Supporting Information

Hamamelis-like K₂Ti₆O₁₃ Synthesized by Alkali Treatment of Ti₃C₂ MXene: Catalysis for Hydrogen Storage in MgH₂

Qianqian Kong,[†] Huanhuan Zhang,[‡] Zhenluo Yuan,[‡] Jiameng Liu,[‡] Lixin Li,[†] Yanping Fan,^{*} [‡] Guangxin Fan,[†] and Baozhong Liu^{*}[‡]

[†] College of Materials Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, P. R. China

[‡] College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, P. R. China

* Email: fanyanping@hpu.edu.cn (Y. P. Fan),

Email: bzliu@hpu.edu.cn (B.Z. Liu).

Total number of pages: 8 Total number of figures: 6 Total number of tables: 2

Table of Contents

Supplementary materials	S2
Figure S1	S2
Figure S2	S2
Figure S3	S3
Figure S4	S3
Figure S5	S4
Figure S6	S4
Table S1	S5
Table S2	Se
REFERENCE	S7

Supplementary materials

Materials: All chemical reagents were purchased from commercial suppliers and used without further purification. MgH₂ was purchased from Aldrich and used as received. TiH₂ (99 wt.% purity, 325 mesh), Al (99.9 wt.% purity, 200-400 mesh), Graphite (99.95 wt.% purity, \geq 325 mesh) and HF (49 wt.%) were purchased from Aladdin and were used as received. potassium hydroxide (KOH, Shanxitongjie Chemical Reagent Co., Ltd., ACS, 82 wt.%), hydrogen peroxide (H₂O₂, Luoyang Chemical Reagent Co., Ltd., ACS, 30 wt.%), ethanol solution (Sinopharm Chemical Reagent Co., Ltd., AR), distilled water.

Figure S1. SEM image of the Ti_3C_2 sample.

Figure S2. (a) Elemental analysis, (b) TGA of K₂Ti₆O₁₃ sample.

Figure S3. (a) TPD profiles, (b) isothermal dehydrogenation curves at 240 °C, (c) isothermal hydrogenation curves at 150 °C of the pure MgH₂, 5 wt % KOH, 5 wt % Ti_3C_2 , 5 wt % $K_2Ti_6O_{13}$ samples.

Figure S4. (a) Isothermal dehydrogenation, (b) isothermal hydrogenation curves of the pristine MgH₂ sample.

Figure S5. DSC curves of (a) MgH₂-5 wt% K₂Ti₆O₁₃, (b) pure MgH₂ at different heating rates, (c) MgH₂-5 wt% K₂Ti₆O₁₃ and pure MgH₂ at 20 °C min⁻¹. (d) Kissinger plots of MgH₂-5 wt% K₂Ti₆O₁₃ and pure MgH₂.

Figure S6. XRD pattern of the as-milled MgH_2 -20 wt % $K_2Ti_6O_{13}$ sample milled, after hydrogenation and after dehydrogenation.

symbol	model	f(a)	Sharp's expression	
D1	one-dimensional diffusion	α^2	0.2500(t/t _{0.5})	
D2	two-dimensional diffusion	$\alpha + (1-\alpha)\ln(1-\alpha)$	0.1534(t/t _{0.5})	
D3	three-dimensional diffusion	$[1-(1-\alpha)^{1/3}]^2$	0.0426(t/t _{0.5})	
D4	three-dimensional diffusion	nensional diffusion $(1-2\alpha/3) - (1-\alpha)^{2/3} = 0.0367(t/t_{0.5})$		
	(Ginstling- Braunsshtein equation)			
F1	first-order reaction	$-\ln(1-\alpha)$	-0.6931(t/t _{0.5})	
R2	two-dimension phase boundary	$1 - (1 - \alpha)^{1/2}$	0.2929(t/t _{0.5})	
R3	three-dimension phase boundary	$1 - (1 - \alpha)^{1/3}$	0.2063(t/t _{0.5})	
A2	Avarami-Erofe'ev	$[-\ln(1-\alpha)]^{1/2}$	0.8326(t/t _{0.5})	
A3	Avarami-Erofe'ev	$[-\ln(1-\alpha)]^{1/3}$	0.8850(t/t _{0.5})	

