0.646964
19	6	0	5.481453	-1.889471	-0.600343
20	6	0	6.934070	-1.997202	-0.540485
21	1	0	7.219866	-2.986761	-0.169913
22	1	0	7.359672	-1.853213	-1.538682
23	1	0	7.335601	-1.233331	0.133013
24	15	0	-2.894123	-1.063274	1.238172
25	8	0	-4.312284	-0.687689	1.516774
26	8	0	-2.576744	-2.651031	1.499437
27	6	0	-3.443406	-3.621056	0.892045
28	8	0	-1.799765	-0.451398	2.292687
29	6	0	-1.972261	-0.700246	3.699498
30	1	0	-4.476299	-3.475923	1.224362
31	1	0	-3.395383	-3.551687	-0.201481
32	1	0	-3.080804	-4.600739	1.212180
33	1	0	-1.808413	-1.759762	3.921353
34	1	0	-1.223333	-0.093026	4.214040
35	1	0	-2.975219	-0.402065	4.021544
36	6	0	-2.872683	0.198820	-1.373316
37	6	0	-4.174458	0.735917	-1.225357
38	6	0	-2.181332	0.497061	-2.571588
39	6	0	-4.739819	1.525316	-2.225562
40	1	0	-4.736228	0.524225	-0.322463
41	6	0	-2.759865	1.285772	-3.567310
42	1	0	-1.182289	0.100677	-2.729453
43	6	0	-4.044717	1.811407	-3.406709
44	1	0	-5.742704	1.920667	-2.077219
45	1	0	-2.196501	1.489026	-4.476075
46	1	0	-4.494768	2.426262	-4.181955

Sum	of	electronic	and	zero-poi	.nt 1	Energies=	-1686.456706
Sum	of	electronic	and	thermal	Free	e Energies=	-1686.533881

Transition state (C^{...}C distances in Å; C-N-C angle in degrees)

1	7	0	-0.251238	-2.462516	1.474558
2	6	0	1.023941	-1.942589	1.792847
3	6	0	0.846622	-0.483582	1.992887
4	6	0	-0.519012	-0.208222	1.877917
5	6	0	-1.228008	-1.472602	1.584903
6	6	0	-0.499231	-3.855434	1.159300
7	8	0	-2.437184	-1.653248	1.412993
8	8	0	2.028204	-2.630849	1.883976
9	1	0	1.585380	0.082272	2.542700
10	1	0	-1.040037	0.627208	2.327784
11	1	0	-0.220098	-4.497206	2.001992
12	1	0	-1.565885	-3.965112	0.952097
13	1	0	0.084975	-4.158396	0.284357
14	6	0	1.611853	0.312917	-0.148526
15	7	0	0.333030	0.552905	-0.534866
16	6	0	-0.811761	0.528966	-0.153680
17	47	0	-2.877377	0.563043	-0.486971
18	7	0	-5.039034	0.538310	-0.746009
19	6	0	-6.186974	0.416364	-0.808240

20	6	0	-7.634141	0.257240	-0.881649
21	1	0	-8.127640	1.185820	-0.577740
22	1	0	-7.931265	0.012696	-1.906394
23	1	0	-7.950651	-0.551087	-0.214681
24	15	0	2.515700	1.798724	0.381145
25	8	0	3.754929	1.539554	1.168511
26	8	0	2.772102	2.746369	-0.923177
27	6	0	3.983400	2.608090	-1.690394
28	8	0	1.349804	2.638667	1.116482
29	6	0	1.664086	3.916358	1.700016
30	1	0	4.854460	2.573654	-1.029997
31	1	0	3.944357	1.701248	-2.302780
32	1	0	4.033801	3.486618	-2.337488
33	1	0	1.910909	4.639993	0.916656
34	1	0	0.764549	4.235407	2.229975
35	1	0	2.497960	3.823418	2.402870
36	6	0	2.357890	-0.743714	-0.876621
37	6	0	3.636508	-1.161787	-0.454067
38	6	0	1.781187	-1.381283	-1.994614
39	6	0	4.310823	-2.173575	-1.138169
40	1	0	4.089084	-0.703223	0.417692
41	6	0	2.460148	-2.396225	-2.668863
42	1	0	0.801903	-1.065062	-2.342072
43	6	0	3.732285	-2.796872	-2.247604
44	1	0	5.291616	-2.485499	-0.787981
45	1	0	1.996076	-2.868285	-3.531994
46	1	0	4.261886	-3.587480	-2.773233

Negative frequency: -349.4

Sum	of	electronic	and	zero-poi	int Er	nergies=	-1686.437075
Sum	of	electronic	and	thermal	Free	Energies=	-1686.507217

Product

1	7	0	0.101319	2.988086	-1.104607
2	6	0	1.337178	2.337019	-1.059663
3	6	0	1.103331	0.842178	-1.300501
4	6	0	-0.423816	0.723120	-1.454813
5	6	0	-0.960977	2.141590	-1.416876
6	6	0	-0.024760	4.429764	-0.955247
7	8	0	-2.112150	2.505783	-1.589044
8	8	0	2.392225	2.923906	-0.917226
9	1	0	1.667298	0.574205	-2.198475
10	1	0	-0.767619	0.217272	-2.362255
11	1	0	0.556835	4.941402	-1.728284
12	1	0	-1.081843	4.682619	-1.051374
13	1	0	0.351721	4.737227	0.024593
14	6	0	1.422284	-0.149827	-0.104177
15	7	0	0.114930	-0.496248	0.491317
16	6	0	-0.872978	-0.067557	-0.203951
17	47	0	-2.892798	-0.344373	0.294000
18	7	0	-5.013352	-0.603043	0.812613
19	6	0	-6.137895	-0.691438	1.067348
20	6	0	-7.556381	-0.800547	1.387921
21	1	0	-8.005637	-1.620471	0.818623

22	1	0	-7.683242	-0.996899	2.457289
23	1	0	-8.067945	0.133066	1.133060
24	15	0	2.136160	-1.718082	-0.842821
25	8	0	3.404477	-1.537357	-1.611508
26	8	0	2.226358	-2.822334	0.336995
27	6	0	3.458955	-3.062102	1.046505
28	8	0	0.883019	-2.260172	-1.710895
29	6	0	1.059950	-3.408770	-2.559859
30	1	0	4.312702	-3.000913	0.366224
31	1	0	3.568917	-2.333491	1.854501
32	1	0	3.377065	-4.069160	1.461774
33	1	0	1.212518	-4.306914	-1.952230
34	1	0	0.136810	-3.506292	-3.134616
35	1	0	1.909611	-3.262735	-3.234131
36	6	0	2.407150	0.339071	0.964232
37	6	0	3.724322	0.698672	0.632782
38	6	0	2.005222	0.411136	2.306730
39	6	0	4.612319	1.125632	1.621619
40	1	0	4.057117	0.645992	-0.397392
41	6	0	2.896038	0.842893	3.294519
42	1	0	0.994830	0.117426	2.568117
43	6	0	4.203608	1.200439	2.956771
44	1	0	5.625140	1.406155	1.343498
45	1	0	2.564737	0.894453	4.329213
46	1	0	4.897100	1.535965	3.724328

Sum	of	electronic	and	zero-poi	.nt E	nergies=	-1686.490	0065
Sum	of	electronic	and	thermal	Free	Energies=	-1686.55	3641

Optimized parameters of transition states derived for the cis and trans [3+2] cicloaddition (geometry in Å; energy in atomic units) **from MN15L calculations**

Transition state for cis cicloaddition (C^{...}C distances in Å; C-N-C angle in degrees)

1	7	0	0.206262	-2.308687	-1.545414
2	6	0	-1.146637	-1.885843	-1.752955
3	6	0	-1.100704	-0.436323	-1.967387
4	6	0	0.245668	-0.027813	-1.914749
5	6	0	1.083724	-1.252702	-1.657910
6	6	0	0.545034	-3.644103	-1.095077
7	8	0	2.310637	-1.314103	-1.494569
8	8	0	-2.074366	-2.688193	-1.758478
9	1	0	-1.962820	0.127320	-2.334358
10	1	0	0.679796	0.811388	-2.474744
11	1	0	0.466934	-4.375345	-1.922976
12	1	0	1.583144	-3.624560	-0.716368
13	1	0	-0.158450	-3.943119	-0.293016
14	6	0	-1.691941	0.637771	0.438896
15	7	0	-0.375337	0.890353	0.474759
16	6	0	0.703189	0.806324	-0.100243
17	47	0	2.771001	0.866242	0.170433

18	7	0	4.930341	0.922679	0.435952
19	6	0	6.086891	0.861518	0.556554
20	6	0	7.537170	0.783442	0.706152
21	1	0	7.793907	0.526072	1.749532
22	1	0	7.940905	0.006337	0.032419
23	1	0	7.994541	1.756308	0.451198
24	15	0	-2.148464	-0.811185	1.425741
25	8	0	-2.404350	-0.589624	2.873117
26	8	0	-3.340153	-1.401924	0.544597
27	6	0	-3.793129	-2.742625	0.815949
28	8	0	-0.962451	-1.867430	1.124878
29	6	0	0.223442	-1.901732	1.928249
30	1	0	-4.629199	-2.922584	0.121317
31	1	0	-2.977831	-3.459803	0.604731
32	1	0	-4.134754	-2.825892	1.867053
33	1	0	0.265765	-2.877432	2.448531
34	1	0	0.233732	-1.083788	2.675555
35	1	0	1.092773	-1.802880	1.243320
36	6	0	-2.624498	1.717456	0.070134
37	6	0	-2.191900	2.760291	-0.790145
38	6	0	-3.967998	1.720730	0.520340
39	6	0	-3.076777	3.768925	-1.188503
40	1	0	-1.152074	2.762072	-1.151920
41	6	0	-4.848683	2.733851	0.114547
42	1	0	-4.316752	0.935464	1.204762
43	6	0	-4.412097	3.760879	-0.740447
44	1	0	-2.726211	4.566509	-1.858967
45	1	0	-5.885815	2.724750	0.478024
46	1	0	-5.105570	4.553120	-1.054452

Negative frequency: -376.8

Sum	of	electronic	and	zero-poi	int E	nergies=	-1684.741793
Sum	of	electronic	and	thermal	Free	Energies=	-1684.808303

Transition state for trans cicloaddition (C⁻⁻C distances in Å; C-N-C angle in degrees)

1	7	0	-0.003238	-2.232897	1.360636
2	6	0	1.218572	-1.639438	1.767280
3	6	0	0.913623	-0.205053	1.990088
4	6	0	-0.475834	-0.029363	1.845418
5	6	0	-1.068672	-1.345744	1.506547
6	6	0	-0.137896	-3.606721	0.915552
7	8	0	-2.254417	-1.642851	1.300055
8	8	0	2.274069	-2.250726	1.865049
9	1	0	1.624844	0.447012	2.506861
10	1	0	-1.079146	0.780960	2.269048
11	1	0	-0.684339	-4.217143	1.661144
12	1	0	-0.693283	-3.634513	-0.042503
13	1	0	0.881405	-4.007914	0.773224
14	6	0	1.607298	0.362128	-0.235824
15	7	0	0.316441	0.525826	-0.657920
16	6	0	-0.818880	0.541715	-0.210582
17	47	0	-2.882922	0.460032	-0.452460
18	7	0	-5.044692	0.354406	-0.627083

19	6	0	-6.194745	0.174674	-0.656043
20	6	0	-7.636505	-0.052616	-0.689739
21	1	0	-8.041455	-0.036068	0.338131
22	1	0	-8.129750	0.735574	-1.286484
23	1	0	-7.848770	-1.037105	-1.144181
24	15	0	2.388240	1.923492	0.228603
25	8	0	3.625172	1.811149	1.044197
26	8	0	2.574725	2.813976	-1.116315
27	6	0	3.684406	2.461511	-1.961175
28	8	0	1.152190	2.702866	0.902153
29	6	0	1.433169	4.035594	1.368278
30	1	0	4.618917	2.404350	-1.369185
31	1	0	3.494288	1.487791	-2.456915
32	1	0	3.761876	3.257522	-2.721053
33	1	0	1.610644	4.709007	0.507538
34	1	0	0.538005	4.360662	1.924280
35	1	0	2.315927	4.033529	2.037035
36	6	0	2.369756	-0.777848	-0.794761
37	6	0	3.749248	-0.958617	-0.519568
38	6	0	1.687859	-1.787641	-1.522581
39	6	0	4.412997	-2.112856	-0.960957
40	1	0	4.287179	-0.216054	0.083400
41	6	0	2.360483	-2.937423	-1.954900
42	1	0	0.614702	-1.668590	-1.734511
43	6	0	3.729635	-3.108484	-1.678785
44	1	0	5.478404	-2.240459	-0.722974
45	1	0	1.808739	-3.708241	-2.513081
46	1	0	4.255007	-4.013785	-2.013214

Negative frequency: -380.8

Sum	of	electronic	and	zero-poi	int Er	nergies=		-1684.743843
Sum	of	electronic	and	thermal	Free	Energies=	:	-1684.810187

3D-QSAR study

Selection of training and test set compounds. Original data set, for both created 3D-QSAR models, was divided on training and test set according to the PCA (Principal Component Analysis) score plot. Approximately 70% of compounds were chosen for the training set, and 30% for test set considering that p*K*i values were homogeneously distributed in the whole range. Final data set for I₂-IR ligands contains 33 compounds, with 23 compounds in training set and 10 compounds in test set, while data set for α_2 -receptor ligands contains 30 compounds, with 21 compounds in training set and 9 compounds in test set (Table S2 and S3). Training set compounds were used for model building, and test set compounds were used for model validation.

Validation of created 3D-QSAR models. Different internal and external validation methods were employed in order to ensure the reliability and predictive quality of created QSAR models. Internal predictivity was examined with parameters such as cross-validated squared correlation coefficient (Q^2), root mean square error of estimation (RMSEE) and predicted residual sum of squares (PRESS) (Eq. 1, 2 and 3). These parameters are calculated only for training set compounds. For a predictive QSAR model values of Q^2 should be higher than 0.5.^{4,5}

$$PRESS = \sum_{i=1}^{n} e_{(i)}^{2} \quad (1) \qquad RMSEE = \sqrt{\frac{PRESS}{n}} \quad (2) \qquad Q^{2} = 1 - \frac{PRESS}{SSTo} \quad (3)$$

Very often high value of Q^2 does not present real predictive potential of created model.⁶ For that reason, calculations of external validation parameters help us to truly clarify the predictive power of created models. Parameters of external validation are R^2_{pred} , RMSEP and r^2 metrics parameters (r^2_m , $r^{2'_m}$, \overline{r}^2_m and Δr^2_m) (Eq. 4, 5, 6 and 7). Value of R^2_{pred} should be higher than 0.5. Values of correlation coefficients r^2_m , and r'^2_m should be close and greater than 0.5, while their average value (\overline{r}^2_m) should be greater than 0.5 and the difference between r^2_m and r'^2_m (Δr^2_m) should be lower than 0.2 for an acceptable model. Parameters of r^2 metrics represent more stringent criterion of external validation and better reflect external predictive power of created models.⁷

$$R_{pred}^{2} = 1 - \frac{\Sigma(Y_{obs(test)} - Y_{pred(test)})^{2}}{\Sigma(Y_{obs(test)} - \bar{Y}_{training})^{2}} \quad (4) \qquad r_{m=r^{2}(\sqrt{1 - |r^{2} - r_{0}^{2}|})}^{2} \quad (6)$$

$$RMSEP = \sqrt{\frac{PRESS}{n}} \quad (5) \qquad r_{m=r^{2}(1 - \sqrt{|r^{2} - r_{0}^{/2}|})}^{2} \quad (7)$$

Obtained values of $R^2 pred(I_2) = 0.68$, $R^2 pred(\alpha_2) = 0.87$ and r^2 metrics parameters indicate that developed models have good predictive quality.

	Training	set		Test set	
	pKi(exp)	pKi		pKi(exp)	pKi(pred)
		(pred)			
9c	10.28	9.39	9d	8.56	8.00
9b	9.74	9.09	9a	7.97	8.27
9f	8.37	7.78	Idazoxan	7.41	7.92
LSL60101	8.13	8.44	BU99008	7.05	7.84
9ad	7.96	7.52	9i	7.01	6.52
9z	7.90	7.37	9x	6.81	7.32
13d	7.87	8.00	8a	6.79	6.05
8c	7.73	7.76	14c	6.59	6.21
Tracizoline	7.58	7.36	9u	5.81	5.78
12d	7.55	8.55	9r	5.09	5.61
9h	7.35	7.94			
9ab	6.96	6.65	$R^{2}_{pred} = 0.68 (>0.5)$)	
9e	6.65	7.12	RMSEP=0.53		
9k	6.35	5.91	r ² _m =0.59 (>0.5)		
8b	5.74	6.87	r ^{2/} _m =0.64 (>0.5)		
9aa	5.44	5.64	$\Delta r_{m}^{2}=0.05 (< 0.2)$		
15c	5.35	4.44	$\overline{r}^{2}_{m} = 0.61 \ (>0.5)$		
9ј	5.26	5.93	$(r^2 - r^{2/}_0)/r^2 = 0.02$ (*	<0.1)	
8e	5.11	5.07	k'= 1.00 (0.85≤k':	≤1.15)	
9g	4.02	4.98			
9m	3.84	3.30			
13c	3.39	3.16			
9ac	3.11	3.42			
R ² =0.90 (>0.7)					
Q ² =0.65 (>0.5)					
RMSEE=0.60					

Table S2. Results of 3D-QSAR study for I₂-IR ligands

	Training set			Test set	
	pKi(exp)	pKi		pKi(exp)	pKi(pred)
		(pred)			
8d	10.27	10.65	8c	8.49	8.47
8a	9.49	9.85	12c	6.77	6.15
9b	9.01	8.41	9d	6.27	6.15
Idazoxan	8.35	7.95	9r	6.15	5.36
9j	8.11	7.91	9a	5.93	5.63
15c	7.20	7.02	9ab	5.43	5.83
9h	6.77	6.88	9w	5.16	5.26
9u	6.22	6.18	9n	4.73	5.02
8e	6.14	6.13	BU99008	4.37	4.86
9f	5.85	5.53			
91	5.65	5.77	$R^{2}_{pred}=0.87 (>0)$.5)	
9р	5.34	5.33	RMSEP=0.42		
LSL60101	5.17	5.31	r ² _m =0.83 (>0.5)		
9z	5.12	5.13	r ² / _m =0.71 (>0.5)	
9e	4.59	4.64	$\Delta r_{m}^{2}=0.12$ (<0.	2)	
Tracizoline	4.33	4.49	$\overline{r}^2_{m} = 0.77 \ (>0.5)$)	
9i	4.31	4.48	$(r^2 - r^{2}_{0})/r^2 = 0.04$	(<0.1)	
13c	3.85	4.31	k'= 0.98 (0.85≤	k'≤1.15)	
9k	3.77	3.47			
14c	3.94	4.32			
12d	3.38	3.11			
R ² =0.98 (>0.7)					
Q ² =0.61 (>0.5)					
RMSEE=0.57					

Table S3. Results of 3D-QSAR study for α_2 -AR ligands

Figure S1. PLS coefficient plot for the I₂-IR 3D-QSAR model. The most significant variables are labelled.

Figure S2. PLS coefficient plot for the α_2 -AR 3D-QSAR model. The most significant variables are labelled.

