Supporting information

The Role of Hydrogen-Bond Between Piperazine and Fullerene Molecules in Stabilizing Polymer:Fullerene Solar Cell Performance

Zerui Li,^{1,2} Jiankai Shan,³ Lingpeng Yan,^{2,4} Huimin Gu,^{2,5} Yi Lin,⁶ Hongwei Tan,^{3,*} Chang-Qi Ma,^{1,2 *}

- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 398 Jinzhai Road, Hefei, 230026, P. R. China.
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, SEID, SIP, 215123, P. R. China
- College of Chemistry, Beijing Normal University, Beijing, 19 Waida Street, Xinjie Kou, Beijing, 100875, P. R. China
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, P. R. China.
- 5. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, P. R. China.
- Department of Chemistry, Xi'an Jiaotong Liverpool University, Renai Road 11, SEDI, SIP, Suzhou, 215123, P. R. China

*Corresponding Author: <u>hongwei.tan@bnu.edu.cn</u>; <u>cqma2011@sinano.ac.cn</u>

Figure S1. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with piperazine

D.C.	Voc (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)
0	0.60	10.34±0.09	0.56±0.01	3.48±0.09
0.5%	0.61	10.70 ± 0.10	$0.57{\pm}0.00$	3.71±0.06
1%	0.62	10.41 ± 0.19	0.57±0.01	3.67±0.09
3%	0.62	10.56±0.13	0.57±0.01	3.69±0.04
5%	0.62	10.64 ± 0.08	0.56±0.00	3.69±0.05

Figure S2. Degradation curves of polymer solar cell based on P3HT:PC₆₁BM doped with piperazine

Figure S3. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with N-EP

D.C.	Voc (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)
0	0.62	10.46±0.11	0.55±0.01	3.60±0.02
0.5%	0.62	10.48 ± 0.10	0.55±0.00	3.56±0.03
1%	0.62	10.55±0.13	$0.54{\pm}0.00$	3.52±0.04
3%	0.62	10.57±0.12	0.54±0.01	3.56±0.07
5%	0.62	10.63±0.13	$0.54{\pm}0.00$	3.56±0.04

Table S2. Performance of polymer solar cell based on P3HT:PC₆₁BM doped with N-EP

Figure S4. Degradation curves of polymer solar cell based on P3HT:PC61BM doped with N-EP

Figure S5. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with Bis-EP

Table	S3.	Performance	of polymer	r solar cell based o	on P3HT:PC ₆₁ BM doped with Bis-EP
			1 2		*- 1

D.C.	V _{oc} (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)
0	0.61	10.35±0.09	0.58±0.00	3.67±0.04
1%	0.61	10.38±0.12	0.57±0.01	3.59±0.03
3%	0.61	10.46±0.14	0.56±0.00	3.54±0.07
5%	0.61	10.45±0.06	0.57±0.00	3.63±0.03

Figure S6. Degradation curves of polymer solar cell based on P3HT:PC61BM doped with Bis-EP

Figure S7. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with DABCO

Tuble L							
D.C.	V _{oc} (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)			
0	0.60	10.71±0.13	0.55±0.00	3.55±0.06			
0.5%	0.60	11.09±0.22	0.54±0.01	3.59±0.06			
1%	0.60	10.49±0.11	0.54±0.01	3.40±0.04			
3%	0.60	10.68±0.16	0.53±0.01	3.42±0.08			
5%	0.60	10.48±0.12	0.55±0.01	3.46±0.05			

Table S4. Performance of	polymer solar cell bas	ed on P3HT:PC61BM do	pped with DABCO

Figure S8. Degradation curves of polymer solar cell based on P3HT:PC61BM doped with DABCO

Figure S9. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with N-AEP

Table S5. Performance of	poly	mer solar cell b	ased on l	P3HT:PC6	BM do	ped with	N-AEP
-	• /			- 0	1		

D.C.	Voc (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)				
0	0.60	9.46±0.10	0.59±0.01	3.35±0.05				
1%	0.60	10.28±0.14	0.58±0.01	3.55±0.09				
2%	0.60	10.50±0.15	0.58 ± 0.00	3.65±0.06				
3%	0.60	10.10±0.13	0.58±0.01	3.51±0.08				
4%	0.60	10.33±0.11	0.58±0.01	3.62±0.04				
5%	0.60	9.74±0.18	$0.58{\pm}0.00$	3.44±0.63				

Figure S10. Degradation curves of polymer solar cell based on P3HT:PC61BM doped with N-AEP

Figure S11. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC $_{61}$ BM doped with M-AEP

Tuble 50. Ferformance of polymer solar cen based on Forma conduct appear with the fill						
D.C.	V _{oc} (V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)		
0	0.60	10.02±0.10	0.61±0.01	3.67±0.07		
0.5%	0.60	9.42±0.09	0.57±0.01	3.25±0.05		
1%	0.60	10.16±0.06	0.57±0.01	3.50±0.07		
3%	0.60	9.91±0.11	0.57±0.01	3.37±0.06		
5%	0.60	9.42±0.10	$0.57{\pm}0.00$	3.21±0.05		