Table S1. Common solid-state rate expressions for different reaction models

Additive	Initial temperature (°C)	dehydrogenation	hydrogenation	Ea (kJ·mol ^{−1})	Ref.
K ₂ Ti ₆ O ₁₃	175	6.7 wt% - 3 min-280 °C	6.5 wt% - 30 s – 200 °C	105	This work
Na ₂ Ti ₃ O ₇ nanotubes		6.5 wt% - 6 min-300 °C	6.0 wt% - 60 s - 275 °C	70.43	S1
Na2Ti3O7 nanorods		6.5 wt% - 6 min-300 °C		164.84	S 1
BaTiO₃	270	3.341 wt% - 21 s-350 °C	2.245 wt% - 21 min – 150 °C	108	S2
SrTiO ₃	275	5.2 wt% - 340 °C	4.3 wt% - 60 min - 320 °C	109	S 3
TiN@rGO	167	6.0 wt% - 18 min - 300 °C		120	S4
TiF3-SWC NTs	260	6.3 wt% - 23 min - 300 °C	5.5 wt% - 20 min - 270 °C		S 5
TiB ₂ -GNSs		6.5 wt% - 40 min - 300 °C		90.8	S6
TiH ₂			4.8 wt% - 10min - 300 °C		S 7
TiC		6.2 wt% - 33 min - 300 °C	5.1 wt% - 50 min - 200 °C	144.62	S 8
Ti ₃ C ₂	185	6.2 wt%- 1 min - 300 °C	6.1 wt% - 30 s-200 °C	98.9	S9

Table S2. Comparison of dehydrogenation/hydrogenation kinetics of MgH₂ with various catalysts.

References

[S1] Zhang, L. T.; Chen, L. X.; Fan, X. L.; Xiao, X. Z.; Zheng, J. G.; Huang, X. Enhanced hydrogen storage properties of MgH₂ with numerous hydrogen diffusion channels provided by Na₂Ti₃O₇ nanotubes. *J. Mater. Chem. A* **2017**, *5*, 6178-6185. DOI: 10.1039/C7TA00566K.

[S2] Wang, J. S.; Zhang, W.; Han, S. M.; Qin, F. Improvement in hydrogen storage properties of MgH₂ catalyzed with BaTiO₃ additive. *Mater. Sci. Eng.* 2018, 292, 12053. DOI: 10.1088/1757-899X/292/1/012053.

[S3] Yahya, M. S.; Ismail, M. Synergistic catalytic effect of SrTiO₃ and Ni on the hydrogen storage properties of MgH₂. *Int. J. Hydrogen Energy* **2018**, *43*, 6244-6255. DOI: 10.1016/j.ijhydene.2018.02.028.

[S4] Wang, Y.; Li, L.; An, C. H.; Wang, Y. J.; Chen, C. C.; Jiao, L. F.; Yuan, H. T. Facile synthesis of TiN decorated grapheme and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride. *Nanoscale* **2014**, *6*, 6684-6691. DOI: 10.1039/c4nr00474d.

[S5] Shahi, R. R.; Bhatnagar, A.; Pandey, S. K.; Dixit, V.; O. Srivastava, N. Effects of Ti-based catalysts and synergistic effect of SWCNTs-TiF₃ on hydrogen uptake and release from MgH₂. *Int. J. Hydrogen Energy* **2014**, *39*, 14255-14261. DOI: 10.1016/j.ijhydene.2014.03.183.

[S6] Liu, G.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Solid-state synthesis of amorphous TiB₂ nanoparticles on grapheme nanosheets with enhanced catalytic dehydrogenation of MgH₂. *Int. J. Hydrogen Energy* **2014**, *39*, 3822-3829. DOI: 10.1016/j.ijhydene.2013.12.133.

[S7] Shao, H.; Felderhoff, M.; Schüth, F. Hydrogen storage properties of nanostructured MgH₂/TiH₂ composite prepared by ball milling under high hydrogen pressure. *Int. J. Hydrogen Energy* **2011**, *36*, 10828-10833. DOI: 10.1016/j.ijhydene.2011.05.180. [S8] Fan, M. Q.; Liu, S. S.; Zhang, Y.; Zhang, J.; Sun, L. X.; Xu, F. Superior hydrogen storage properties of MgH₂-10wt.% TiC composite. *Energy* 2010, 35, 3417-3421. DOI: 10.1016/j.energy.2010.04.034.

[S9] Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti₃C₂ precursor towards the hydrogen storage reaction of magnesium hydride. *J. Chem. Comm.* **2016**, *52*, 705-708. DOI: 10.1039/C5CC08801A.