Interpretation of created 3D-QSAR models. According to the correlogram shown in Figure S1, variables with most important positive influence on I₂-IR activity are: var19 (DRY-DRY: 7.60-8.00 Å), var183 (TIP-TIP: 6.00-6.40 Å), var303 (DRY-N1: 9.20-9.60 Å) and var355 (DRY-TIP: 7.60-8.00 Å). Positive variables are depicted in the Figure S3 for the most active compound, **9c** (pKi I₂ = 10.28), and for **13d** (pKi I₂ = 7.87) which possess the highest selectivity (I₂/ α_2 =74131).

Created 3D-QSAR model for I₂-IR ligands shows that var183 possess strong positive influence on pKi values. It represents the distance of 6.00-6.40 Å between two steric hot spot regions located around electron withdrawing substituents of the *N*-phenyl. The

highest values are calculated for compounds 13d and 12d which possess high selectivity towards I₂-IR (Figure S3B). From created α_2 -AR ligand model, it can be seen that this variable do not possess such significant impact on α_2 -AR binding. Therefore, we hypothesize that presence of these substituents may be very important for enhancing I₂-IR binding activity and selectivity. GRIND variables DRY-N1 (var303) and DRY-TIP (var355) show positive impact on biological activity and signify the importance of hydrophobic interactions in the binding site of I₂-IR. Var303 define favourable distance (9.20-9.60 Å) between hydrophobic regions around bicyclic ring and nitrogen from imino group as hydrogen bond acceptor (Figure S3B). On the other hand, DRY-DRY variable from α_2 -AR model, var25 (10.00-10.40 Å), describe unfavourable impact of hydrophobic regions around phenyl ring in α position, which could be related with higher affinity of α -unsubstituted ligands to α_2 -AR (8a, 8c, 8d and 8e). Var355 (DRY-TIP: 7.60-8.00 Å) delineate optimal distance between aforementioned hydrophobic regions around bicyclic ring and ethyl phosphonate group as steric hot spot (Figure S3A and S3B). Moreover, var19 (DRY-DRY: 7.60-8.00 Å), which is describing hydrophobic probes located around N-phenyl substituent, implies that presence of aromatic ring in that position establish favourable van der Waals interactions with amino acids of the active pocket (Figure S3A and S3B). Comparing to compounds which possess N-alkyl substituents instead of N-phenyl, such as 8a or 9a, we can conclude that introduction of this aromatic ring positively correlates with I₂-IR binding activity.

Variables with highest negative influence on I₂-IR binding activity are: var200 (TIP-TIP: 12.80-13.20 Å), var215 (TIP-TIP: 18.80-19.20 Å), var314 (DRY-N1: 13.60-14.00 Å) and var377 (DRY-TIP: 16.40-16.80 Å). Negative variables are depicted in Figure S4 on **9m** (pKi I₂=3.84) and **9ac** (pKi I₂=3.11), which possess low activity on I₂-IR.

From cross-correlogram TIP-TIP, it can be seen that var200 and var215 have strong negative influence on I₂-IR binding activity. Both variables are presented between two steric hot spots, substituents in the N-maleimide group and ethyl groups on phosphonate (Figure S4A and S4B). The highest values are calculated for compounds bearing longer distances (12.80-13.20 Å – var200 and 18.80-20.20 Å – var215) between these steric regions (**9e**, **8e**, **9m**, **9aa**, **9ab**, **9k**, **9ac** and **9z**). This molecular shape analysis implies that introduction of longer substituents in the *N*-maleimide group may not be the most complemented with the binding site of I₂-IR. Unfavourable impact of bulkier *N*-substituents is also defined with GRIND variable DRY-N1 (var314). It describes

unfavourable interaction between hydrophobic regions around aromatic ring separated from hydrogen bond acceptor group, nitrogen from imino group, at the longer distance (13.60-14.00 Å) (Figure S4A and S4B). This variable is pronounced in compounds **9z**, **9m**, **9j**, **9ab** and **9ac**. Furthermore, variable var377 (DRY-TIP) unfavourably impacts I₂-IR binding affinity describing hydrophobic and steric regions separated at the longer distance range (16.40-16.80 Å) than optimal (Figure S4A and S4B). The highest values are expressed in compounds **8e**, **9j**, **9k**, **9m**, **9z**, **9ab** and **9ac**, while the most potent compounds do not possess this negative variable. Overall, aforementioned negative variables confirm unfavourable fitting of longer molecules into I₂-IR binding pocket. Contrary, analysis of positive variables, var303 (DRY-N1: 13.20-13.60 Å) and var355 (DRY-TIP: 12.40-12.80 Å), from α_2 -AR model show that introduction of steric regions at a longer distance from hydrogen bond acceptor or ethyl phosphonate group may lead to an increase in α_2 -AR activity (**8e**, **9j**, **9l**).

Figure S3. Representation of positive (in red) interactions of **9c** (A) and **13d** (B) in I_2 -IR 3D-QSAR model. The steric hot spots (TIP) are presented in green, hydrophobic regions (DRY) in yellow and H-bond acceptor regions (N1) in blue.

Figure S4. Representation of negative (in blue) interactions of **9m** (A) and **9ac** (B) in I_2 -IR 3D-QSAR model. The steric hot spots (TIP) are presented in green, hydrophobic regions (DRY) in yellow and H-bond acceptor regions (N1) in blue.

The applicability domain (AD). In order to define AD of created I₂ and α_2 3D-QSAR models we have performed the leverage approach (Williams plot). SPSS v.18.0 software was used for this procedure.⁸ The value of warning leverage h* was calculated according to relation h* = 3(p+1)/n, where p presents the number of model variables (in this case we use five most significant variables according to PLS coefficient plot) and n is the number of compounds in training set. Figure S5 and S6 show that all compounds for both models are within of the defined AD.

Figure S5. AD of developed I₂-IR 3D-QSAR model

Figure S6. AD of developed a2-AR 3D-QSAR model

Identifier	pKi(I ₂)	MW <500 (g/mol)	Log S (ESOL) -10 to 0	Solubility class	Log P _{o/w} (XLOGP3) < 5	Log P _{o/w} (MLOGP) < 4.15	Log P _{o/w} (WLOGP) < 5.6	Consensus Log P _{o/w}	RuleOf5	TPSA 20Ų <tpsa<130< th=""></tpsa<130<>
Idazoxan, 4	7.41	204.23	-1.78	very soluble	0.70	0.99	0.07	1.23	Yes; 0 violation	42.85 Ų
Tracizoline, 5	7.58	173.23	-1.95	very soluble	1.31	2.10	-1.09	1.49	Yes; 0 violation	26.00 Ų
BU99008, 2	7.05	200.26	-2.27	soluble/ very soluble	1.29	1.95	-1.15	1.37	Yes; 0 violation	30.93 Å ²
LSL60101, 3	8.13	214.22	-3.03	soluble	2.13	0.85	2.83	2.19	Yes; 0 violation	51.05 Ų
8c	7.73	350.31	-1.97	very soluble	0.27	0.98	1.71	1.34	Yes; 0 violation	95.08 Ų
9d	8.56	478.84	-4.19	moderately soluble	2.48	2.99	4.34	3.43	Yes; 0 violation	95.08 Ų
9b	9.74	432.45	-3.47	soluble	2.00	2.09	3.25	2.73	Yes; 0 violation	95.08 Ų
9c	10.28	426.40	-3.42	soluble	1.75	2.13	3.13	2.55	Yes; 0 violation	95.08 Ų
9a	7.97	364.33	-2.00	soluble/ very soluble	0.19	0.95	1.55	1.36	Yes; 0 violation	95.08 Ų
9z	7.90	502.50	-4.93	moderately soluble	3.38	3.16	4.79	3.89	Yes; 1 violation: MW>500	95.08 Ų
9f	8.37	378.36	-2.25	soluble	0.56	1.19	1.94	1.76	Yes; 0 violation	95.08 Ų
9h	7.35	406.41	-2.80	soluble	1.18	1.65	2.72	2.20	Yes; 0 violation	95.08 Ų
9i	7.01	498.55	-4.48	moderately soluble	3.10	3.13	4.14	3.63	Yes; 0 violation	95.08 Ų
12d	7.55	496.83	-4.35	moderately soluble	2.58	3.36	4.90	3.71	Yes; 0 violation	95.08 Ų
9ad	7.96	461.84	-3.56	soluble	1.64	1.61	3.17	2.44	Yes; 0 violation	107.97 Ų
13d	7.87	508.86	-4.27	moderately soluble	2.45	2.68	4.35	2.68	Yes; 1 violation: MW>500	104.31 Ų

JS 2004 J. Chem. Inf. Model; Solubility Class - insoluble < -10 < poorly < -6 < moderately <-4 < soluble < -2 < very < 0 < highly; XLOGP3 – atomistic and knowledge-based method calculated by XLOGP program; MLOGP – topological method implemented from Moriguchi I. et al. 1992 Chem. Pharm. Bull.; WLOGP – atomistic method implemented from Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.; Consensus Log Po/w – average logP value of five predictions; RuleOf5 - Lipinski's "Rule of Five"; TPSA – topological polar surface area.

Identifier	pKi(I ₂)	S+Peff	BBB Filter	hum_ fup%	Pgp_ Substr	Pgp_Inh	CYP_ Risk	TOX_ Risk
Idazoxan, 4	7.41	3.854	High (98%)	60.075	No (93%)	No (96%)	2	1
Tracizoline, 5	7.58	3.042	High (98%)	57.803	No (93%)	No (96%)	1.451	3.365
BU99008, 2	7.05	3.145	High (98%)	57.69	No (93%)	No (96%)	1.215	2.927
LSL60101, 3	8.13	4.388	High (98%)	9.985	No (93%)	No (96%)	0.435	0
8c	7.73	2.273	High (77%)	23.11	No (93%)	No (96%)	0	1
9d	8.56	3.871	High (75%)	6.51	No (93%)	No (58%)	1.21	0.232
9b	9.74	2.707	High (74%)	10.274	No (93%)	No (63%)	1.541	0.386
9c	10.28	3.247	High (77%)	7.891	No (93%)	No (63%)	1.25	1
9a	7.97	3.01	High (76%)	27.813	No (93%)	No (96%)	0.772	0.677
9z	7.90	2.504	High (70%)	3.619	No (93%)	Yes (97%)	1.264	1.089
9f	8.37	2.972	High (76%)	22.087	No (93%)	No (96%)	0.996	0.66
9h	7.35	2.919	High (75%)	18.205	No (93%)	No (96%)	2.127	1.005
9i	7.01	2.391	High (74%)	6.64	No (93%)	No (46%)	2.198	1
12d	7.55	4.411	High (74%)	6.451	No (93%)	Yes (43%)	1.211	0.284
9ad	7.96	2.708	High (74%)	11.408	No (93%)	No (66%)	1.078	1
13d	7.87	3.248	High (74%)	6.596	No (93%)	Yes (43%)	1.191	0

Table S5. Selected pharmacokinetic properties of I2-IR ligands obtainedwith ADMET Predictor program

Legend: S+Peff – estimated permeability, BBB filter - qualitative likelihood (High/Low) of crossing the blood-brain barrier; hum_fup% - percentage of unbound drug in plasma; Pgp_Substr - likelihood of P-glycoprotein efflux; Pgp_Inh – likelihood of a molecule being an inhibitor of P-glycoprotein; CYP_Risk – cytochrome P450 liability score; Tox_Risk – toxicity liability score.

In vitro Blood-Brain Barrier Permeation Assay

To evaluate the brain penetration of the different compounds, a parallel artificial membrane permeation assay for blood-brain barrier was used, following the method described by Di et al (Table S6).⁹ The *in vitro* permeability (P_e) of fourteen commercial drugs through lipid extract of porcine brain membrane together with the test compounds were determined. Commercial drugs and assayed compounds were tested using a mixture of PBS:ETOH (70:30). Assay validation was made by comparing the experimental permeability with the reported values of the commercial drugs by bibliography and lineal correlation between experimental and reported permeability of the fourteen commercial drugs using the parallel artificial membrane permeation assay was evaluated (y=1,572x-1,090; R²=0,938). From this equation and taking into account the limits established by Di et al. for BBB permeation, we established the ranges of permeability as compounds of high BBB permeation (CNS+): *Pe* (10⁻⁶ cm s⁻¹) < 2,054 and compounds of uncertain BBB permeation(CNS+/-): 5,198 > *Pe* (10⁻⁶ cm s⁻¹) > 2,054.

Compound	<i>P</i> e (10 ⁻⁶ cm s ⁻¹) ^a	Prediction		
8a	1.2±0.04	CNS-		
8b	7.5±0.6	CNS+		
8c	4.3±0.3	CNS+/-		
8d	9.4±1.2	CNS+		
8e	5.13±0,95	CNS+/-		
9a	0.75±0.13	CNS-		
9b	25.9±0.6	CNS+		
9c	7.8±0.6	CNS+		
9d	9.7±0.7	CNS+		
9e	3.9±0.15	CNS+/-		
14c	6.9±0.3	CNS+		
12c	3.2±0.16	CNS+/-		
12d	$4.4{\pm}0.09$	CNS+/-		
13c	$1.8{\pm}0.06$	CNS-		
13d	$1.9{\pm}0.06$	CNS-		
15c	9.5±0.5	CNS+		
9f	3.7±0.5	CNS+/-		
9g	6.2±0.3	CNS+		
9h	6.3±0.3	CNS+		
9i	6.7±0.3	CNS+		
9j	>30	CNS+		
9k	6.2±0.3	CNS+		
91	7.2±0.45	CNS+		
9m	21.2±2.77	CNS+		
9n	5.6±0,15	CNS+		

Table S6. Permeability Results *P*e (10⁻⁶ cm s⁻¹) from the PAMPA-BBB Assay for new reported compounds and Their Prediction of BBB Penetration.

90	6.9±0.2	CNS+
9p	3.2±0.2	CNS+/-
9q	$5.5{\pm}0.03$	CNS+
9r	5.3±0.14	CNS+/-
9s	3.7±0.1	CNS+/-
9t	$4.4{\pm}0.4$	CNS+/-
9u	8.3±0.45	CNS+
9v	8.9±0.3	CNS+
9w	$9.8{\pm}0.6$	CNS+
9x	4.5±0.25	CNS+/-
9y	$1.4{\pm}0.04$	CNS-
9z	8.2±0.3	CNS+
9aa	$8.75{\pm}0.5$	CNS+
9ab	6.5±0.02	CNS+
9ac	$1.4{\pm}0.06$	CNS-
9ad	1.1±0.15	CNS-

a. PBS/EtOH (70:30) was used as solvent. Values are expressed as mean±SD of at least three independent experiments.
Cytotoxicity assays

All tumor cell lines were acquired from the American Type Culture Collection (ATCC, Manassas, VA, USA), except for the DND-41 cell line, which was purchased from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ Leibniz-Institut, Germany), and the Hap-1 cell line which was ordered from Horizon Discovery (Horizon Discovery Group, UK). All cell lines were cultured as recommended by the suppliers. Media were purchased from Gibco Life Technologies, USA, and supplemented with 10% fetal bovine serum (HyClone, GE Healthcare Life Sciences, USA). Adherent cell lines HCT-116, NCI-H460, LN-229, Hap-1 and Capan-1 cells were seeded at a density between 500 and 1500 cells per well, in 384-well, black walled, clear-bottomed tissue culture plates (Greiner). After overnight incubation, cells were treated with the test compounds at seven different concentrations ranging from 100 to 6.4×10^{-3} μM. Suspension cell lines HL-60, K-562, Z-138, and DND-41 were seeded at densities ranging from 2500 to 5500 cells per well in 384-well, black walled, clear-bottomed tissue culture plates containing the test compounds at the same seven concentration points. The plates were incubated and monitored at 37°C for 72 h in an IncuCyte® (Essen BioScience Inc., Ann Arbor, MI, USA) for real-time imaging. Images were taken every 3 h, with one field imaged per well under 10x magnification.

Microsomal stability of human, rat and mice microsomes

Human, rat and mice microsomes from Tebu-Xenotech were employed in the assay. They content 20 mg/mL of protein.

	Blank (µL)	Human (µL)	Mice (µL)	Rat (µL)
Phosphate buffer Na/K 50 mM pH 7.4	295	283.5	301.3	301.3
MgCl ₂ 30 mM	50	50	50	50
NADP 10 mM	50	50	50	50
Glucose 6-P 100mM	50	50	50	50
Glucose 6-P DH 20 U/mL	25	25	25	25
Water	25			
Human microsomes		36.5		
Rat microsomes				18.7
Mice microsomes			18.7	
Test compound	5	5	5	5

Brief protocol: The following quantities were added to each well of a 96-well microplate.

Plates were incubated at 37°C and 75 µL samples were taken at 0, 10, 20, 40 and 60 min.

Samples were transferred to a microplate and 75 μ L Acetonitrile were added for inactivating the microsomes, and 30 μ L of H₂O for improving the chromatographic conditions and kept at 4 °C. When all the samples were taken the plate was centrifuged at 46000 g for 30 min at 15 °C. Supernatant was taken and injected in the UPLC-MS/MS.

Stationary phase: Reverse phase Acquity UPLC® BEH C18 1,7 μm (2.1 mm x 50 mm) (Waters). Mobile phase: A: Water+0.1% formic; B: acetonitrile+0.1% formic acid. Gradient:

Time		
(min)	Α	В
0	95%	5%
0.1	95%	5%
1	0%	100%
2.5	0%	100%
2.6	95%	5%
3	95%	5%

Flow: 0.6 mL/min

The chromatographic equipment employed was an UPLC QSM Waters Acquity. Compound concentrations were calculated from the UV peak areas. The response was linear in the range between 10 ng/mL and 0.3125 ng/mL.

Metabolic stability was calculated from the logarithm of the remaining **9d** at each of the times evaluated.

	Rat			Mice			Human	
% remanent (sampling time 60 min)	t1/2 (min)	Clint (µL/min* mg prot)	% remanent (sampling time 60 min)	t1/2 (min)	Clint (µL/min* mg prot)	% remanent (sampling time 60 min)	t1/2 (min)	Clint (µL/min *mg prot)
44.79	52.81	13.1	65.08	91.72	7.55	50.87	64.16	10.8

Table S7. Microsomal stability of human, rat and mice microsomes

Solubility

The stock solutions (10^{-2} M) of the assayed compound were diluted to decreased molarity, from 300 μ M to 0.1 μ M, in 384 well transparent plate (*Greiner* 781801) with 1% DMSO: 99% PBS buffer. Incubated at 37°C and read after 2 h in a *NEPHELOstar Plus (BMG LABTECH)*. The results were adjusted to a segmented regression to obtain the maximum concentration in which compound is soluble. **9d**, solubility 92 μ M.

The stock solutions (10^{-3} M) of **9d** were diluted to decreased molarity, from 50 µM to 4 µM, with MeOH, acetonitrile and water (with 17% added methanol). The different dilutions were filtrated thorough PVDF 0.45 µm filters and read in a spectrophotometer-DAD (Analytical Jena) at 215 and 220 nm in order to obtain a segmented regression. Additionally, a saturated solution was prepared, filtered, read and adjusted to calculate the maximum concentration in which compound is soluble. The solubility of **9d** in MeOH, acetonitrile and water and classification according to Ph. Eur. is 35.08 mg/mL (soluble), 102.7 mg/mL (freely soluble) and 0.17 mg/mL (very slightly soluble), respectively.