Table S6. Performance of polymer solar cell based on P3HT:PC₆₁BM doped with M-AEP

Figure S12. Degradation curves of polymer solar cell based on P3HT:PC61BM doped with M-AEP

Figure S13. a) J-V curves, b) EQE spectra and c) statistical data of polymer solar cell based on P3HT:PC₆₁BM doped with Bis-AEP

Table S7. Performance of	polymer solar cell ba	sed on P3HT:PC61BM	loped with Bis-AEP

D.C.	Voc(V)	$J_{SC}(mA/cm^2)$	FF	PCE (%)
0	0.61	10.35±0.09	0.58±0.00	3.67±0.04
0.5%	0.61	10.54±0.12	0.57±0.01	3.62 ± 0.08
1%	0.60	10.37±0.14	0.55±0.01	3.46±0.08
3%	0.60	9.15±0.29	0.56±0.00	3.08±0.12
5%	0.60	9.05±0.20	$0.57{\pm}0.00$	3.09±0.08

Figure S14. Degradation curves of polymer solar cell based on P3HT:PC₆₁BM doped with Bis-AEP

Figure S15. C-V curves of PC₆₁BM and piperazine derivatives (without Bis-AEP because its poor solubility in DCM)

Figure S16. Optimal structure of PC₆₁BM-PZs compound: a) Piperazine; b) N-EP, c) Bis-EP, d) DABCO, e) N-AEP, f) M-AEP, g) Bis-AEP

Sample	Piperazine	N-EP	Bis-EP	DABCO	N-AEP	M-AEP	Bis-AEP
d ₁	2.10 ^a	2.13ª	2.50 ^b	2.86 ^b	2.15 ^a	2.24ª	2.21ª
\mathbf{d}_2	2.41 ^c				2.30 °		

Table S8. Calculated length of N-H \cdots O-C bond between PC₆₁BM and PZs

a: the length of N-H…O-C, in Å. b: the distance between O and the closest H-C of piperazine derivative; c: the length of N-H… π (except Bis-AEP because the result of N-H… π is too long, indicating such a bond is too weak)

Table S9. Mulliken charge on $PC_{61}BM$:piperazine adduct on the ground and excited states

Ground State				Excited State			
Atom	Element	Mulliken Charge		Atom	Element	Mulliken Charge	
1	0	-0.3268	PCBM	1	0	-0.330067	
2	С	0.182915		2	С	0.182054	
3	Н	0.048131		3	Н	0.034272	
4	Н	0.033167		4	Н	0.030354	
5	Н	0.035978		5	Н	0.033876	
6	0	-0.229392		6	0	-0.228589	
7	С	0.152112		7	С	0.144834	
8	С	0.060058		8	С	0.083945	
9	Н	0.034172		9	Н	0.030068	
10	Н	0.008644		10	Н	0.007094	
11	С	0.021148		11	С	0.015846	
12	Н	0.007314		12	Н	0.005065	
13	Н	0.023969		13	Н	0.01507	
14	С	0.174701		14	С	0.169235	
15	Н	0.007243		15	Н	0.035091	
16	Н	-0.004651		16	Н	-0.009411	
17	С	-0.057186		17	С	-0.038548	
18	С	0.016703		18	С	0.009696	
19	С	0.005434		19	С	0.018947	
20	Н	0.000995		20	Н	-0.014963	
21	С	0.017103		21	С	0.017778	
22	Н	-0.015155		22	Н	-0.015215	
23	С	0.02806		23	С	0.02842	
24	Н	-0.013227		24	Н	-0.01299	
25	С	0.01897		25	С	0.019091	
26	Н	-0.015451		26	Н	-0.015366	
27	С	0.008727		27	С	0.011302	
28	Н	-0.020305		28	Н	-0.020359	
29	С	-0.011067		29	С	-0.006655	