Chemical stability

In order to evaluate the stability, weekly HPLC were performed on the **9d** exposed sample to stress conditions (see manuscript). **9d** 0.2 mg/mL, phase mobil (A: $H_20 + 0.05\%$ formic acid and B: ACN + 0.05% formic acid) at 1:1 proportion. Stationary phase, Poroshell 120 EC-C15 (4.6x50 mm, 2.7-micro). Mobile phase (A: $H_20 + 0.05\%$ formic acid and B: ACN + 0.05% formic acid) using a gradient elution. Flow rate 0.6 mL/min. The DAD detector was set at 254 nm and the injection volume was 5 µL and oven temperature 40 °C.

Cytochrome inhibition

The objective of this study was to screen the inhibition potential of the compounds using recombinant human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and probe substrates with fluorescent detection.

Incubations were conducted in a 200 µL volume in 96 well microtiter plates (COSTAR 3915). Addition of cofactor-buffer mixture (KH₂PO₄ buffer, 1.3mM NADP⁺, 3.3mM MgCl₂, 3.3 mM Glucose-6-phosphate and 0.4U/mL Glucose-6-phosphate Dehydrogenase), supersomes control, standard inhibitors (Furafyline, Tranylzypromine, Ketoconazole, Sulfaphenazole and Quinidine; from Sigma Aldrich) and test compounds to plates were carried out by a liquid handling station (Zephyr Caliper). The plate was then pre-incubated at 37°C for 5 min, and the reaction initiated by the addition of pre-warmed enzyme/substrate (E/S) mix. The E/S mix contained buffer (KH₂PO₄), c-DNA-expressed P450 in insect cell microsomes, substrate (3-cyano-7ethoxycoumarin (CEC) for CYP1A2 and CYP2C19, 7-methoxy-4-(trifluoromethyl)coumarin 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-(7-MFC) for CYP2C9, methylcoumarin (AMMC) for CYP2D6, 7-benzyloxytrifluoromethyl coumarin (7-BFC) and Dibenzylfluorescein (DBF) for CYP3A4) to give the final assay concentrations in a reaction volume of 200 µL. Reactions were terminated after different incubation times depending on the each cytochrome by addition of STOP solution (ACN/TrisHCl 0.5M 80:20 and NaOH 2N for CYP3A4 (DBF) and ACN/TrisHCl 0.5M 80:20 for the other cytochromes).

Fluorescence per well was measured using a fluorescence plate reader (Tecan M1000 pro) and percentage of inhibition was calculated taking into account the compound-free wells and the wells with reference compounds.

Results for **9d**: CYP1A2 (%inhib 10 μ M) 1 ± 1; CYP2C9 (%inhib 10 μ M) 26 ± 6; CYP3A4 (BFC) (%inhib 10 μ M) 53 ± 1; CYP3A4 (DBF) (%inhib 10 μ M) 48 ± 1; CYP2D6 (%inhib 10 μ M) 27 ± 4.

hERG ion channel inhibition

The assays were carried out at a CHO cell line transfected with the hERG potassium channel. Cells were grown in the presence of doxycycline for inducing the channel expression and kept at 30°C for 24 h before running the assay. Plate was primed with extracellular (2 mM CaCl₂; 1 mM MgCl₂; 10 mM Hepes; 4 mM KCl; 145 mM NaCl; 10 mM glucose; pH=7.4) and intracellular (5.374 mM MgCl₂; 1.75 mM MgCl₂; 10 mM EGTA; 10 mM Hepes; 120 mM KCl; 4 mM Na2-ATP; pH=7.2) solutions and the compounds dissolved in the extracellular solution. Cells were detached and suspended in the extracellular solution and dispensed in the assay plate at a density of 3*106 cells/well. Plate was introduced in the automated patch-clamp reader (Ionflux HT) and the hERG channel currents were evoked by a 5 sec depolarization step (from - 80 mV to +20mV) which was followed by a 5 second tail step to -50mV.

Current was normalized to the maximum inhibition shown by controls and percentage of inhibition calculated. Inhibitory activity of **9d** at hERG channel, % inhibition (10 μ M): 30.5 ± 7.7.

Human and mouse plasma protein binding

Human and mouse plasma from Seralab was employed in the assay.

Brief protocol: The assay was carried out by employing Rapid Equilibrium Dyalisis (RED) from Thermo Scientific. The compounds were dissolved at 5 μ M in plasma and added to the corresponding insert of the RED device. Dialysis buffer was added to the corresponding insert of the RED device. Plate was incubated for 4h at 37°C. After the incubation period 50 μ L aliquots of each chamber were transferred to empty vials. 50 μ L of dialysis buffer were added to the plasma samples and 50 μ L of plasma were added to the buffer samples. 300 μ L of acetonitrile were added to all the samples and centrifuged at 4000 rpm 100 μ L aliquots of the supernatants were transferred to a LC analysis plate and diluted with 100 μ L of water. Samples were analyzed in a UPLC/MS/MS. Stationary phase: Reverse phase Acquity UPLC® BEH C18 1,7 μ m (2.1 mm x 100 mm) (Waters). Mobile phase: 125 mM Ammonium hydroxide/acetonitrile

Gradient:

Time	Ammonium hydroxide	Acetonitrile
0	95%	5%
0.1	95%	5%
1	0%	100%
2	0%	100%
2.1	95%	5%
2.5	95%	5%

Flow: 0.6 mL/min

The chromatographic equipment employed was an UPLC QSM Waters Acquity. Compound concentrations were calculated from the MS peak areas.

Table S8. Human and m	use plasma protein binding
-----------------------	----------------------------

	Mo	use	Huma	n
Compound	Plasma protein binding	Unbound fraction	Plasma protein binding	Unbound fraction
9d	96.29%	3.71%	91.97%	8.03%

Receptor characterization panel

Table S9. Eurofins radioligand displacement using 10 µM 9d. Displacement greater than

50% is considered significant.

Compound I.D. Client Compound I.D. Test % Inhibitio		ition of Control Speci	ific Binding		
		Concentration	1 st	2 nd	Mean
A _{2A} (h) (agonist radioli	gand)				
100046828-1	B06	1.0E-05 M	1.4	-10.1	-4.4
α _{1A} (h) (antagonist radi	ioligand)				
100046828-1	B06	1.0E-05 M	1.9	10.1	6.0
α _{2A} (h) (antagonist radi	ioligand)				
100046828-1	B06	1.0E-05 M	14.2	2.2	8.2
β ₁ (h) (agonist radiolig	and)				
100046828-1	B06	1.0E-05 M	-11.7	-10.3	-11.0
β ₂ (h) (antagonist radio	bligand)				
100046828-1	B06	1.0E-05 M	1.1	-4.3	-1.6
BZD (central) (agonist	radioligand)				
100046828-1	B06	1.0E-05 M	-5.7	7.7	1.0
CB1 (h) (agonist radioli	igand)				
100046828-1	B06	1.0E-05 M	-10.5	2.3	-4.1
CB ₂ (h) (agonist radioli	igand)				
100046828-1	B06	1.0E-05 M	2.7	6.1	4.4
CCK1 (CCKA) (h) (agon	ist radioligand)				
100046828-1	B06	1.0E-05 M	72.1	68.7	70.4
D1 (h) (antagonist radio	oligand)				
100046828-1	B06	1.0E-05 M	10.4	29.8	20.1
D _{2S} (h) (agonist radioli	gand)				
100046828-1	B06	1.0E-05 M	14.6	-7.1	3.8
ET _A (h) (agonist radioli	igand)				
100046828-1	B06	1.0E-05 M	11.8	-2.4	4.7
NMDA (antagonist radi	oligand)				
100046828-1	B06	1.0E-05 M	9.1	3.4	6.3
H1 (h) (antagonist radioligand)					
100046828-1	B06	1.0E-05 M	-3.7	-2.6	-3.2
H ₂ (h) (antagonist radio	oligand)				
100046828-1	B06	1.0E-05 M	-16.7	-8.8	-12.7
MAO-A (antagonist rad	lioligand)				
100046828-1	B06	1.0E-05 M	0.9	10.5	5.7

M ₁ (h) (antagonist rad	dioligand)				
100046828-1	B06	1.0E-05 M	-20.3	-9.3	-14.8
M ₂ (h) (antagonist rad	dioligand)				
100046828-1	B06	1.0E-05 M	0.1	-1.1	-0.5
M ₃ (h) (antagonist rad	dioligand)				
100046828-1	B06	1.0E-05 M	-8.9	-4.1	-6.5
N neuronal α4β2 (h) ((agonist radioligand)				
100046828-1	B06	1.0E-05 M	-9.1	-5.3	-7.2
δ (DOP) (h) (agonist i	radioligand)				
100046828-1	B06	1.0E-05 M	-13.9	-7.4	-10.6
kappa (h) (KOP) (ago	nist radioligand)				
100046828-1	B06	1.0E-05 M	47.4	47.2	47.3
µ (MOP) (h) (agonist	radioligand)				
100046828-1	B06	1.0E-05 M	1.9	11.2	6.6
5-HT _{1A} (h) (agonist ra	adioligand)				
100046828-1	B06	1.0E-05 M	-1.1	1.6	0.2
5-HT1B(h) (antagonis	st radioligand)				
100046828-1	B06	1.0E-05 M	-14.8	1.2	-6.8
5-HT _{2A} (h) (agonist ra	adioligand)				
100046828-1	B06	1.0E-05 M	-3.2	-11.6	-7.4
5-HT _{2B} (h) (agonist ra	adioligand)				
100046828-1	B06	1.0E-05 M	13.4	-9.6	1.9
5-HT ₃ (h) (antagonist	radioligand)				
100046828-1	B06	1.0E-05 M	-15.2	-12.1	-13.7
GR (h) (agonist radio	ligand)				
100046828-1	B06	1.0E-05 M	-2.6	-6.0	-4.3
AR (h) (agonist radio	ligand)				
100046828-1	B06	1.0E-05 M	-12.6	-11.3	-12.0
V1 a (h) (agonist radio	oligand)				
100046828-1	B06	1.0E-05 M	32.7	32.3	32.5
Ca ²⁺ channel (L, dihy	/dropyridine site) (antagonist radioligand)				
100046828-1	B06	1.0E-05 M	22.6	24.1	23.3
Potassium Channel h	hERG (human)- [3H] Dofetilide				
100046828-1	B06	1.0E-05 M	-10.1	-11.3	-10.7
K _V channel (antagoni	ist radioligand)				
100046828-1	B06	1.0E-05 M	10.7	-4.8	2.9
Na ⁺ channel (site 2) (antagonist radioligand)				
100046828-1	B06	1.0E-05 M	13.0	10.8	11.9
norepinephrine trans	sporter (h) (antagonist radioligand)				
100046828-1	B06	1.0E-05 M	-10.3	-5.1	-7.7
dopamine transporte	er (h) (antagonist radioligand)				
100046828-1	B06	1.0E-05 M	1.8	12.6	7.2
5-HT transporter (h) ((antagonist radioligand)				
100046828-1	B06	1.0E-05 M	-9.2	0.7	-4.3

Reference compounds results:

Compound I.D.	IC ₅₀ (M)	K _i (M)	nH
A _{2A} (h) (agonist radioligand)			
NECA	8.1E-08 M	6.6E-08 M	0.8
α _{1A} (h) (antagonist radioligand)			
WB 4101	4.9E-10 M	2.5E-10 M	1.2
α _{2A} (h) (antagonist radioligand)			
yohimbine	1.2E-08 M	5.4E-09 M	1.0
β ₁ (h) (agonist radioligand)			
atenolol	4.8E-07 M	2.7E-07 M	1.2
β ₂ (h) (antagonist radioligand)			
ICI 118551	7.0E-10 M	2.3E-10 M	1.0
BZD (central) (agonist radioligand)			
diazepam	9.4E-09 M	7.9E-09 M	1.5
CB ₁ (h) (agonist radioligand)			
CP 55940	1.8E-09 M	1.6E-09 M	1.0
CB ₂ (h) (agonist radioligand)			
WIN 55212-2	3.1E-09 M	2.0E-09 M	1.0
CCK ₁ (CCK _A) (h) (agonist radioligand)			
CCK-8s	4.5E-11 M	3.4E-11 M	0.6
D ₁ (h) (antagonist radioligand)			
SCH 23390	3.1E-10 M	1.2E-10 M	1.4
D _{2S} (h) (agonist radioligand)			
7-OH-DPAT	1.5E-09 M	6.1E-10 M	1.2
ET _A (h) (agonist radioligand)			
endothelin-1	3.1E-11 M	1.5E-11 M	0.9
NMDA (antagonist radioligand)			
CGS 19755	3.5E-07 M	2.9E-07 M	1.0
H ₁ (h) (antagonist radioligand)			
pyrilamine	3.0E-09 M	1.9E-09 M	1.1
H ₂ (h) (antagonist radioligand)			
cimetidine	6.7E-07 M	6.6E-07 M	1.3
MAO-A (antagonist radioligand)			
clorgyline	1.5E-09 M	8.9E-10 M	2.5
M ₁ (h) (antagonist radioligand)			
pirenzepine	2.2E-08 M	1.9E-08 M	1.3
M ₂ (h) (antagonist radioligand)			
methoctramine	4.0E-08 M	2.8E-08 M	1.2
M ₃ (h) (antagonist radioligand)			
4-DAMP	1.4E-09 M	9.8E-10 M	1.7
N neuronal $\alpha 4\beta 2$ (h) (agonist radioligand)			
nicotine	3.1E-09 M	1.0E-09 M	0.9
δ (DOP) (h) (agonist radioligand)			
DPDPE	3.2E-09 M	1.7E-09 M	1.0
kappa (h) (KOP) (agonist radioligand)			
U50488	6.8E-10 M	3.7E-10 M	1.1
μ (MOP) (h) (agonist radioligand)			
DAMGO	8.1E-10 M	3.3E-10 M	1.1
5-HT _{1A} (h) (agonist radioligand)			
8-OH-DPAT	1.3E-09 M	6.4E-10 M	0.8

5-HT1B(h) (antagonist radioligand)			
Serotonine	1.9E-07 M	8.5E-08 M	0.7
5-HT _{2A} (h) (agonist radioligand)			
(±)DOI	3.8E-10 M	2.8E-10 M	1.0
5-HT _{2B} (h) (agonist radioligand)			
(±)DOI	2.6E-09 M	1.3E-09 M	1.3
5-HT ₃ (h) (antagonist radioligand)			
MDL 72222	1.1E-08 M	7.6E-09 M	1.0
GR (h) (agonist radioligand)			
dexamethasone	3.7E-09 M	1.8E-09 M	0.9
AR (h) (agonist radioligand)			
testosterone	3.1E-09 M	1.4E-09 M	0.9
V _{1 a} (h) (agonist radioligand)			
[d(CH ₂) ₅ ¹ ,Tyr(Me) ₂]-AVP	2.1E-09 M	1.3E-09 M	1.1
Ca ²⁺ channel (L, dihydropyridine site) (an	tagonist radioligand)		
nitrendipine	1.8E-10 M	1.2E-10 M	1.2
Potassium Channel hERG (human)- [3H] I	Dofetilide		
Terfenadine	1.3E-07 M	9.2E-08 M	1.0
K _V channel (antagonist radioligand)			
a-dendrotoxin	1.1E-10 M	8.5E-11 M	0.9
Na ⁺ channel (site 2) (antagonist radioliga	nd)		
veratridine	6.9E-06 M	6.2E-06 M	1.1
norepinephrine transporter (h) (antagonis	t radioligand)		
protriptyline	5.0E-09 M	3.7E-09 M	1.3
dopamine transporter (h) (antagonist radi	oligand)		
BTCP	1.5E-08 M	7.7E-09 M	1.1
5-HT transporter (h) (antagonist radioliga	nd)		
imipramine	3.1E-09 M	1.4E-09 M	1.1

5xFAD In vivo experimental design

Target	Product	Forward primer (5'-3')	Reverse primer (5'-3')
	size (bp)		
Cxcl10	72	GGCTAGTCCTAATTGCCCTTGG	TTGTCTCAGGACCATGGCTTG
Tnf-α	157	TCGGGGTGATCGGTCCCCAA	TGGTTTGCTACGACGTGGGCT
iNOS	125	GGCAGCCTGAGAGACCTTTG	GGAAGCGTTTCGGGATCTGAA
β-actin	190	CTGTCCCTGTATGCCTCTG	ATGTCACGCACGATTTCC

Table S10. SYBR Green primers used in qPCR studies.

Table S11. TaqMan probes used in qPCR studies.

Target	Product size (bp)	Reference
Hmox1	69	Mm00516005_m1
Твр	93	Mm00446971_m1

Statistical analysis

The statistical analysis was conducted using GraphPad Prism ver.7 statistical software. Data were expressed as the mean \pm Standard Error of the Mean (SEM) from at least 10 samples per group. Means were compared to One-Way ANOVA analysis of variance, followed by Tukey-Kramer multiple comparison post-hoc analysis. Comparisons between groups were also performed by two-tail Student's *t*-test for independent samples. Statistical significance was considered when p-values were <0.05. The statistical outliers were carried out with Grubss' test and subsequently removed from the analysis.

NMR spectra data

The ¹H and ¹³C spectra of the 37 new synthetized compounds **9-15** showed coupling constants (*J*) between ¹H-P and ¹³C-P. Significant coupling constants ¹H-P (in green) and ¹H-¹H (in blue) for representative compound **9c** are depicted (Figure). In particular, the imine proton H-3 exhibits a ¹H-P J of - 5 Hz, and the bridged protons H-3a and H-6a have ¹H-P J of - 3 Hz and - 18 Hz (in green), respectively. Additionally, ¹H-¹H J of 1.5 Hz between H-3 and H-3a, and 9 Hz of the geminal H-3a and H-6a are observed (in blue). In the ¹³C spectra a J of - 160 Hz was observed between C1 and the P. In a similar fashion the peaks corresponding to C3a appears as doblets due to the J of - 12 Hz with the P atom (in red). Noteworthy, spectra of compounds **9r**, **9y**, **9ac** and **9ad** with an *ortho* substituted *N*-phenyl showed the presence of rotamers, same multiplicity (¹H-NMR) different shift (¹H-NMR and ¹³C-NMR), due to the restricted rotation of the *N*-C*ipso* phenyl bond. For a complete table on the representative peaks in the ¹H-NMR and ¹³C-NMR spectra of all the new compunds see Tables S12 and S13.

Figure. Coupling constants for 9c, ¹H-P (in green), ¹H-H (in blue), ¹³C-P (in red).

Compound	Н3	H3a	H6a
9a	7.95, dd 5.5, 1.0	4.34, ddd 8.5, 4.0, 1.0	4.01, m
9b	8.00, dd	4.25, ddd	4.03, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.5, 8.5
9c	7.97, dd	4.40, ddd	4.17, dd
	4.5, 1.6	8.5, 3.0, 1.5	18.5, 9.0
9d	8.05, d 4.5	4.47, m	4.25, dd 18.0, 8.0
9e	8.04, dd	4.45, ddd	4.25, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 8.5
14c	7.82, dd	4.39, dq	3.97, dd
	5.0, 1.5	9.0, 1.5	19.0, 9.0
15c	7.82, dd	4.39, ddd	3.96, dd
	5.0, 1.5	9.5, 3.5, 1.5	19.0, 9.5
12c	8.04, dd	4.49, dq	4.25, dd
	5.0, 1.5	8.5, 1.5	18.0, 8.5
13c	8.02, dd	4.46, ddd	4.23, dd
	5.5, 1.5	8.5, 3.0, 1.5	18.0, 8.5
12d	8.02, dd	4.49, ddd	4.25, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 8.5
13d	8.02, dd	4.46, ddd	4.22, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 8.5
9f	7.96, dd 5.0, 1.5	4.29, ddd 8.5, 3.5, 1.5	4.10, m
9g	7.95, dd 5.0, 1.5	4.30, ddd 8.5, 3.5, 1.5	4.06, m
9h	7.93, dd 5.0, 1.5	4.08, m	3.91, m
9i	7.95, dd	4.29, ddd	4.11, dd
	5.0, 1.0	8.5, 3.0, 1.0	19.0, 8.5
9j	7.92, dd 5.0, 1.5	4.33, ddd 8.5, 3.5, 1.5	4.18, m
9k	7.85, dd 5.0, 1.0	4.24, ddd 8.5, 4.0, 1.0	4.16, m

Table S12. ¹ H chemical shifts (ppm) for new compounds including both
the multiplicity and the coupling constants $(J \text{ Hz})$.

91	7.83, dd 5.5, 1.5	4.24, ddd 8.0, 4.0, 1.5	4.15, m
9m	8.00, dd 5.0, 1.5	4.31, ddd 9.0, 3.0, 1.5	4.17, m
9n	8.05, dd	4.51, ddd	4.28, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 9.0
90	8.06, dd	4.50, ddd	4.27, dd
	5.0, 1.5	9.0, 2.5, 1.5	18.0, 9.0
9р	8.05, dd	4.48, ddd	4.26, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 9.0
9q	8.04, dd	4.47, ddd	4.25, dd
	5.5, 1.0	8.5, 3.0, 1.0	18.0, 9.0
9r	8.03, dd	4.52, ddd	4.35, dd
(rotamer A)	5.5, 1.5	8.5, 4.5, 1.5	18.0, 8.5
9r	8.08, dd	4.56, ddd	4.36, dd
(rotamer B)	5.0, 1.5	8.5, 3.0, 1.5	18.0, 8.5
9s	8.05, dd	4.48, ddd	4.26, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 9.0
9t	8.04, dd	4.47, ddd	4.25, dd
	5.0, 1.5	9.0, 3.0, 1.5	18.0, 9.0
9u	8.04, dd	4.47, ddd	4.25, dd
	5.0, 1.5	9.0, 2.5, 1.5	18.0, 8.5
9v	8.04, dd	4.47, ddd	4.26, dd
	4.5, 1.5	8.5, 3.0, 1.5	18.0, 8.5
9w	8.02, dd	4.57, ddd	4.41, dd
	5.0, 1.0	8.5, 4.0, 1.0	18.0, 9.0
9x	8.07, dd	4.53, ddd	4.30, dd
	5.0, 1.0	9.0, 3.0, 1.0	18.0, 9.0
9y	8.05, dd	4.59, ddd	4.39, dd
(rotamer A)	5.0, 1.5	9.0, 3.5, 1.5	18.5, 9.0
9y	8.08, dd	4.55, ddd	4.35, dd
(rotamer B)	5.5, 2.5	10.0, 2.5, 1.5	18.0, 9.0
9z	8.08, dd	4.51, ddd	4.30, dd
	5.0, 1.5	9.0, 3.0, 1.5	18.5, 9.0
9aa	8.05, dd	4.46, ddd	4.24, dd
	5.0, 1.5	8.5, 3.0, 1.5	16.5, 9.0
9aa	8.01, dd	4.48, ddd	4.25, dd
	5.0, 1.5	8.5, 3.0, 1.5	18.0, 8.5
9ac	8.13, dd	4.63, ddd	4.43, dd
(rotamer A)	5.0, 1.5	9.0, 3.5, 1.5	18.5, 9.0

9ad 8.02, dd 4.53, ddd 4.36, dd (rotamer A) 5.5, 1.5 8.5, 4.0, 1.5 18.0, 8.5 9ad 8.07, dd 4.58, ddd 4.36, dd	9ac (rotamer B)	8.12, dd 5.0, 1.5	4.67, ddd 8.5, 3.0, 1.5	4.46, dd 18.0, 8.5
Oped 8.07 dd 4.58 ddd 4.26 dd	9ad	8.02, dd	4.53, ddd	4.36, dd
	(rotamer A)	8.07 dd	8.3, 4.0, 1.3	18.0, 8.3

Compound	C1	С3	C3a	C6a
9a	85.6, d 154.0	162.5, d 11.5	60.5	47.7, d 2.0
9b	85.7, d 156.0	162.8, d 12.0	59.9	47.5, d 2.5
9c	86.2, d 157.0	162.5, d 12.0	60.2	48.2, d 2.0
9d	86.2, d 156.0	162.0, d 12.5	60.1	48.5
9e	86.2, d 157.5	162, d 12.0	60.1	48.1, d 2.0
14c	83.7, d 158.0	161.3,d 13.0	59.9	45.9, d 3.0
15c	87.3, d 159.5	161.5, d 12.5	59,9	45.9, d 2.5
12c	85.9, d 156.0	162.8,d 12.0	60.5	48.1, d 3.0
13c	86.0, d 157.0	162.3, d 12.0	60.3	48.3, d 3.0
12d	86.0, d 156.0	162.4, d 12.0	60.3	48.2, d 3.0
13d	86.0, d 158.0	161.8, d 13.0	60.1	48.6, d 3.0
9f	85.8, d 155.0	162.7, d 12.0	60.5	47.9, d 2.0
9g	85.9, d 154.0	162.8, d 12.0	60.5	47.8, d 3.0
9h	86.6, d 158.0	163.3, d 12.0	60.2	48.1 ,d 2.0
9i	86.0, d 155.0	162.6, d 12.0	60.6	47.7, d 2.0
9j	85.7, d 155.0	162.3, d 11.5	60.4	47.8, d 2.0

Table S13. ¹³C chemical shifts for new compounds (ppm) including both the multiplicity and the coupling constants (J Hz).

9k		162.6, d 11.5	60.2	47.5, d 2.5
91	85.7, d 153.0	162.5, d 12.0	60.3	47.5, d 2.0
9m	86.1, d 157.0	162.7, d 12.0	60.2	48.0, d 2.0
9n	86.3, d 157.0	162.0, d 13.0	60.1	48.3, d 3.0
90	86.4, d 158.0	162.1, d 12.0	60.2	48.6, d 2.0
9р	86.2, d 157.0	162.2, d 12.0	60.1	48.2, d 3.0
9q	86.4, d 157.0	162.2, d 12.0	60.2	48.4, d 2.0
9r (rotamer A)	86.0, d 157.5	162.0, d 11.5	60.1	48.0, d 2.5
9r (rotamer B)	86.6, d 153.5	162.2, d 12.5	60.3	48.6, d 2.5
98	86.4, d 157.0	162.3, d 12.0	60.2	48.5, d 3.0
9t	86.4, d 157.0	162.2, d 12.0	60.3	48.4, d 3.0
9u	86.5, d 158.0	162.0, d 13.0	60.9	48.6, d 3.0
9v	86.2, d 157.0	161.9, d 13.0	60.0	48.4, d 3.0
9w	86.7, d 152.0	161.8, d 11.0	61.0	48.3, d 3.0
9x	86.2, d 158.0	161.7, d 12.0	60.0	48.5, d 2.0
9y (rotamer A)	86.6, d 154.5	161.9, d 11.5	61.0	48.3, d 2.5
9y (rotamer B)	86.3, d 159.0	161.8, d 12.5	60.1	49.2, d 2.5
9z	86.5, d 157.0	162.3, d 12.0	60.2	48.2, d 2.5

9aa	86.2, d 156.0	162.4, d 12.0	60.2	48.1, d 3.0
9aa	86.2, d 157.0	162.2, d 12.0	60.1	48.2, d 3.0
9ac	86.5, d	162.3, d	61.0	48.3, d
(rotamer A)	155.0	11.5		2.5
9ac	86.2, d	162.4, d	60.3	48.6, d
(rotamer B)	157.5	12.0		2.5
9ad	86.1, d	161.6, d	60.4	48.4, d
(rotamer A)	158.0	11.5		2.5
9ad	86.9, d	162.0, d	61.0	49.0, d
(rotamer B)	153.0	12.5		2.5

Diethyl [amino(4-fluorophenyl)methyl]phosphonate (step 1-10b)

Diethyl [amino(4-methoxyphenyl)methyl]phosphonate (step 1-10c)

Diethyl [(4-fluorophenyl)(formamido)methyl]phosphonate (step 2-10b)

Diethyl [(4-methoxyphenyl)(formamido)methyl]phosphonate (step 2-10c)

Diethyl [(4-methoxyphenyl)isocyanomethyl]phosphonate (10b)

Diethyl [(4-methoxyphenyl)isocyanomethyl]phosphonate (10b)

Diethyl [(4-fluorophenyl)isocyanomethyl]phosphonate (10c)

Diethyl [(4-fluorophenyl)isocyanomethyl]phosphonate (10c)

Diethyl (1-isocyano-2-phenylethyl)phosphonate (10d)

Diethyl (1-isocyano-2-phenylethyl)phosphonate (10d)

Diethyl [2-(4-fluorophenyl)-1-isocyanoethyl]phosphonate (10e)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-methyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9a)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-methyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9a)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-cyclohexyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9b)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-cyclohexyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9b)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1,5-diphenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1,5-diphenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(4-methoxyphenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9e)

171.174 171.197 171.194 171.194 171.194 171.194 171.195 171.195 1123.477 123.472 123.482 123.482 123.482 123.482 123.588 123.5288 123.5288		~85.349	64.667 64.594 63.525 63.452 55.383 55.383 48.111 48.111	16.288 16.250 16.233 16.199
--	--	---------	--	--------------------------------------

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(4-methoxyphenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9e)

77,838 77,838 77,7387 77,7387 77,7387 77,7387 77,7387 77,7387 77,7387 77,7387 77,7388 77,7378 77,7378 77,7378 77,7378 77,7378 77,7378 77,7378 77,7378 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,7377 77,7378 77,737777 77,7378 77,7378 77,7378 77,7378 77,7378 77,

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-benzyl-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

c]pyrrole-1-phosphonate (14c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-benzyl-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (14c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-(4-fluorobenzyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (15c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-(4-fluorobenzyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (15c)

88.806 88.806 88.806 88.806 88.806 88.807 89.807 80.807

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-(4-methoxyphenyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (13c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-(4-methoxyphenyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (13c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-1-(4-fluorophenyl)-4,6-dioxo-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (12d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-1-(4-fluorophenyl)-4,6-dioxo-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (12d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-1-(4-methoxyphenyl)-4,6-dioxo-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (13d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-1-(4-methoxyphenyl)-4,6-dioxo-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (13d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-ethyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9f)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-ethyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9f)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-propyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9g)

3,875 3,875 3,875 3,875 3,875 3,875 3,875 3,875 3,875 3,875 3,875 1.258 1.258 1.123 1.151 1.151 1.151

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(tert-butyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9h)

c]pyrrole-1-phosphonate (9h)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(adamantan-1-yl)methyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9i)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(adamantan-1-yl)methyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9i)

Diethyl (1RS,3aSR,6aSR)-5-benzyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9j)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-5-phenethyl-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9k)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-5-phenethyl-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9k)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(4-fluorophenethyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9l)

77,8600 77,5600 77,567 77,567 77,567 77,567 77,567 77,567 77,557 77,5

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(2,3-dihydro-1H-inden-2-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9m)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-[4-(trifluoromethyl)phenyl]-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9n)

1.200 1.265 1.265 1.265 1.206

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-[3-(trifluoromethyl)phenyl]-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (90)

 $Diethyl\,(1RS,3aSR,6aSR)-5-(4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-dioxo-1-phenyl-1,3a,4,5,6a-dioxo-1-phenyl-1,3a,4,5,6a-dioxo-1-phenyl-1,3a,4,5,6a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,4,5a-dioxo-1-phenyl-1,3a,5a-dioxo-1-phenyl-1,3a,5a-dioxo-1-phenyl-1,3a,5a-d$

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9p)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9p)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(4-chlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9q)

88,088 81,087 81,077 81

L1298 11.280 11.282 11.194

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9s)

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9t)

3.00 - ₩

7.0

7.5

2.00-重

1.00-

8.0

4,490 4,488 4,488 4,488 4,488 4,488 4,4864,486 4,486 4,486 4,4864,486 4,486 4,486 4,4864,486 4,486 4,4864,486 4,486 4,4864,486 4,486 4,4864,486 4,486 4,4864,486 4,486 4,4864,486 4,486 4,4864,486 4,4864,486 4,486 4,4864,486 4,4864,486 4,4864,486 4,4864,486 4,486 4,4864,4864,486 4,4864,4864,486

1298

3.02 -≆ 3.00 -≆

1.0

0.5

0.0

L171.20 7 170.24 7 170.19 7 162.07 135.29 133.48 133.45 133.45 133.45 123.90 128.90 128.90 128.90 128.24 128.24 128.24 128.24 128.24 128.24 16.46 16.42 16.37 ~ 87.25 CI .Cl 0 EtO-EtO 170 160 150 140 130 120 110 100 60 50 40 30 20 10 0 90 80 f1 (ppm) 70

1,200 1,200 1,200 1,200 1,200

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3,4-dichlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9v)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-(2,4,6-trichlorophenyl)-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9w)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-(2,4,6-trichlorophenyl)-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9w)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-nitrophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9x)

<pre>/171.142 171.033 171.033 170.203 (170.150 161.799 161.678</pre>	-148.291	123.275 133.237 132.013 132.013 132.013 131.869 122.797 128.907 128.302 128.302 128.302 128.302 128.302 128.302 128.302 128.302 128.302	-87.149	64.784 -64.711 -64.711 -63.680 -63.608 -60.009	48.519	16.298 16.262 16.262 16.212
YF Y				YE	Y	

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-nitrophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9x)

 $Diethyl\ (1RS, 3aSR, 6aSR) - 5 - (2-methyl - 5-nitrophenyl) - 4, 6 - dioxo - 1-phenyl - 1, 3a, 4, 5, 6, 6a - 1, 5a -$

hexahydropyrrolo[3,4-c]pyrrole-1-phosphonate(9y)

0.086 0.087 0.077 0.077 0.077 0.077 0.077 0.073 0.087 0.073 0.053 0.

Diethyl (1*RS*,3*aSR*,6*aSR*)-5-(1,1'-biphenyl)-4-yl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9z)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-(p-tolyl)-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-(p-tolyl)-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9aa)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-5-(4-phenoxyphenyl)-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9ab)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(naphth-1-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9ac)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(naphth-1-yl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9ac)

(4) 253 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4) 20 (4

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3, 4-*c*]pyrrole-1-phosphonate (9d)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-cyclohexyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9b): Deposition number: 1960886

Table 1. Crystal data and structure refinement for 9b.

Jb135		
C22 H29 N2 O5 P		
432.44		
294(2) K		
0.71073 Å		
Monoclinic		
P 21/n		
a = 15.0774(9) Å	<i>α</i> = 90°.	
b = 9.6740(6) Å	$\beta = 97.8160(10)^{\circ}$	
c = 15.2961(9) Å	$\gamma = 90^{\circ}$.	
2210.3(2) Å ³		
4		
1.299 Mg/m ³		
0.160 mm ⁻¹		
920		
0.27 x 0.24 x 0.29 mm ³		
2.040 to 30.486°.		
-21<=h<=16, -13<=k<=13, -14	<=l<=21	
Reflections collected 12714		
5178 [R(int) = 0.0311]		
72.9 %		
Full-matrix least-squares on F ²		
5178 / 0 / 273		
Goodness-of-fit on F^2 0.864		
Final R indices [I>2sigma(I)] R1 = 0.0620, wR2 = 0.1659		
R1 = 0.1119, $wR2 = 0.1874$		
0.364 and -0.217 e.Å ⁻³		
	Jb135 C22 H29 N2 O5 P 432.44 294(2) K 0.71073 Å Monoclinic P 21/n a = 15.0774(9) Å b = 9.6740(6) Å c = 15.2961(9) Å 2210.3(2) Å ³ 4 1.299 Mg/m ³ 0.160 mm ⁻¹ 920 0.27 x 0.24 x 0.29 mm ³ 2.040 to 30.486°. -21<=h<=16, -13<=k<=13, -14 12714 5178 [R(int) = 0.0311] 72.9 % Full-matrix least-squares on F ² 5178 / 0 / 273 0.864 R1 = 0.0620, wR2 = 0.1659 R1 = 0.1119, wR2 = 0.1874 0.364 and -0.217 e.Å ⁻³	

	х	У	Z	U(eq)
P(1)	8854(1)	2180(1)	8747(1)	60(1)
O(1)	8706(2)	3060(2)	7961(2)	91(1)
O(2)	9345(1)	776(2)	8634(1)	67(1)
O(3)	9400(2)	2944(2)	9518(2)	92(1)
O(4)	5763(2)	-1688(2)	9103(2)	82(1)
O(6)	6140(2)	2228(2)	7554(1)	71(1)
N(2)	8040(1)	601(2)	9850(1)	52(1)
N(5)	5737(1)	360(2)	8336(1)	53(1)
C(1)	7811(1)	1600(2)	9111(1)	43(1)
C(3)	7673(2)	-548(2)	9639(2)	54(1)
C(3A)	7142(2)	-665(2)	8745(2)	50(1)
C(4)	6137(2)	-773(2)	8767(2)	54(1)
C(6)	6338(2)	1240(2)	8013(2)	51(1)
C(6A)	7277(2)	736(2)	8330(1)	45(1)
C(11)	7266(2)	2790(2)	9440(2)	50(1)
C(12)	6718(2)	2520(3)	10082(2)	67(1)
C(13)	6179(2)	3564(4)	10356(3)	90(1)
C(14)	6213(2)	4877(4)	10024(3)	94(1)
C(15)	6753(3)	5144(3)	9403(3)	92(1)
C(16)	7284(2)	4107(3)	9102(2)	73(1)
C(21)	9736(3)	442(4)	7836(2)	88(1)
C(22)	10698(3)	611(5)	8001(4)	113(1)
C(31)	10035(3)	2401(3)	10224(2)	78(1)
C(32)	10800(2)	3319(4)	10362(3)	83(1)
C(51)	4736(2)	464(3)	8177(2)	67(1)
C(52)	4392(2)	203(4)	7231(2)	82(1)
C(53)	3383(2)	364(4)	7032(3)	92(1)
C(54)	3061(2)	1683(5)	7397(3)	98(1)
C(55)	3392(2)	1845(5)	8338(3)	98(1)
C(56)	4403(2)	1737(4)	8551(2)	81(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **9b** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 5. Bolid lenguis	
P(1)-O(1)	1.466(2)
P(1)-O(3)	1.532(2)
P(1)-O(2)	1.5674(19)
P(1)-C(1)	1.827(2)
O(2)-C(21)	1.462(4)
O(3)-C(31)	1.441(4)
O(4)-C(4)	1.202(3)
O(6)-C(6)	1.199(3)
N(2)-C(3)	1.264(3)
N(2)-C(1)	1.491(3)
N(5)-C(4)	1.376(3)
N(5)-C(6)	1.381(3)
N(5)-C(51)	1.500(3)
C(1)-C(11)	1.538(3)
C(1)-C(6A)	1.586(3)
C(3)-C(3A)	1.493(4)
C(3)-H(3)	0.9300
C(3A)-C(6A)	1 522(3)
C(3A)-C(4)	1.522(3) 1.524(3)
C(3A)-H(3A)	0.9800
C(6)-C(6A)	1514(3)
C(6A)-H(6A)	0.9800
C(11)-C(16)	1.377(4)
C(11)-C(12)	1.377(4) 1 301(4)
C(11)- $C(12)C(12)$ $C(13)$	1.391(4) 1 306(4)
C(12) - C(13) C(12) - H(12)	0.0300
$C(12)$ - $\Pi(12)$ C(13) $C(14)$	1 371(6)
C(13)-C(14) C(12) U(12)	0.0200
$C(13)-\Pi(13)$ C(14) C(15)	1 258(6)
C(14) - C(13) C(14) - U(14)	0.0200
$C(14)-\Pi(14)$ C(15) C(16)	1 200(5)
C(15) - C(10) C(15) - U(15)	0.0200
$C(15)-\Pi(15)$ $C(16) \Pi(16)$	0.9300
$C(10)-\Pi(10)$ C(21) $C(22)$	0.9300
C(21)-C(22) C(21) U(21A)	1.440(0)
$C(21)-\Pi(21A)$	0.9700
C(21)-H(21B)	0.9700
C(22)- $H(22A)$	0.9600
C(22)- $H(22B)$	0.9600
$C(22) - \Pi(22C)$	0.9000
C(31)-C(32) C(21) $U(21A)$	1.448(3)
C(31)-H(31A) C(21) H(21D)	0.9700
C(31)-H(31B)	0.9700
C(32)-H(32A)	0.9600
C(32)-H(32B)	0.9600
C(32)-H(32C)	0.9600
C(51)-C(56)	1.474(4)
C(51)-C(52)	1.490(4)
C(51)-H(51)	0.9800
C(52)-C(53)	1.518(5)
C(52)-H(52A)	0.9700
C(52)-H(52B)	0.9700
C(53)-C(54)	1.500(6)
C(53)-H(53A)	0.9700
C(53)-H(53B)	0.9700
C(54)-C(55)	1.467(6)
C(54)-H(54A)	0.9700
C(54)-H(54B)	0.9700