30	С	-0.008265		30	С	-0.010318
31	C	-0.002229	-	31	C	-0.001898
32	С	-0.044063	-	32	С	-0.038242
33	С	-0.004985	-	33	С	-0.004487
34	С	0.005952	-	34	С	0.00616
35	С	-0.013168	-	35	С	-0.007761
36	С	-0.002143	-	36	С	-0.000443
37	С	0.005985	-	37	С	-0.002572
38	С	0.109919		38	С	-0.019389
39	С	-0.141997	-	39	С	-0.170108
40	С	0.041463	-	40	С	0.001538
41	С	-0.01766		41	С	0.00239
42	С	-0.007619		42	С	-0.005292
43	С	0.010133		43	С	0.009624
44	С	-0.003948		44	С	0.004097
45	С	-0.150045	_	45	С	-0.157139
46	С	0.0346		46	С	0.057691
47	С	-0.00204	_	47	С	-0.010211
48	С	-0.004929	_	48	С	-0.011815
49	С	-0.004615	_	49	С	-0.007864
50	С	-0.00223	_	50	С	-0.002897
51	С	-0.004803	_	51	С	-0.013869
52	С	0.002857	_	52	С	-0.013423
53	С	0.023964	-	53	С	0.043158
54	С	-0.001023	-	54	С	0.007413
55	С	-0.031834	-	55	С	0.000469
56	С	0.004062	-	56	С	0.002952
57	С	-0.018997	-	57	С	-0.000735
58	С	-0.007004	-	58	С	-0.004617
59	С	-0.002681	-	59	С	-0.002152
60	С	0.059214	-	60	С	0.087333
61	С	-0.003329	-	61	С	0.000499
62	С	-0.027547	-	62	С	-0.02669
63	С	-0.015229	-	63	С	-0.01638
64	С	-0.007458	-	64	С	-0.004544
65	С	-0.004291	-	65	С	-0.00553
66	С	-0.003139	-	66	С	-0.004575
67	С	-0.0147	-	67	С	-0.02297
68	С	0.012542		68	С	0.034005
69	С	-0.001435		69	С	-0.009774
70	С	0.048581		70	С	0.056965
71	С	-0.004059		71	С	-0.010481
72	С	-0.012343		72	С	0.020641

73	С	-0.003749		73	С	-0.008202
74	С	-0.003444		74	С	-0.00775
75	С	-0.003168		75	С	-0.00097
76	С	-0.001938		76	С	-0.009865
77	С	-0.002182		77	С	-0.008257
78	С	-0.008243		78	С	-0.005211
79	С	-0.001191		79	С	-0.000127
80	С	0.001419		80	С	-0.000367
81	С	0.003796		81	С	-0.002584
82	С	-0.000331		82	С	0.004716
83	С	-0.003937		83	С	-0.012264
84	С	-0.000553		84	С	0.005467
85	С	-0.006345		85	С	0.007642
86	С	-0.001929		86	С	-0.004084
87	С	-0.012874		87	С	-0.01422
88	С	-0.001268		88	С	-0.000206
	Overall Charge	-0.064163			Overall Charge	-0.107648
	on PC ₆₁ BM				on PC61BM	
89	С	0.14789	Piperaz	89	С	0.130901
90	С	0.090732	ine	90	С	0.099814
91	N	-0.29022		91	N	-0.297588
92	С	0.181576		92	С	0.175791
93	С	0.071481		93	С	0.074563
94	N	-0.311956		94	N	-0.312942
95	Н	0.003476		95	Н	0.024636
96	Н	-0.019777		96	Н	-0.01331
97	Н	-0.015093		97	Н	-0.008048
98	Н	-0.016999		98	Н	-0.014907
99	Н	-0.002606		99	Н	-0.004358
100	Н	0.000642		100	Н	0.004552
101	Н	0.130325		101	Н	0.119774
102	Н	0.106707		102	Н	0.120939
103	Н	0.004175		103	Н	0.016
104	Н	-0.016195		104	Н	-0.00817
		0.064158				0.107647
	Mulliken Charge	-0.043485				

I	Photon induced elect	ron transfer (PET)		Photon induced energy transfer (PEnT)				
<i>E</i> _{PCBM}	E _{PCBM} -	$E_A{}^{w/o}$ piperazine	ΔE_A	E _{PCBM}	E _{PCBM*}	$E_{\scriptscriptstyle Ex}{}^{\scriptscriptstyle w/o}$ piperazine	ΔE_{Ex}	
-2903.65758	-2903.74988	-0.09230 ^b	0.005544	-2903.65758	-2903.58906	$0.06852^{\rm f}$	0.00055h	
E _{PCBM-Pz}	E _{PCBM} -Pz	$\Delta E_A{}^w$ piperazine	0.00334 - (-3.47) ^e	E _{PCBM-Pz}	E _{PCBM*-Pz}	$E_{Ex}{}^w$ piperazine	0.00033 (-0.34) ^e	
-3171.71683	-3171.81467	-0.09784°	_ 、 , ,	-3171.71683	-3171.64886	0.06797 ^g	_ 、 ,	

Table S10. calculated stead state energy for PC₆₁BM at different forms^a

a: energy calculated by DFT method, in Hartree; b: electron affinity energy for $PC_{61}BM$ without piperazine; c: electron affinity energy for $PC_{61}BM$ with piperazine; d: electron affinity energy difference for $PC_{61}BM$ upon piperazine doping, ΔE_A ($PC_{61}BM$) = $E_A^{w \text{ piperazine}}$ - $E_A^{w/o \text{ piperazine}}$; e: energy in kcal/mol; f: excitation energy for $PC_{61}BM$ with piperazine; g: excitation energy for $PC_{61}BM$ with piperazine; h: excitation energy difference for $PC_{61}BM$ upon piperazine

doping, ΔE_{Ex} (PC₆₁BM) = $E_{Ex}^{w \text{ piperazine}} - E_{Ex}^{w/o \text{ piperazine}}$