Table 3. Bond lengths [Å] and angles [°] for **9b.**

C(55)-C(56)	1.518(5)
C(55)-H(55A)	0.9700
C(55)-H(55B)	0.9700
C(56)-H(56A)	0.9700
C(56)-H(56B)	0.9700
O(1)-P(1)-O(3)	110.92(15)
O(1)-P(1)-O(2)	115.77(14)
O(3)-P(1)-O(2)	106.87(12)
O(1)-P(1)-C(1)	112.74(12)
O(3)-P(1)-C(1)	107.95(14)
O(2)-P(1)-C(1)	101.94(10)
C(21)-O(2)-P(1)	122.2(2)
C(31)-O(3)-P(1)	129.27(18)
C(3)-N(2)-C(1)	109.18(19)
C(4)-N(5)-C(6)	113.4(2)
C(4)-N(5)-C(51)	119.8(2)
C(6)-N(5)-C(51)	126.5(2)
N(2)-C(1)-C(11)	108.47(19)
N(2)-C(1)-C(6A)	105.74(16)
C(11)-C(1)-C(6A)	113.72(17)
N(2)-C(1)-P(1)	107.99(15)
C(11)-C(1)-P(1)	112.98(15)
C(6A)-C(1)-P(1)	107.56(15)
N(2)-C(3)-C(3A) N(2)-C(2)-U(2)	117.53(19)
N(2)-C(3)-H(3) C(2A)-C(2)-H(3)	121.2
$C(3A) - C(3) - \Pi(3)$ C(3) - C(3A) - C(6A)	121.2 102 25(18)
C(3)-C(3A)-C(0A)	103.23(18) 113.3(2)
C(6A) - C(3A) - C(4)	105.05(18)
C(3)-C(3A)-H(3A)	111.6
C(6A)-C(3A)-H(3A)	111.6
C(4)-C(3A)-H(3A)	111.6
O(4)-C(4)-N(5)	126.2(2)
O(4)-C(4)-C(3A)	125.9(2)
N(5)-C(4)-C(3A)	107.9(2)
O(6)-C(6)-N(5)	125.3(2)
O(6)-C(6)-C(6A)	126.2(2)
N(5)-C(6)-C(6A)	108.49(18)
C(6)-C(6A)-C(3A)	104.38(18)
C(6)-C(6A)-C(1)	115.40(17)
C(3A)-C(6A)-C(1)	103.76(17)
C(6)-C(6A)-H(6A)	110.9
C(3A)-C(6A)-H(6A)	110.9
C(1)-C(6A)-H(6A)	110.9
C(16)-C(11)-C(12)	118.9(2)
C(16)-C(11)-C(1)	122.1(3)
C(12)-C(11)-C(1)	119.0(2)
C(11)-C(12)-C(13)	120.1(3)
C(11)-C(12)-H(12) C(12)-C(12)-H(12)	119.9
C(13)-C(12)-H(12) C(14)-C(12)-C(12)	119.9
C(14) - C(13) - C(12) C(14) - C(13) - U(13)	120.4(4)
C(14)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	119 4(3)
C(15) - C(14) - H(14)	120 3
C(13)-C(14)-H(14)	120.3
C(14)-C(15)-C(16)	121.2(3)
С(14)-С(15)-Н(15)	119.4

C(16)-C(15)-H(15)	119.4
C(11)-C(16)-C(15)	119.9(4)
C(11)-C(16)-H(16)	120.1
C(15)-C(16)-H(16)	120.1
C(22)-C(21)-O(2)	109.8(3)
C(22)-C(21)-H(21A)	109.7
O(2)-C(21)-H(21A)	109.7
C(22)-C(21)-H(21B)	109.7
O(2)-C(21)-H(21B)	109.7
H(21A)-C(21)-H(21B)	108.2
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(3)-C(31)-C(32)	108.7(3)
O(3)-C(31)-H(31A)	109.9
C(32)-C(31)-H(31A)	109.9
O(3)-C(31)-H(31B)	109.9
C(32)-C(31)-H(31B)	109.9
H(31A)-C(31)-H(31B)	108.3
C(31)-C(32)-H(32A)	109.5
C(31)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(31)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(56)-C(51)-C(52)	115.2(3)
C(56)-C(51)-N(5)	112.4(2)
C(52)-C(51)-N(5)	110.8(3)
C(56)-C(51)-H(51)	105.9
C(52)-C(51)-H(51)	105.9
N(5)-C(51)-H(51)	105.9
C(51)-C(52)-C(53)	112.6(3)
C(51)-C(52)-H(52A)	109.1
C(53)-C(52)-H(52A)	109.1
C(51)-C(52)-H(52B)	109.1
C(53)-C(52)-H(52B)	109.1
H(52A)-C(52)-H(52B)	107.8
C(54)-C(53)-C(52)	112.2(3)
C(54)-C(53)-H(53A)	109.2
C(52)-C(53)-H(53A)	109.2
C(54)-C(53)-H(53B)	109.2
C(52)-C(53)-H(53B)	109.2
H(53A)-C(53)-H(53B)	107.9
C(55)-C(54)-C(53)	111.9(4)
C(55)-C(54)-H(54A)	109.2
C(53)-C(54)-H(54A)	109.2
C(55)-C(54)-H(54B)	109.2
C(53)-C(54)-H(54B)	109.2
H(54A)-C(54)-H(54B)	107.9
U(34)-U(33)-U(30)	113.6(3)
C(54)-C(55)-H(55A)	108.8
C(50)-C(55)-H(55A)	108.8
C(54)-C(55)-H(55B)	108.8
U(55) - U(55) - H(55B)	108.8
H(33A)-C(33)-H(33B)	10/./

C(51)-C(56)-C(55)	111.1(3)
C(51)-C(56)-H(56A)	109.4
C(55)-C(56)-H(56A)	109.4
C(51)-C(56)-H(56B)	109.4
C(55)-C(56)-H(56B)	109.4
H(56A)-C(56)-H(56B)	108.0

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9b**.The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	46(1)	46(1)	87(1)	13(1)	8(1)	-1(1)
O(1)	73(1)	81(1)	123(2)	50(1)	30(1)	4(1)
O(2)	58(1)	60(1)	86(1)	6(1)	24(1)	9(1)
O(3)	60(1)	54(1)	151(2)	-18(1)	-21(1)	0(1)
O(4)	72(1)	64(1)	112(2)	17(1)	19(1)	-10(1)
O(6)	80(1)	55(1)	70(1)	13(1)	-19(1)	3(1)
N(2)	55(1)	47(1)	51(1)	10(1)	1(1)	6(1)
N(5)	46(1)	45(1)	65(1)	-8(1)	0(1)	4(1)
C(1)	42(1)	36(1)	51(1)	5(1)	0(1)	1(1)
C(3)	56(1)	44(1)	62(1)	17(1)	9(1)	10(1)
C(3A)	49(1)	32(1)	67(1)	-2(1)	10(1)	3(1)
C(4)	52(1)	42(1)	67(1)	-2(1)	5(1)	-1(1)
C(6)	57(1)	41(1)	51(1)	-4(1)	-7(1)	4(1)
C(6A)	49(1)	39(1)	47(1)	1(1)	7(1)	2(1)
C(11)	47(1)	43(1)	56(1)	-9(1)	-5(1)	2(1)
C(12)	68(2)	64(1)	70(2)	-12(1)	14(1)	5(1)
C(13)	75(2)	98(3)	98(2)	-36(2)	16(2)	9(2)
C(14)	69(2)	80(2)	128(3)	-52(2)	-11(2)	19(2)
C(15)	82(2)	49(1)	136(3)	-18(2)	-17(2)	19(2)
C(16)	73(2)	45(1)	97(2)	2(1)	-2(2)	12(1)
C(21)	98(3)	84(2)	80(2)	-14(2)	10(2)	-4(2)
C(22)	100(3)	130(3)	119(3)	11(3)	49(3)	15(3)
C(31)	105(3)	58(1)	70(2)	4(1)	11(2)	1(2)
C(32)	67(2)	86(2)	90(2)	-16(2)	-16(2)	10(2)
C(51)	50(1)	68(2)	83(2)	-2(1)	4(1)	5(1)
C(52)	57(2)	104(2)	82(2)	-36(2)	-7(2)	5(2)
C(53)	56(2)	107(3)	108(3)	-19(2)	-10(2)	-9(2)
C(54)	56(2)	121(3)	113(3)	2(2)	0(2)	15(2)
C(55)	62(2)	130(3)	104(3)	-16(2)	14(2)	31(2)
C(56)	60(2)	102(2)	78(2)	-27(2)	6(2)	15(2)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1,5-diphenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9c): Deposition number: 1960883

Ŷ		
Ta	ble 1. Crystal data and structure refinement for 9c.	
Identification code	Jb104	
Empirical formula	C22 H23 N2 O5 P	
Formula weight	426.39	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 c n	
Unit cell dimensions	a = 9.151(3) Å or	$u=90^{\circ}$.
	$b = 13.035(8) \text{ Å}$ β	= 90°.
	$c = 18.159(2) \text{ Å}$ γ	= 90°.
Volume	2166.1(15) Å ³	
Z	4	
Density (calculated)	1.308 Mg/m ³	
Absorption coefficient	0.162 mm ⁻¹	
F(000)	896	
Crystal size	0.42 x 0.33 x 0.30 mm ³	
Theta range for data collection	1.923 to 24.975°.	
Index ranges	-10<=h<=10, -15<=k<=15, 0<=l<	<=21
Reflections collected	6335	
Independent reflections	3805 [R(int) = 0.0490]	
Completeness to theta = 25.242°	97.6 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3805 / 4 / 294	
Goodness-of-fit on F ²	1.030	
Final R indices [I>2sigma(I)]	R1 = 0.0579, wR2 = 0.1457	
R indices (all data)	R1 = 0.0786, WR2 = 0.1605	
Absolute structure parameter	0.1(2)	
Extinction coefficient	0.036(5)	
Largest diff. peak and hole	0.235 and -0.284 e.Å ⁻³	

P(1) $6646(2)$ $917(1)$ $3588(1)$ $55(1)$ $O(1)$ $7754(6)$ $1101(3)$ $4147(2)$ $74(1)$ $O(2)$ $7204(6)$ $1011(4)$ $2770(3)$ $83(2)$ $O(3)$ $5271(6)$ $1623(3)$ $3625(3)$ $76(1)$ $O(4)$ $2761(5)$ $-2695(3)$ $4262(3)$ $79(1)$ $O(6)$ $6669(5)$ $-1196(3)$ $3557(2)$ $64(1)$ $N(2)$ $4635(5)$ $-416(4)$ $3094(2)$ $53(1)$ $N(5)$ $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ $C(1)$ $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3)$ $3475(6)$ $-706(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $1354(4)$ $69(2)$ $C(14)$ $930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ <th></th> <th>Х</th> <th>У</th> <th>Z</th> <th>U(eq)</th>		Х	У	Z	U(eq)
O(1)7754(6)1101(3)4147(2)74(1) $O(2)$ 7204(6)1011(4)2770(3)83(2) $O(3)$ 5271(6)1623(3)3625(3)76(1) $O(4)$ 2761(5)-2695(3)4262(3)79(1) $O(6)$ 6669(5)-1196(3)5357(2)64(1) $N(2)$ 4635(5)-416(4)3094(2)53(1) $N(5)$ 4910(5)-2196(3)4797(2)45(1) $C(1)$ 5821(5)-364(4)3642(3)43(1) $C(3)$ 3475(6)-710(4)3398(3)55(1) $C(3A)$ 3558(6)-906(4)4213(3)49(1) $C(4)$ 3638(6)-2046(4)4410(3)52(1) $C(6)$ 5680(6)-1291(4)4922(3)46(1) $C(11)$ 6973(6)-1178(4)3465(3)50(1) $C(12)$ 6759(8)-1874(5)2898(3)66(2) $C(13)$ 7797(10)-2613(6)2740(5)87(2) $C(14)$ 9041(11)-2692(7)3134(5)99(3) $C(15)$ 9286(8)-1997(8)3698(5)89(3) $C(16)$ 8265(7)-1248(6)3858(4)69(2) $C(21)$ 8665(13)1236(10)2580(7)135(4) $C(22)$ 9330(16)483(12)2182(8)169(6) $C(31)$ 4930(30)2395(17)4118(14)108(8) $C(32)$ 5240(50)3413(18)3790(20)190(20) $C(31A)$ 5540(20)2708(13)3811(13)86(6) $C(32A)$	P(1)	6646(2)	917(1)	3588(1)	55(1)
O(2)7204(6)1011(4)2770(3)83(2) $O(3)$ 5271(6)1623(3)3625(3)76(1) $O(4)$ 2761(5)-2695(3)4262(3)79(1) $O(6)$ 6669(5)-1196(3)5357(2)64(1) $N(2)$ 4635(5)-416(4)3094(2)53(1) $N(5)$ 4910(5)-2196(3)4797(2)45(1) $C(1)$ 5821(5)-364(4)3642(3)43(1) $C(3)$ 3475(6)-710(4)3398(3)55(1) $C(3A)$ 3558(6)-906(4)4213(3)49(1) $C(4)$ 3638(6)-2046(4)4410(3)52(1) $C(6)$ 5680(6)-1291(4)4922(3)46(1) $C(6A)$ 5040(6)-489(4)4419(3)45(1) $C(11)$ 6973(6)-1178(4)3465(3)50(1) $C(12)$ 6759(8)-1874(5)2898(3)66(2) $C(13)$ 7797(10)-2613(6)2740(5)87(2) $C(14)$ 9041(11)-2692(7)3134(5)99(3) $C(16)$ 8265(7)-1248(6)3858(4)69(2) $C(21)$ 8665(13)1236(10)2580(7)135(4) $C(22)$ 9330(16)483(12)2182(8)169(6) $C(31)$ 4930(30)2395(17)4118(14)108(8) $C(32)$ 5240(50)3413(18)3790(20)190(20) $C(31A)$ 5540(20)2708(13)3811(13)86(6) $C(32A)$ 4260(30)3070(20)4199(14)116(9) <td>O(1)</td> <td>7754(6)</td> <td>1101(3)</td> <td>4147(2)</td> <td>74(1)</td>	O(1)	7754(6)	1101(3)	4147(2)	74(1)
O(3) $5271(6)$ $1623(3)$ $3625(3)$ $76(1)$ $O(4)$ $2761(5)$ $-2695(3)$ $4262(3)$ $79(1)$ $O(6)$ $6669(5)$ $-1196(3)$ $5357(2)$ $64(1)$ $N(2)$ $4635(5)$ $-416(4)$ $3094(2)$ $53(1)$ $N(5)$ $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ $C(1)$ $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ <td< td=""><td>O(2)</td><td>7204(6)</td><td>1011(4)</td><td>2770(3)</td><td>83(2)</td></td<>	O(2)	7204(6)	1011(4)	2770(3)	83(2)
O(4) $2761(5)$ $-2695(3)$ $4262(3)$ $79(1)$ $O(6)$ $6669(5)$ $-1196(3)$ $5357(2)$ $64(1)$ $N(2)$ $4635(5)$ $-416(4)$ $3094(2)$ $53(1)$ $N(5)$ $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ $C(1)$ $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $811(13)$ $86(6)$ $C(32A)$ <td>O(3)</td> <td>5271(6)</td> <td>1623(3)</td> <td>3625(3)</td> <td>76(1)</td>	O(3)	5271(6)	1623(3)	3625(3)	76(1)
O(6) $6669(5)$ $-1196(3)$ $5357(2)$ $64(1)$ $N(2)$ $4635(5)$ $-416(4)$ $3094(2)$ $53(1)$ $N(5)$ $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ $C(1)$ $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ <td>O(4)</td> <td>2761(5)</td> <td>-2695(3)</td> <td>4262(3)</td> <td>79(1)</td>	O(4)	2761(5)	-2695(3)	4262(3)	79(1)
N(2) $4635(5)$ $-416(4)$ $3094(2)$ $53(1)$ N(5) $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ C(1) $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ C(3) $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ C(3A) $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ C(4) $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ C(6) $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ C(6A) $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ C(11) $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ C(12) $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ C(13) $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ C(14) $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ C(15) $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ C(16) $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ C(21) $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ C(22) $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ C(31) $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ C(32) $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ C(31A) $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ C(32A) $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ C(51) $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	O(6)	6669(5)	-1196(3)	5357(2)	64(1)
N(5) $4910(5)$ $-2196(3)$ $4797(2)$ $45(1)$ $C(1)$ $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	N(2)	4635(5)	-416(4)	3094(2)	53(1)
C(1) $5821(5)$ $-364(4)$ $3642(3)$ $43(1)$ $C(3)$ $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	N(5)	4910(5)	-2196(3)	4797(2)	45(1)
C(3) $3475(6)$ $-710(4)$ $3398(3)$ $55(1)$ $C(3A)$ $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(1)	5821(5)	-364(4)	3642(3)	43(1)
C(3A) $3558(6)$ $-906(4)$ $4213(3)$ $49(1)$ $C(4)$ $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(3)	3475(6)	-710(4)	3398(3)	55(1)
C(4) $3638(6)$ $-2046(4)$ $4410(3)$ $52(1)$ $C(6)$ $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(3A)	3558(6)	-906(4)	4213(3)	49(1)
C(6) $5680(6)$ $-1291(4)$ $4922(3)$ $46(1)$ $C(6A)$ $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(4)	3638(6)	-2046(4)	4410(3)	52(1)
C(6A) $5040(6)$ $-489(4)$ $4419(3)$ $45(1)$ $C(11)$ $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(6)	5680(6)	-1291(4)	4922(3)	46(1)
C(11) $6973(6)$ $-1178(4)$ $3465(3)$ $50(1)$ $C(12)$ $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(6A)	5040(6)	-489(4)	4419(3)	45(1)
C(12) $6759(8)$ $-1874(5)$ $2898(3)$ $66(2)$ $C(13)$ $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(11)	6973(6)	-1178(4)	3465(3)	50(1)
C(13) $7797(10)$ $-2613(6)$ $2740(5)$ $87(2)$ $C(14)$ $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(12)	6759(8)	-1874(5)	2898(3)	66(2)
C(14) $9041(11)$ $-2692(7)$ $3134(5)$ $99(3)$ $C(15)$ $9286(8)$ $-1997(8)$ $3698(5)$ $89(3)$ $C(16)$ $8265(7)$ $-1248(6)$ $3858(4)$ $69(2)$ $C(21)$ $8665(13)$ $1236(10)$ $2580(7)$ $135(4)$ $C(22)$ $9330(16)$ $483(12)$ $2182(8)$ $169(6)$ $C(31)$ $4930(30)$ $2395(17)$ $4118(14)$ $108(8)$ $C(32)$ $5240(50)$ $3413(18)$ $3790(20)$ $190(20)$ $C(31A)$ $5540(20)$ $2708(13)$ $3811(13)$ $86(6)$ $C(32A)$ $4260(30)$ $3070(20)$ $4199(14)$ $116(9)$ $C(51)$ $5310(6)$ $-3155(4)$ $5132(3)$ $50(1)$	C(13)	7797(10)	-2613(6)	2740(5)	87(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	9041(11)	-2692(7)	3134(5)	99(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	9286(8)	-1997(8)	3698(5)	89(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	8265(7)	-1248(6)	3858(4)	69(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	8665(13)	1236(10)	2580(7)	135(4)
$\begin{array}{cccccc} C(31) & 4930(30) & 2395(17) & 4118(14) & 108(8) \\ C(32) & 5240(50) & 3413(18) & 3790(20) & 190(20) \\ C(31A) & 5540(20) & 2708(13) & 3811(13) & 86(6) \\ C(32A) & 4260(30) & 3070(20) & 4199(14) & 116(9) \\ C(51) & 5310(6) & -3155(4) & 5132(3) & 50(1) \\ \end{array}$	C(22)	9330(16)	483(12)	2182(8)	169(6)
$\begin{array}{ccccc} C(32) & 5240(50) & 3413(18) & 3790(20) & 190(20) \\ C(31A) & 5540(20) & 2708(13) & 3811(13) & 86(6) \\ C(32A) & 4260(30) & 3070(20) & 4199(14) & 116(9) \\ C(51) & 5310(6) & -3155(4) & 5132(3) & 50(1) \\ \end{array}$	C(31)	4930(30)	2395(17)	4118(14)	108(8)
C(31A)5540(20)2708(13)3811(13)86(6)C(32A)4260(30)3070(20)4199(14)116(9)C(51)5310(6)-3155(4)5132(3)50(1)	C(32)	5240(50)	3413(18)	3790(20)	190(20)
C(32A)4260(30)3070(20)4199(14)116(9)C(51)5310(6)-3155(4)5132(3)50(1)	C(31A)	5540(20)	2708(13)	3811(13)	86(6)
C(51) 5310(6) -3155(4) 5132(3) 50(1)	C(32A)	4260(30)	3070(20)	4199(14)	116(9)
	C(51)	5310(6)	-3155(4)	5132(3)	50(1)
C(52) 4704(9) -3443(5) 5793(4) 68(2)	C(52)	4704(9)	-3443(5)	5793(4)	68(2)
C(53) 5104(10) -4364(6) 6106(4) 82(2)	C(53)	5104(10)	-4364(6)	6106(4)	82(2)
C(54) 6052(9) -4995(5) 5762(4) 82(2)	C(54)	6052(9)	-4995(5)	5762(4)	82(2)
C(55) 6644(11) -4711(5) 5106(5) 91(2)	C(55)	6644(11)	-4711(5)	5106(5)	91(2)
C(56) 6279(8) -3786(5) 4782(4) 75(2)	C(56)	6279(8)	-3786(5)	4782(4)	75(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) For **9c.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor._

P(1)-O(1)	1.454(5)
P(1)-O(3)	1.561(5)
P(1)-O(2)	1.576(5)
P(1)-C(1)	1.835(5)
O(2)-C(21)	1.411(11)
O(3)-C(31)	1.38(2)
O(3)-C(31A)	1.473(16)
O(4)-C(4)	1.197(7)
O(6)-C(6)	1.208(7)
N(2)-C(3)	1.256(8)
N(2)-C(1)	1.474(7)
N(5)-C(4)	1.374(7)
N(5)-C(6)	1.392(7)
N(5)-C(51)	1.438(7)
C(1)-C(11)	1.530(8)
C(1)-C(6A)	1.590(7)
C(3)-C(3A)	1.503(8)
C(3A)-C(6A)	1.509(8)
C(3A)-C(4)	1.530(7)
C(6)-C(6A)	1.506(7)
C(11)-C(16)	1.384(9)
C(11)-C(12)	1.385(8)
C(12)-C(13)	1.383(10)
C(13)-C(14)	1.349(14)
C(14)-C(15)	1.386(13)
C(15)-C(16)	1.382(11)
C(21)-C(22)	1.362(16)
C(31)-C(32)	1.48(3)
C(31A)-C(32A)	1.44(2)
C(51)-C(56)	1.366(8)
C(51)-C(52)	1.374(9)
C(52)-C(53)	1.378(10)
C(53)-C(54)	1.349(11)
C(54)-C(55)	1.360(11)
C(55)-C(56)	1.383(10)
O(1)-P(1)-O(3)	115.8(3)
O(1)-P(1)-O(2)	114.8(3)
O(3)-P(1)-O(2)	104.8(3)
O(1)-P(1)-C(1)	113.5(2)
O(3)-P(1)-C(1)	101.7(3)
O(2)-P(1)-C(1)	104.8(3)
C(21)-O(2)-P(1)	123.6(6)
C(31)-O(3)-P(1)	129.7(12)
C(31A)-O(3)-P(1)	116.3(8)
C(3)-N(2)-C(1)	109.8(4)
C(4)-N(5)-C(6)	113.0(4)
C(4)-N(5)-C(51)	123.8(4)
C(6)-N(5)-C(51)	122.7(4)
N(2)-C(1)-C(11)	109.5(4)
N(2)-C(1)-C(6A)	105.3(4)
C(11)-C(1)-C(6A)	115.2(4)
N(2)-C(1)-P(1)	108.0(3)
C(11)-C(1)-P(1)	109.7(4)
C(6A)-C(1)-P(1)	109.0(3)
N(2)-C(3)-C(3A)	116.2(5)
C(3)-C(3A)-C(6A)	103.2(4)

Table 3. Bond lengths [Å] and angles [°] for **9c**

C(3)-C(3A)-C(4)	113.4(4)					
C(6A)-C(3A)-C(4)	104.4(4)					
O(4)-C(4)-N(5)	125.6(5)					
O(4)-C(4)-C(3A)	127.0(5)					
N(5)-C(4)-C(3A)	107.4(5)					
O(6)-C(6)-N(5)	124.9(5)					
O(6)-C(6)-C(6A)	128.0(5)					
N(5)-C(6)-C(6A)	107.1(4)					
C(6)-C(6A)-C(3A)	104.5(4)					
C(6)-C(6A)-C(1)	115.7(4)					
C(3A)-C(6A)-C(1)	102.7(4)					
C(16)-C(11)-C(12)	117.4(6)					
C(16)-C(11)-C(1)	121.7(5)					
C(12)-C(11)-C(1)	120.8(5)					
C(13)-C(12)-C(11)	120.9(7)					
C(14)-C(13)-C(12)	121.5(8)					
C(13)-C(14)-C(15)	118.6(7)					
C(16)-C(15)-C(14)	120.5(8)					
C(15)-C(16)-C(11)	121.0(7)					
C(22)-C(21)-O(2)	113.8(10)					
O(3)-C(31)-C(32)	111(2)					
C(32A)-C(31A)-O(3)	107.1(19)					
C(56)-C(51)-C(52)	120.2(6)					
C(56)-C(51)-N(5)	119.5(5)					
C(52)-C(51)-N(5)	120.3(5)					
C(51)-C(52)-C(53)	119.5(6)					
C(54)-C(53)-C(52)	120.7(7)					
C(53)-C(54)-C(55)	119.7(6)					
C(54)-C(55)-C(56)	120.9(7)					
C(51)-C(56)-C(55)	119.0(7)					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
--------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
P(1)	71(1)	47(1)	46(1)	10(1)	-5(1)	-9(1)
O(1)	90(3)	66(3)	66(3)	10(2)	-19(2)	-25(2)
O(2)	95(3)	100(4)	53(3)	23(2)	7(2)	-20(3)
O(3)	99(3)	49(2)	79(3)	6(2)	-9(3)	6(2)
O(4)	68(3)	62(3)	107(4)	10(2)	-23(3)	-13(2)
O(6)	82(3)	58(2)	53(2)	9(2)	-22(2)	-15(2)
N(2)	57(3)	56(3)	44(3)	-3(2)	-8(2)	1(2)
N(5)	50(2)	40(2)	44(2)	1(2)	1(2)	0(2)
C(1)	45(3)	44(3)	39(3)	-1(2)	-1(2)	-5(2)
C(3)	51(3)	59(3)	54(3)	2(3)	-8(3)	6(3)
C(3A)	55(3)	43(3)	49(3)	3(2)	6(2)	9(2)
C(4)	49(3)	46(3)	60(3)	3(3)	0(3)	-3(2)
C(6)	59(3)	40(3)	39(3)	-2(2)	7(3)	-3(2)
C(6A)	60(3)	36(2)	38(3)	-1(2)	3(2)	0(2)
C(11)	58(3)	50(3)	42(3)	7(2)	5(2)	2(2)
C(12)	79(4)	61(3)	60(3)	-7(3)	7(3)	1(3)
C(13)	106(6)	71(5)	84(5)	-12(4)	26(5)	17(4)
C(14)	118(7)	82(6)	96(6)	21(5)	53(6)	38(5)
C(15)	66(4)	117(7)	85(6)	26(5)	12(4)	27(5)
C(16)	62(4)	84(5)	61(4)	12(3)	1(3)	6(3)
C(21)	153(10)	142(10)	110(8)	-14(7)	53(7)	-60(8)
C(22)	146(11)	191(15)	169(13)	-20(11)	41(10)	-7(10)
C(31)	111(16)	84(16)	128(18)	-28(14)	21(14)	20(14)
C(32)	280(50)	55(15)	240(40)	-24(17)	-140(40)	15(19)
C(31A)	88(13)	51(12)	119(16)	5(9)	14(11)	-8(8)
C(32A)	132(18)	85(18)	130(18)	-19(13)	38(14)	-18(14)
C(51)	60(3)	36(3)	53(3)	-3(2)	-5(3)	0(2)
C(52)	95(5)	56(4)	55(4)	7(3)	15(3)	10(3)
C(53)	127(6)	63(4)	56(4)	12(3)	7(4)	7(4)
C(54)	117(6)	45(3)	83(5)	11(3)	-19(4)	9(4)
C(55)	103(5)	55(4)	117(6)	-2(4)	13(5)	28(4)
C(56)	89(5)	58(4)	77(4)	4(3)	27(4)	20(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9c.** The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Table 5. Hydrogen bonds for 9c [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3A)-H(3A)O(1)#1	0.98	2.59	3.079(7)	110.6
C(3A)-H(3A)O(6)#1	0.98	2.51	3.332(7)	140.8
C(21)-H(21B)O(1)	0.97	2.46	2.970(12)	112.8

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y,-z+1

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9d): Deposition number: 1960884

Table 1. Crystal data and structure refiner	ment for 9d.				
Identification code	Jb128	Jb128			
Empirical formula	C22 H21 Cl F N2 O5 P				
Formula weight	478.83				
Temperature	294(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P 21/n				
Unit cell dimensions	a = 15.288(3) Å	<i>α</i> = 90°.			
	b = 9.269(3) Å	$\beta = 92.653(17)^{\circ}$			
	c = 15.874(3) Å	$\gamma = 90^{\circ}$.			
Volume	2247.0(10) Å ³				
Z	4				
Density (calculated)	1.415 Mg/m^3				
Absorption coefficient	0.286 mm ⁻¹				
F(000)	992				
Crystal size	0.390 x 0.240 x 0.240 mm	1 ³			
Theta range for data collection	1.808 to 24.977°.				
Index ranges	-18<=h<=0, 0<=k<=11, -	18<=l<=18			
Reflections collected	4436				
Independent reflections	3935 [R(int) = 0.0541]				
Completeness to theta = 24.977°	99.9 %				
Refinement method	Full-matrix least-squares	on F ²			
Data / restraints / parameters	3935 / 0 / 291				
Goodness-of-fit on F ²	1.029				
Final R indices [I>2sigma(I)]	R1 = 0.0572, wR2 = 0.144	43			
R indices (all data)	R1 = 0.1212, wR2 = 0.162	27			
Largest diff. peak and hole	0.427 and -0.328 e.Å ⁻³				

	X	У	Z	U(eq)
Cl(1)	-1852(1)	-86(2)	6496(1)	130(1)
P(1)	3957(1)	1969(1)	8665(1)	53(1)
F(1)	-2539(2)	1507(4)	7907(2)	136(1)
O(1)	3806(2)	2876(3)	7927(2)	73(1)
O(2)	4426(2)	2844(3)	9389(2)	67(1)
O(3)	4499(2)	568(3)	8526(2)	68(1)
O(4)	832(2)	-1912(3)	9149(2)	63(1)
O(6)	1443(2)	1974(3)	7530(2)	67(1)
C(1)	2945(2)	1219(4)	9048(2)	44(1)
N(2)	3166(2)	108(3)	9693(2)	51(1)
C(3)	2789(2)	-1062(4)	9491(2)	53(1)
C(3A)	2246(2)	-1090(4)	8681(2)	48(1)
C(4)	1269(2)	-1053(4)	8786(2)	46(1)
N(5)	946(2)	180(3)	8388(2)	44(1)
C(6)	1594(2)	978(4)	8000(2)	50(1)
C(6A)	2457(2)	368(3)	8291(2)	45(1)
C(11)	2375(2)	2376(4)	9437(2)	50(1)
C(12)	1905(3)	2078(5)	10135(3)	69(1)
C(13)	1340(3)	3067(7)	10453(4)	98(2)
C(14)	1229(3)	4384(7)	10094(4)	101(2)
C(15)	1698(4)	4708(5)	9405(4)	97(2)
C(16)	2268(3)	3725(4)	9079(3)	73(1)
C(21)	4831(3)	2232(6)	10143(3)	101(2)
C(22)	5361(3)	3293(5)	10590(3)	100(2)
C(31)	5264(6)	600(8)	8010(6)	184(4)
C(32)	5431(7)	-321(10)	7528(6)	218(5)
C(51)	32(2)	504(4)	8271(2)	48(1)
C(52)	-410(2)	59(4)	7551(2)	59(1)
C(53)	-1279(3)	394(5)	7417(3)	75(1)
C(54)	-1687(3)	1155(5)	8022(3)	82(1)
C(55)	-1254(3)	1602(5)	8744(3)	89(1)
C(56)	-372(3)	1274(5)	8872(3)	69(1)

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Å^2 x\ 10^3) for **9d.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(53)	1.728(4)
P(1)-O(1)	1.452(2)
P(1)-O(2)	1.553(3)
P(1)-O(3)	1.562(3)
P(1)-C(1)	1.826(3)
F(1)-C(54)	1.346(5)
O(2)-C(21)	1.439(5)
O(3)-C(31)	1.459(7)
O(4)-C(4)	1.203(4)
O(6)-C(6)	1.202(4)
C(1)-N(2)	1.481(4)
C(1)-C(11)	1.529(5)
C(1)- $C(6A)$	1.593(4)
N(2)-C(3)	1.262(4)
C(3)-C(3A)	1.499(5)
C(3A)-C(4)	1.511(5)
C(3A)-C(6A)	1.527(4)
C(4)-N(5)	1.386(4)
N(5)-C(6)	1.300(1) 1.402(4)
N(5)-C(51)	1.102(1) 1.433(4)
C(6)-C(6A)	1.489(5)
C(11)-C(12)	1.105(5) 1.377(5)
C(11)- $C(16)$	1.377(3)
C(12)-C(13)	1 371(6)
C(12) = C(12)	1.371(0) 1.355(7)
C(14)-C(15)	1.368(7)
C(15)-C(16)	1 379(6)
C(21)-C(22)	1 440(6)
C(31)-C(32)	1.182(8)
C(51)-C(52)	1.364(5)
C(51)-C(56)	1.362(5)
C(52)-C(53)	1.372(5)
C(53)-C(54)	1.366(6)
C(54)-C(55)	1.362(6)
C(55)-C(56)	1.389(6)
O(1)-P(1)-O(2)	110.21(16)
O(1)-P(1)-O(3)	115.64(16)
O(2)-P(1)-O(3)	108.04(14)
O(1)-P(1)-C(1)	112.48(15)
O(2)-P(1)-C(1)	108.79(15)
O(3)-P(1)-C(1)	101.17(15)
C(21)-O(2)-P(1)	125.1(3)
C(31)-O(3)-P(1)	120.4(3)
N(2)-C(1)-C(11)	108.9(3)
N(2)-C(1)-C(6A)	105.1(3)
C(11)-C(1)-C(6A)	113.4(3)
N(2)-C(1)-P(1)	109.0(2)
C(11)-C(1)-P(1)	112.0(2)
C(6A)-C(1)-P(1)	108.2(2)
C(3)-N(2)-C(1)	109.6(3)
N(2)-C(3)-C(3A)	117.4(3)
C(3)-C(3A)-C(4)	114.5(3)
C(3)-C(3A)-C(6A)	102.3(3)
C(4)-C(3A)-C(6A)	104.7(3)
O(4)-C(4)-N(5)	124.8(3)
O(4)-C(4)-C(3A)	127.7(3)

Table 3. Bond lengths [Å] and angles [°] for **9d.**

N(5)-C(4)-C(3A)	107.5(3)
C(4)-N(5)-C(6)	113.1(3)
C(4)-N(5)-C(51)	123.8(3)
C(6)-N(5)-C(51)	122.5(3)
O(6)-C(6)-N(5)	124.0(3)
O(6)-C(6)-C(6A)	128.8(3)
N(5)-C(6)-C(6A)	107.3(3)
C(6)-C(6A)-C(3A)	105.1(3)
C(6)-C(6A)-C(1)	115.0(3)
C(3A)-C(6A)-C(1)	103.5(2)
C(12)-C(11)-C(16)	117.2(4)
C(12)-C(11)-C(1)	120.9(3)
C(16)-C(11)-C(1)	121.8(3)
C(13)-C(12)-C(11)	121.6(5)
C(14)-C(13)-C(12)	121.1(5)
C(13)-C(14)-C(15)	118.3(5)
C(14)-C(15)-C(16)	121.3(5)
C(15)-C(16)-C(11)	120.6(4)
C(22)-C(21)-O(2)	110.6(4)
C(32)-C(31)-O(3)	123.4(9)
C(52)-C(51)-C(56)	121.5(3)
C(52)-C(51)-N(5)	119.2(3)
C(56)-C(51)-N(5)	119.4(3)
C(51)-C(52)-C(53)	120.0(4)
C(54)-C(53)-C(52)	118.6(4)
C(54)-C(53)-Cl(1)	119.8(3)
C(52)-C(53)-Cl(1)	121.5(4)
F(1)-C(54)-C(55)	118.1(5)
F(1)-C(54)-C(53)	120.0(5)
C(55)-C(54)-C(53)	121.9(4)
C(54)-C(55)-C(56)	119.2(4)
C(51)-C(56)-C(55)	118.7(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	83(1)	160(2)	143(1)	-24(1)	-53(1)	7(1)
P(1)	44(1)	58(1)	57(1)	11(1)	-2(1)	-4(1)
F(1)	51(2)	165(3)	193(3)	0(3)	5(2)	29(2)
O(1)	63(2)	88(2)	66(2)	36(2)	-2(1)	-9(2)
O(2)	60(2)	63(2)	78(2)	7(1)	-22(1)	-6(1)
O(3)	49(1)	73(2)	83(2)	2(2)	18(1)	8(1)
O(4)	57(2)	54(2)	80(2)	16(1)	10(1)	-4(1)
O(6)	58(2)	77(2)	66(2)	28(2)	-12(1)	-9(1)
C(1)	44(2)	42(2)	45(2)	5(2)	0(2)	0(2)
N(2)	53(2)	51(2)	49(2)	7(2)	-3(1)	0(2)
C(3)	50(2)	49(2)	60(2)	11(2)	4(2)	5(2)
C(3A)	49(2)	44(2)	50(2)	-5(2)	6(2)	2(2)
C(4)	53(2)	40(2)	46(2)	-3(2)	2(2)	-1(2)
N(5)	42(2)	43(2)	47(2)	2(1)	-1(1)	-1(1)
C(6)	54(2)	54(2)	40(2)	2(2)	-1(2)	-6(2)
C(6A)	41(2)	49(2)	45(2)	-2(2)	6(2)	-1(2)
C(11)	51(2)	49(2)	50(2)	-7(2)	-6(2)	-2(2)
C(12)	72(3)	62(2)	75(3)	-13(2)	20(2)	-6(2)
C(13)	79(3)	104(4)	113(4)	-52(4)	28(3)	-7(3)
C(14)	67(3)	101(4)	134(5)	-59(4)	0(3)	16(3)
C(15)	106(4)	61(3)	122(4)	-13(3)	-24(3)	31(3)
C(16)	84(3)	58(3)	77(3)	3(2)	1(2)	17(2)
C(21)	105(4)	96(4)	96(3)	24(3)	-50(3)	-14(3)
C(22)	120(4)	81(3)	94(3)	-11(3)	-44(3)	18(3)
C(31)	205(8)	129(6)	228(9)	22(6)	130(7)	48(6)
C(32)	267(11)	201(9)	198(9)	-75(7)	140(8)	-11(8)
C(51)	40(2)	48(2)	57(2)	6(2)	5(2)	1(2)
C(52)	53(2)	58(2)	66(2)	-8(2)	-5(2)	4(2)
C(53)	58(3)	75(3)	90(3)	7(3)	-15(2)	3(2)
C(54)	45(2)	88(3)	113(4)	15(3)	1(3)	9(2)
C(55)	70(3)	99(4)	101(4)	-1(3)	32(3)	17(3)
C(56)	58(2)	83(3)	67(3)	-3(2)	8(2)	8(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9d**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Table 5. Hydrogen bonds for 9d [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3A)-H(3A)O(6)#1	0.98	2.49	3.359(4)	147.7
C(22)-H(22B)O(6)#2	0.96	2.56	3.436(5)	151.8
C(31)-H(31A)O(1)	0.97	2.57	3.067(8)	112.2
C(52)-H(52)O(1)#1	0.93	2.54	3.295(5)	139.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y-1/2,-z+3/2 #2 x+1/2,-y+1/2,z+1/2

Diethyl (1RS,3aSR,6aSR)-5-(3,4-dichlorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9v): Deposition number: 1960887

Largest diff. peak and hole

Table 1. Crystal data and structure refinement for 9v. Identification code Jb137 Empirical formula C22 H21 Cl2 N2 O5 P 495.28 Formula weight Temperature 294(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 21/n Unit cell dimensions a = 15.769(3) Å b = 9.234(2) Å c = 15.789(3) ÅVolume 2294.3(9) Å³ Ζ 4 Density (calculated) 1.434 Mg/m³ 0.389 mm⁻¹ Absorption coefficient F(000) 1024 Crystal size 0.33 x 0.12 x 0.11 mm³ Theta range for data collection 1.769 to 28.326°. -21<=h<=21, -12<=k<=12, -21<=l<=21 Index ranges Reflections collected 49110 Independent reflections 5704 [R(int) = 0.0892]Completeness to theta = 25.242° 100.0 % Full-matrix least-squares on F² Refinement method Data / restraints / parameters 5704 / 0 / 291 Goodness-of-fit on F² 1.012 Final R indices [I>2sigma(I)] R1 = 0.0598, wR2 = 0.1362 R indices (all data) R1 = 0.1155, wR2 = 0.1653

 $\alpha = 90^{\circ}$. $\beta = 93.672(5)^{\circ}$. $\gamma = 90^{\circ}$.

0.533 and -0.336 e.Å⁻³

	Х	у	Z	U(eq)
Cl(1)	3639(1)	9847(2)	6664(1)	98(1)
Cl(2)	2190(1)	8305(2)	7622(1)	129(1)
P(1)	1326(1)	8053(1)	1087(1)	48(1)
O(1)	2074(1)	7137(3)	1246(1)	68(1)
O(2)	1474(1)	9464(2)	565(1)	61(1)
O(3)	602(1)	7175(2)	608(1)	63(1)
O(4)	817(1)	11917(2)	4120(1)	58(1)
O(6)	2493(1)	8094(2)	3515(1)	61(1)
N(2)	269(1)	9893(3)	1838(2)	46(1)
N(5)	1618(1)	9857(2)	4004(1)	41(1)
C(1)	932(2)	8810(3)	2062(2)	39(1)
C(3)	454(2)	11070(3)	2217(2)	47(1)
C(3A)	1279(2)	11121(3)	2740(2)	43(1)
C(4)	1190(2)	11077(3)	3696(2)	42(1)
C(6)	2005(2)	9077(3)	3377(2)	43(1)
C(6A)	1689(2)	9691(3)	2534(2)	40(1)
C(11)	557(2)	7643(3)	2618(2)	45(1)
C(12)	-133(2)	7961(4)	3085(2)	63(1)
C(13)	-439(3)	6967(5)	3647(3)	87(1)
C(14)	-77(3)	5635(6)	3736(3)	94(2)
C(15)	592(3)	5292(4)	3267(3)	92(1)
C(16)	914(2)	6284(4)	2714(2)	69(1)
C(21)	1969(5)	9381(7)	-188(4)	142(2)
C(22)	2528(5)	10365(8)	-264(5)	184(4)
C(31)	-151(3)	7780(4)	185(3)	86(1)
C(32)	-531(2)	6744(4)	-422(2)	76(1)
C(51)	1746(2)	9521(3)	4891(2)	43(1)
C(52)	2513(2)	9859(3)	5309(2)	50(1)
C(53)	2658(2)	9483(4)	6153(2)	60(1)
C(54)	2026(2)	8794(4)	6571(2)	68(1)
C(55)	1263(2)	8484(4)	6146(2)	72(1)
C(56)	1118(2)	8843(4)	5303(2)	59(1)

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Å^2 x\ 10^3) for 9v.~U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(53)	1.731(3)
Cl(2)-C(54)	1.723(3)
P(1)-O(1)	1.460(2)
P(1)-O(3)	1.556(2)
P(1)-O(2)	1.567(2)
P(1)-C(1)	1.835(3)
O(2)-C(21)	1.466(5)
O(3)-C(31)	1.438(4)
O(4)-C(4)	1.203(3)
O(6)-C(6)	1.200(3)
N(2)-C(3)	1.267(4)
N(2)-C(1)	1.474(3)
N(5)-C(4)	1.386(3)
N(5)-C(6)	1.396(3)
N(5)-C(51)	1 435(3)
C(1)- $C(11)$	1.532(4)
C(1)- $C(6A)$	1 589(4)
C(3)-C(3A)	1.305(1) 1 496(4)
C(3A)-C(6A)	1.515(4)
C(3A)-C(4)	1.515(1) 1.524(4)
C(6)-C(6A)	1.521(1) 1.503(4)
C(11)- $C(16)$	1.305(1) 1 380(4)
C(11) - C(12)	1.385(4)
C(12)- $C(13)$	1 385(5)
$C(12) \cdot C(13)$	1 359(6)
C(14)-C(15)	1.363(7)
C(15)- $C(16)$	1.384(5)
C(21)-C(22)	1.30+(3) 1.277(7)
C(31)-C(32)	1.277(7) 1.455(5)
C(51)-C(52)	1.433(3) 1.371(4)
C(51) - C(52)	1.371(1) 1 377(4)
C(52)- $C(53)$	1.377(1) 1 382(4)
C(53)- $C(54)$	1.382(1) 1.385(5)
C(54)- $C(55)$	1.303(5) 1.371(5)
C(55)-C(56)	1.377(5)
O(1)-P(1)-O(3)	109.94(13)
O(1)-P(1)-O(2)	115 26(14)
O(3)-P(1)-O(2)	107.91(12)
O(1)-P(1)-C(1)	112, 89(12)
O(3)-P(1)-C(1)	109 18(13)
O(2)-P(1)-C(1)	101.20(12)
C(21)-O(2)-P(1)	119 2(3)
C(31)-O(3)-P(1)	125.6(2)
C(3)-N(2)-C(1)	109.3(2)
C(4)-N(5)-C(6)	109.3(2) 113 3(2)
C(4)-N(5)-C(51)	123.6(2)
C(6)-N(5)-C(51)	122.7(2)
N(2)-C(1)-C(11)	108.7(2)
N(2)-C(1)-C(6A)	105.3(2)
C(11)-C(1)-C(6A)	113.4(2)
N(2)-C(1)-P(1)	109.28(17)
C(11)-C(1)-P(1)	112.15(19)
C(6A)-C(1)-P(1)	107.70(17)
N(2)-C(3)-C(3A)	117.0(3)
C(3)-C(3A)-C(6A)	102.8(2)
C(3)-C(3A)-C(4)	114.5(2)
$\sim / \sim / \sim /$	

Table 3. Bond lengths [Å] and angles [°] for 9v.

C(6A)-C(3A)-C(4)	104.9(2)
O(4)-C(4)-N(5)	124.9(3)
O(4)-C(4)-C(3A)	127.8(3)
N(5)-C(4)-C(3A)	107.2(2)
O(6)-C(6)-N(5)	124.4(3)
O(6)-C(6)-C(6A)	128.3(3)
N(5)-C(6)-C(6A)	107.3(2)
C(6)-C(6A)-C(3A)	105.1(2)
C(6)-C(6A)-C(1)	114.8(2)
C(3A)-C(6A)-C(1)	103.3(2)
C(16)-C(11)-C(12)	117.6(3)
C(16)-C(11)-C(1)	122.2(3)
C(12)-C(11)-C(1)	120.1(3)
C(13)-C(12)-C(11)	121.2(4)
C(14)-C(13)-C(12)	120.3(4)
C(13)-C(14)-C(15)	119.2(4)
C(14)-C(15)-C(16)	121.1(4)
C(11)-C(16)-C(15)	120.5(4)
C(22)-C(21)-O(2)	116.5(6)
O(3)-C(31)-C(32)	110.1(3)
C(56)-C(51)-C(52)	121.0(3)
C(56)-C(51)-N(5)	120.1(3)
C(52)-C(51)-N(5)	118.9(3)
C(51)-C(52)-C(53)	119.5(3)
C(52)-C(53)-C(54)	119.7(3)
C(52)-C(53)-Cl(1)	119.2(3)
C(54)-C(53)-Cl(1)	121.1(3)
C(55)-C(54)-C(53)	119.9(3)
C(55)-C(54)-Cl(2)	119.3(3)
C(53)-C(54)-Cl(2)	120.7(3)
C(54)-C(55)-C(56)	120.6(3)
C(51)-C(56)-C(55)	119.3(3)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	84(1)	143(1)	62(1)	4(1)	-26(1)	-7(1)
Cl(2)	145(1)	195(2)	45(1)	35(1)	7(1)	-3(1)
P(1)	50(1)	57(1)	37(1)	-5(1)	-3(1)	10(1)
O(1)	62(1)	85(2)	56(1)	-11(1)	-2(1)	34(1)
O(2)	75(2)	66(1)	43(1)	2(1)	12(1)	1(1)
O(3)	71(1)	59(1)	54(1)	-7(1)	-23(1)	5(1)
O(4)	72(1)	50(1)	52(1)	-4(1)	13(1)	11(1)
O(6)	57(1)	74(2)	51(1)	-8(1)	-10(1)	27(1)
N(2)	41(1)	51(2)	45(1)	3(1)	-2(1)	9(1)
N(5)	40(1)	45(1)	37(1)	1(1)	1(1)	1(1)
C(1)	36(1)	44(2)	37(1)	-2(1)	-2(1)	5(1)
C(3)	51(2)	46(2)	44(2)	8(1)	1(1)	9(1)
C(3A)	48(2)	42(2)	40(1)	4(1)	6(1)	-4(1)
C(4)	42(2)	42(2)	43(2)	0(1)	4(1)	-2(1)
C(6)	36(1)	49(2)	43(2)	-7(1)	-3(1)	3(1)
C(6A)	33(1)	50(2)	38(1)	-3(1)	4(1)	-3(1)
C(11)	46(2)	48(2)	40(2)	-1(1)	-3(1)	-8(1)
C(12)	63(2)	68(2)	60(2)	-2(2)	12(2)	-14(2)
C(13)	93(3)	100(3)	69(3)	-5(2)	22(2)	-40(3)
C(14)	121(4)	93(3)	66(3)	20(2)	-5(3)	-53(3)
C(15)	118(4)	61(2)	94(3)	26(2)	-11(3)	-11(3)
C(16)	75(2)	56(2)	75(2)	14(2)	2(2)	6(2)
C(21)	207(7)	120(4)	110(4)	8(4)	86(5)	-6(5)
C(22)	170(6)	172(7)	222(8)	-49(6)	114(6)	-88(5)
C(31)	79(3)	75(3)	99(3)	-11(2)	-35(2)	19(2)
C(32)	75(2)	71(2)	78(3)	9(2)	-29(2)	-7(2)
C(51)	48(2)	46(2)	37(1)	1(1)	5(1)	4(1)
C(52)	51(2)	56(2)	42(2)	0(1)	1(1)	-2(2)
C(53)	65(2)	71(2)	41(2)	-2(2)	-7(2)	5(2)
C(54)	82(3)	86(3)	37(2)	8(2)	10(2)	9(2)
C(55)	74(2)	89(3)	54(2)	12(2)	20(2)	-6(2)
C(56)	52(2)	73(2)	52(2)	3(2)	11(1)	-5(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9v.** The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Table 5. Hydrogen bonds for 9v [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3A)-H(3A)O(6)#1	0.98	2.52	3.391(3)	147.8
C(32)-H(32C)O(6)#2	0.96	2.57	3.448(4)	152.8
C(52)-H(52)O(1)#1	0.93	2.61	3.329(4)	134.9

Symmetry transformations used to generate equivalent atoms: $\frac{1}{2} = \frac{1}{2} = \frac{1$

#1 -x+1/2,y+1/2,-z+1/2 #2 x-1/2,-y+3/2,z-1/2

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-5-(4-phenoxyphenyl)-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9ab): Deposition number: 1960885

Table 1. Crystal data and structure refinement for 9ab. Identification code Jb131 Empirical formula C28 H27 N2 O6 P Formula weight 518.48 Temperature 294(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group I 2/a Unit cell dimensions a = 22.065(4) Å $\alpha = 90^{\circ}$. b = 9.314(2) Å $\beta = 112.776(16)^{\circ}$. c = 27.263(4) Å $\gamma = 90^{\circ}$. Volume 5166.0(17) Å³ Ζ 8 Density (calculated) 1.333 Mg/m³ Absorption coefficient 0.152 mm⁻¹ F(000) 2176 Crystal size 0.39 x 0.33 x 0.15 mm³ Theta range for data collection 1.620 to 25.124°. Index ranges -16<=h<=26, -11<=k<=10, -32<=l<=17 Reflections collected 9131 Independent reflections 4559 [R(int) = 0.0846]98.7 % Completeness to theta = 25.124° Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4559 / 0 / 337 Goodness-of-fit on F² 0.997 Final R indices [I>2sigma(I)] R1 = 0.0526, wR2 = 0.1177R indices (all data) R1 = 0.1383, wR2 = 0.1478 0.00136(18) Extinction coefficient Largest diff. peak and hole 0.512 and -0.393 e.Å-3

	x	У	Z	U(eq)
P(1)	5656(1)	-1033(1)	3648(1)	53(1)
O(1)	5820(1)	39(3)	3328(1)	70(1)
O(2)	6057(1)	-2460(3)	3741(1)	66(1)
O(3)	5743(1)	-450(3)	4204(1)	79(1)
O(4)	3308(1)	-4767(3)	2426(1)	56(1)
O(5)	1346(1)	-394(3)	690(1)	71(1)
O(6)	4267(1)	-800(3)	2068(1)	58(1)
N(2)	4720(1)	-2802(3)	3694(1)	45(1)
N(5)	3636(1)	-2605(3)	2202(1)	40(1)
C(1)	4809(2)	-1672(3)	3346(1)	41(1)
C(3)	4519(2)	-3942(4)	3435(1)	48(1)
C(3A)	4438(2)	-3931(4)	2864(1)	43(1)
C(4)	3725(2)	-3886(4)	2481(1)	41(1)
C(6)	4213(2)	-1819(4)	2322(1)	44(1)
C(6A)	4718(2)	-2471(4)	2805(1)	42(1)
C(11)	4314(2)	-465(4)	3288(1)	43(1)
C(12)	3784(2)	-683(4)	3436(1)	56(1)
C(13)	3308(2)	358(5)	3347(2)	69(1)
C(14)	3354(2)	1629(5)	3107(2)	77(1)
C(15)	3885(2)	1876(4)	2972(2)	72(1)
C(16)	4356(2)	836(4)	3056(1)	56(1)
C(21)	6617(2)	-2671(6)	3588(2)	88(1)
C(22)	7230(2)	-2531(7)	4045(2)	125(2)
C(31)	5866(4)	-1140(9)	4658(2)	196(4)
C(32)	6183(3)	-583(8)	5132(2)	178(3)
C(51)	3027(2)	-2137(4)	1804(1)	43(1)
C(52)	2824(2)	-2641(4)	1294(1)	54(1)
C(53)	2256(2)	-2100(4)	909(1)	58(1)
C(54)	1909(2)	-1040(4)	1041(1)	49(1)
C(55)	2108(2)	-562(4)	1550(1)	53(1)
C(56)	2667(2)	-1106(4)	1933(1)	52(1)
C(57)	1083(2)	-882(4)	163(1)	58(1)
C(58)	1360(2)	-480(5)	-186(2)	78(1)
C(59)	1072(3)	-919(6)	-704(2)	86(1)
C(60)	519(3)	-1714(5)	-870(2)	85(2)
C(61)	245(2)	-2075(6)	-521(2)	99(2)
C(62)	520(2)	-1651(5)	9(2)	80(1)
. /	. /		. /	~ /

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **9ab.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-O(1)	1.461(3)
P(1)-O(3)	1.549(3)
P(1)-O(2)	1.562(3)
P(1)-C(1)	1.826(3)
O(2)-C(21)	1.463(4)
O(3)-C(31)	1.328(6)
O(4)-C(4)	1.197(4)
O(5)-C(54)	1.378(4)
O(5)-C(57)	1.400(4)
O(6)-C(6)	1.208(4)
N(2)-C(3)	1.258(4)
N(2)-C(1)	1.480(4)
N(5)-C(4)	1.387(4)
N(5)-C(6)	1.393(4)
N(5)-C(51)	1.431(4)
C(1)-C(11)	1.532(5)
C(1)-C(6A)	1.595(4)
C(3)-C(3A)	1.497(4)
C(3A)-C(4)	1.514(4)
C(3A)-C(6A)	1.528(4)
C(6)-C(6A)	1.487(4)
C(11)-C(16)	1.387(5)
C(11)-C(12)	1.391(4)
C(12)-C(13)	1.380(5)
C(13)-C(14)	1.376(6)
C(14)-C(15)	1.376(6)
C(15)-C(16)	1.373(5)
C(21)-C(22)	1.447(6)
C(31)-C(32)	1.313(7)
C(51)-C(52)	1.368(4)
C(51)-C(56)	1.376(4)
C(52)-C(53)	1.381(5)
C(53)-C(54)	1.380(5)
C(54)-C(55)	1.359(4)
C(55)-C(56)	1.367(4)
C(57)-C(62)	1.351(5)
C(57)-C(58)	1.366(5)
C(58)-C(59)	1.369(6)
C(59)-C(60)	1.346(6)
C(60)-C(61)	1.352(6)
C(61)-C(62)	1.390(6)
O(1)-P(1)-O(3)	112.26(17)
O(1)-P(1)-O(2)	115.03(15)
O(3)-P(1)-O(2) O(1) P(1) C(1)	106.99(16)
O(1)-P(1)-C(1)	113.02(15)
O(3)-P(1)-C(1) O(2) P(1) C(1)	105.79(15) 102.22(14)
O(2)-P(1)-O(1) O(2), P(1)	102.23(14) 122.7(2)
C(21)-O(2)-P(1) C(21)-O(2)-P(1)	125.7(5) 120.2(4)
C(51)-O(5)-P(1) C(54) O(5) C(57)	130.2(4) 118 4(2)
C(3+)-O(3)-O(3/) C(3)-N(2)-C(1)	110.4(3) 110.2(3)
$C(3)^{-1N}(2)^{-}C(1)$ $C(4)^{-}N(5)^{-}C(6)$	110.2(3) 112.7(2)
C(4)-N(5)-C(0)	113.7(3) 124.8(3)
C(4)-N(5)-C(51)	124.0(3) 121 5(3)
N(2)-C(1)-C(11)	121.3(3) 108 7(2)
N(2)-C(1)-C(11)	105.7(2)
$(2) \circ (1) \circ (0A)$	105.1(5)

Table 3. Bond lengths [Å] and angles [°] for **9ab.**

C(11)-C(1)-C(6A)	114.6(2)
N(2)-C(1)-P(1)	108.1(2)
C(11)-C(1)-P(1)	111.8(2)
C(6A)-C(1)-P(1)	108.0(2)
N(2)-C(3)-C(3A)	116.9(3)
C(3)-C(3A)-C(4)	113.1(3)
C(3)-C(3A)-C(6A)	103.1(3)
C(4)-C(3A)-C(6A)	105.0(3)
O(4)-C(4)-N(5)	125.5(3)
O(4)-C(4)-C(3A)	127.6(3)
N(5)-C(4)-C(3A)	106.9(3)
O(6)-C(6)-N(5)	124.3(3)
O(6)-C(6)-C(6A)	128.4(3)
N(5)-C(6)-C(6A)	107.3(3)
C(6)-C(6A)-C(3A)	105.1(3)
C(6)-C(6A)-C(1)	114.3(3)
C(3A)-C(6A)-C(1)	103.2(2)
C(16)-C(11)-C(12)	118.1(3)
C(16)-C(11)-C(1)	121.2(3)
C(12)-C(11)-C(1)	120.6(3)
C(13)-C(12)-C(11)	121.0(4)
C(14)-C(13)-C(12)	119.8(4)
C(13)-C(14)-C(15)	119.8(4)
C(16)-C(15)-C(14)	120.4(4)
C(15)-C(16)-C(11)	120.9(4)
C(22)-C(21)-O(2)	110.7(4)
C(32)-C(31)-O(3)	124.4(8)
C(52)-C(51)-C(56)	120.4(3)
C(52)-C(51)-N(5)	120.6(3)
C(56)-C(51)-N(5)	118.9(3)
C(51)-C(52)-C(53)	119.3(3)
C(54)-C(53)-C(52)	119.8(3)
C(55)-C(54)-O(5)	114.6(3)
C(55)-C(54)-C(53)	120.5(3)
O(5)-C(54)-C(53)	125.0(3)
C(54)-C(55)-C(56)	119.9(3)
C(55)-C(56)-C(51)	120.1(3)
C(62)-C(57)-C(58)	122.2(4)
C(62)-C(57)-O(5)	117.2(4)
C(58)-C(57)-O(5)	120.3(4)
C(57)-C(58)-C(59)	118.8(4)
C(60)-C(59)-C(58)	120.6(4)
C(59)-C(60)-C(61)	119.7(5)
C(60)-C(61)-C(62)	121.7(5)
C(57)-C(62)-C(61)	116.9(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	42(1)	59(1)	50(1)	3(1)	10(1)	-9(1)
O(1)	56(2)	74(2)	76(2)	16(2)	22(1)	-16(1)
O(2)	40(1)	76(2)	80(2)	13(2)	20(1)	7(1)
O(3)	81(2)	90(2)	49(2)	-16(2)	5(1)	-7(2)
O(4)	51(1)	50(2)	64(2)	2(1)	18(1)	-10(1)
O(5)	63(2)	89(2)	51(2)	-2(2)	9(1)	29(2)
O(6)	58(2)	69(2)	45(1)	9(1)	16(1)	-16(1)
N(2)	44(2)	45(2)	46(2)	8(2)	14(1)	0(1)
N(5)	34(2)	43(2)	42(2)	-2(1)	13(1)	-2(1)
C(1)	42(2)	41(2)	38(2)	4(2)	14(2)	-6(2)
C(3)	39(2)	47(2)	56(2)	10(2)	15(2)	2(2)
C(3A)	37(2)	41(2)	51(2)	-2(2)	17(2)	4(2)
C(4)	43(2)	38(2)	45(2)	-6(2)	19(2)	-3(2)
C(6)	44(2)	51(2)	39(2)	-4(2)	17(2)	-6(2)
C(6A)	34(2)	50(2)	43(2)	-3(2)	16(2)	0(2)
C(11)	44(2)	45(2)	39(2)	-3(2)	13(2)	-4(2)
C(12)	58(2)	54(2)	59(2)	-2(2)	26(2)	0(2)
C(13)	58(3)	72(3)	78(3)	-17(3)	28(2)	7(2)
C(14)	75(3)	66(3)	77(3)	-17(3)	15(3)	23(3)
C(15)	84(3)	48(3)	74(3)	1(2)	20(3)	7(2)
C(16)	60(2)	50(2)	57(2)	5(2)	22(2)	3(2)
C(21)	75(3)	101(4)	92(3)	-4(3)	38(3)	10(3)
C(22)	52(3)	161(6)	148(5)	-9(4)	23(3)	4(3)
C(31)	265(10)	244(10)	63(4)	-9(5)	44(5)	50(8)
C(32)	215(8)	180(7)	73(4)	-20(5)	-17(4)	19(6)
C(51)	41(2)	47(2)	40(2)	-3(2)	16(2)	-4(2)
C(52)	54(2)	54(2)	49(2)	-9(2)	16(2)	11(2)
C(53)	56(2)	69(3)	40(2)	-11(2)	10(2)	9(2)
C(54)	44(2)	54(2)	45(2)	3(2)	14(2)	6(2)
C(55)	46(2)	56(2)	58(2)	-3(2)	20(2)	13(2)
C(56)	49(2)	62(2)	44(2)	-11(2)	19(2)	0(2)
C(57)	54(2)	65(3)	46(2)	4(2)	9(2)	12(2)
C(58)	77(3)	92(4)	60(3)	4(3)	22(2)	-6(3)
C(59)	105(4)	97(4)	60(3)	15(3)	36(3)	11(3)
C(60)	105(4)	79(4)	53(3)	0(3)	10(3)	23(3)
C(61)	86(4)	103(4)	86(4)	-9(3)	10(3)	-22(3)
C(62)	68(3)	100(4)	67(3)	6(3)	22(2)	-8(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9ab**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Table 5. Hydrogen bonds for **9ab** [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3A)-H(3A)O(6)#1	0.98	2.42	3.290(4)	147.1
C(31)-H(31B)O(2)	0.97	2.46	2.959(7)	111.9

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1/2

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-methyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9a)

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-benzyl-4,6-dioxo-5-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (14c)

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU] [min] [min] [mAU*s] % # 4.364 MM 0.0311 86.05524 46.19073 4.2811 1 4.506 MM 0.0448 1924.05261 716.32135 95.7189 2 Totals : 2010.10786 762.51208

Diethyl (1*RS*,3a*SR*,6a*SR*)-1-(4-fluorobenzyl)-4,6-dioxo-5-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (15c)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-ethyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9f)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-propyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9g)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(adamantan-1-yl)methyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9i)

Реак	Recrime Ty	pe width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	5.057 MF	0.0487	5.75976	1.97158	2.1773
2	5.266 BE	0.0489	258.77179	86.45103	97.8227
Total	s :		264.53155	88.42261	

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-benzyl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9j)

Totals : 299.31924 106.25004

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-5-phenethyl-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4*c*]pyrrole-1-phosphonate (9k)

Diethyl (1*RS*,3a*SR*,6a*SR*)-4,6-dioxo-1-phenyl-5-(2,4,6-trichlorophenyl)-1,3a,4,5,6,6ahexahydropyrrolo[3,4-*c*]pyrrole-1-phosphonate (9w)

Diethyl (1*RS*,3a*SR*,6a*SR*)-5-(1,1'-biphenyl)-4-yl-4,6-dioxo-1-phenyl-1,3a,4,5,6,6ahexahydropyrrolo[3,4-c]pyrrole-1-phosphonate (9z)

References

(1) Abás, S.; Estarellas, C.; Luque, F.J.; Escolano, C. Easy access to (2-imidazolin-4yl)phosphonates by a microwave assisted multicomponent reaction. *Tetrahedron*, **2015**, *7*, 2872-2881.

(2) Sobhani, S.; Vafaee, A. Molecular Iodine: An Efficient Catalyst for the One-Pot Synthesis of Primary 1-Aminophosphonates. *J. Iran. Chem. Soc.* **2010**, *7*, 227-236.

(3) Rachon, J.; Schöllkopf, U.; Wintel, T. 1-Aminoalkylphosphonsäuren durch Alkylieren von α-metalliertem isocyanmethylphosphonsäuren-diethylester. *Liebigs Ann Chem.* **1981**, 709-718.

(4) Tropsha, A.; Best Practices for QSAR Model Development, Validation, and Exploitation. *Mol. Inform.* **2010**, *29*, 476–488.

(5) Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Graph. Model. 2002, 20, 269-276.

(6) Roy, K.; Mitra, I.; Kar, S.; Ojha, P. K.; Das, R. N.; Kabir, H. Comparative studies on some metrics for external validation of QSPR models. *J. Chem. Inf. Model.* **2012**, *52*, 396–408.

(7) Gramatica, P. (2007). Principles of QSAR models validation: internal and external. *QSAR & Comb. Sci.* **2007**, *26*, 694–701.

(8) SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.

(9) Di, L.; Kerns, E. H.; Fan, K.; McConnell, O. J.; and Carter, G. T. High throughput artificial membrane permeability assay for blood-brain barrier. *Eur. J. Med. Chem.* **2003**, *38*, 223-232.

Compound	SMILE	I ₂ -IR Binding Affinities (pKi)	α ₂ -AR Binding Affinities (pKi)	Selectivity (I ₂ / α_2)
9a	O=C(N1C)[C@@H]2C=N[C@](P(OCC)(OCC)=O)(C3=CC=C3)[C@@H]2C1=O	7.97	5.93	110
9b	O=C1N(C2CCCC2)C(C3C(P(OCC)(OCC)=O)(C4=CC=CC=C4)N=CC31)=O	9.74	9.01	5
9с	O=C(C1C(P(OCC)(OCC)=O)(C2=CC=C2)N=CC13)N(C4=CC=CC=C4)C3=O	10.28	10.38	1
9d	O=C(C1C(P(OCC)(OCC)=O)(C2=CC=C2)N=CC13)N(C4=CC=C(F)C(Cl)=C4)C3=O	8,56	6,27	195
9e	O=C(N1C2=CC=C(OC)C=C2)[C@@H]3C=N[C@](P(OCC)(OCC)=O)(C4=CC=CC=C4)[C@@H]3C1=O	6,65	4,59	115
14c	O=C1N(C2=CC=C2)C([C@@H]3[C@H]1C=N[C@@]3(CC4=CC=CC=C4)P(OCC)(OCC)=O)=O	5,51		
15c	O=C(N1C2=CC=C2)[C@H]3[C@H]([C@@](P(OCC)(OCC)=O)(CC4=CC=C(F)C=C4)N=C3)C1=O	<3	7,69	
12c	O=C([C@H]1[C@@](P(OCC)(OCC)=O)(C2=CC=C(F)C=C2)N=C[C@H]13)N(C4=CC=CC=C4)C3=O	<3	6,77	
13c	O=C([C@H]1[C@@](P(OCC)(OCC)=O)(C2=CC=C(OC)C=C2)N=C[C@H]13)N(C4=CC=CC=C4)C3=O	3,39	3,85	
12d	O=C([C@H]1[C@@](P(OCC)(OCC)=O)(C2=CC=C(F)C=C2)N=C[C@H]13)N(C4=CC(Cl)=C(F)C=C4)C3=O	7,55	3,38	14791
13d	O=C([C@H]1[C@@](P(OCC)(OCC)=O)(C2=CC=C(OC)C=C2)N=C[C@H]13)N(C4=CC(Cl)=C(F)C=C4)C3=O	7.87	<3	74131
9f	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C2=O)CC	8.37	5.85	331
9g	O=C([C@@H]1[C@H]2C=N[C@@]1(C3=CC=C3)P(OCC)(OCC)=O)N(C2=O)CCC	4,02		
9h	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C2=O)C(C)(C)C	7.25	6.77	3
9i	O=C([C@@H]([C@](C1=CC=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3CC4(C5)C[C@@H](CC5C6)C[C@@H]6C4	7.01	4,31	401
9i	O=C([C@@H]([C@](C1=CC=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3CC4(C5)C[C@@H](CC5C6)C[C@@H]6C4	7.01	4,31	401
9j	O=C(N1CC2=CC=C2)[C@@H]3C=N[C@@](C4=CC=CC=C4)(P(OCC)(OCC)=O)[C@@H]3C1=O	5.26	8.11	
9k	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC3)=O)CCC4=CC=CC=C4	5.85	3.59	182

91	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC=C3)=O)CCC4=CC=C(F)C=C4	<3	5,65	
9m	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C4CC5=CC=C5C4)C2=O	3.84	3.442	2
9n	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC=C3)=O)C4=CC=C(C(F)(F)F)C=C4	<3	4.73	
90	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C2=O)C4=CC(C(F)(F)F)=CC=C4	<3		
9р	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC=C3)=O)C4=CC=C(F)C=C4	<3	5.34	
9q	O=C([C@@H]1[C@H]2C=N[C@@]1(C3=CC=CC=C3)P(OCC)(OCC)=O)N(C2=O)C4=CC=C(CI)C=C4	<3		
9r	O=C([C@@H]([C@](C1=CC=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3C4=C(Cl)C=CC=C4	5.09	6.15	
9s	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C2=O)C4=CC(Cl)=CC=C4	<3		
9t	O=C1N(C2=CC=C(Br)C=C2)C([C@@H]3[C@H]1C=N[C@@]3(C4=CC=CC=C4)P(OCC)(OCC)=O)=O	<3		
9u	O=C([C@@H]([C@](C1=CC=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3C4=CC(CI)=CC(CI)=C4	5,81	6,22	
9b	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC=C3)=O)C4=CC(Cl)=C(Cl)C=C4	<3		
9w	O=C([C@@H]([C@](C1=CC=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3C4=C(CI)C=C(CI)C=C4CI	<3	5,16	
9x	O=C(N1C2=CC([N+]([O-])=O)=CC=C2)[C@@H]3C=N[C@](P(OCC)(OCC)=O)(C4=CC=CC=C4)[C@@H]3C1=O	6,81	10,18	
9у	O=C([C@@H]1[C@H]2C=N[C@@]1(C3=CC=CC=C3)P(OCC)(OCC)=O)N(C2=O)C4=CC([N+]([O-])=O)=CC=C4C	<3		
9z	O=C(N1C2=CC=C(C3=CC=C3)C=C2)[C@@H]4C=N[C@](P(OCC)(OCC)=O)(C5=CC=C5)[C@@H]4C1=O	7,90	5,12	602
9aa	O=C1N(C([C@@H]2[C@H]1C=N[C@]2(P(OCC)(OCC)=O)C3=CC=CC3)=O)C4=CC=C(C)C=C4	5,44		
9ab	O=C1N(C2=CC=C(OC3=CC=CC=C3)C=C2)C([C@@H]4[C@H]1C=N[C@]4(P(OCC)(OCC)=O)C5=CC=CC=C5)=O	6,96	5,34	34
9ac	O=C([C@@H]1[C@H]2C=N[C@]1(P(OCC)(OCC)=O)C3=CC=C3)N(C2=O)C4=C(C=CC=C5)C5=CC=C4	3,11	<3	
9ad	O=C([C@@H]([C@](C1=CC=C1)(P(OCC)(OCC)=O)N=C2)[C@@H]2C3=O)N3C4=C(Cl)N=CC=C4	7,96	<3	91201
16	O=C(N1C2=CC=CC=C2)[C@@H]3C=N[C@](P(OC4=CC=CC=C4)(OC5=CC=C5)=O)(C6=CC=CC=C6)[C@@H]3C1=O	5,86	11,64	