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Figure S1. The morphology characterization of CoPi@NF. SEM images of 

CoPi@NF with (a) low and (b) high magnifications. (c) TEM image of CoPi@NF. (d) 

HRTEM image of CoPi@NF.
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Figure S2. (a) and (b) SEM images of CoPi-350@NF with different magnifications.

(c) TEM image and (d) HRTEM image of the CoPi-350@NF.
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Figure S3. The XPS survey spectrum of CoPi-350@NF.
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Figure S4. FTIR spectra of CoPi@NF and the PBA-CoPi@NF.
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Figure S5. (a) SEM image of PBA-CoPi@NF. (b) TEM image of the PBA-CoPi@NF 

with PBA nanocubes decorated on CoPi. (c) and (d) The corresponding HRTEM 

images of the PBA-CoPi@NF as shown in (b). (e) TEM image and (f) corresponding 

SAED image of PBA-CoPi@NF.
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Figure S6. TGA and DSC plots of (a) CoPi@NF and (b) PBA-CoPi@NF.
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Figure S7. XRD patterns of (a) CoFe-PBA and (b) CoFeO.
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Figure S8. The (a) SEM and (b) TEM images of CoFe-PBA.
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Figure S9. The (a) SEM and (b) TEM images of CoFeO.
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Figure S10. High resolution XPS Fe spectra of CoFeO-CoPi@NF.
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Figure S11. (a) LSV curves of CoFeO-CoPi@NF at different scan rates. (b) LSV 

curves before and after OER test at a scan rate of 1 mV s-1.
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Figure S12. (a) CV curves of the CoFeO-CoPi@NF and (b) LSV curves without iR 

compensation of the as-prepared materials and commercial RuO2@NF.

The cathodic sweep CV curves were recorded to measure the onset overpotential 

of the CoFeO-CoPi@NF according to recent reports.S1 When the current density 

current density is zero, the potential is 1.45 V, as a result, the onset overpotential of 

CoFeO-CoPi@NF is 220 mV.
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Figure S13. EIS Nyquist plots of the as-prepared materials.
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Figure S14. CV curves of (a) CoFeO-CoPi@NF, (b) PBA-CoPi@NF, (c) CoPi@NF 

and (d) CoPi-350@NF at different scan rates in a potential window from 0.715 V to 

0.815 V vs RHE.
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Figure S15. Capacitive current density against scan rate.
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Figure S16. The OER Polarization curves of CoFeO-CoPi@NF and CoPi-350@NF 

with normalization by ECSA. The ECSA of CoFeO-CoPi@NF and CoPi-350@NF 

are shown in Table S1.
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Figure S17. (a) LSV curves of the CoFeO-CoPi@NF before and after multiple 

current densities cycles. (b) LSV curves of the CoFeO-CoPi@NF before and after 

chronopotentiometric test.
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Figure S18. (a) Low resolution and (b) high resolution SEM images of the 

CoPi-350@NF after OER test.
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Figure S19. High resolution XPS (a) Co 2p and (b) P 2p spectra of CoFeO-CoPi@NF 

before and after OER test. XPS (c) Co 2p and (d) P 2p spectra of CoPi-350@NF 

before and after OER test.
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Figure S20. High resolution XPS (a) Fe 2p and (b) Ni 2p spectra before and after 

OER test.
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Figure S21. XRD pattern of CoPi and CoPi-350.



S23

Figure S22. (a) LSV curves of catalysts, (b) EIS Nyquist plots of catalysts.

Firstly, according to the LSV curves shown in the Figure 4a, the 

CoFeO-CoPi@NF attain a current density of 300 mA cm-2 at an overpotential of 292 

mV while the onset overpotential of Ni foam is 330 mV, which suggests the main 

active sites were on the CoFeO-CoPi@NF. In addition, no obviously change of Ni 2p 

spectra before and after OER test of CoFeO-CoPi@NF was detected shown as shown 

in Figure S20b further demonstrate the main active site is cobalt. To get a better 

understanding of the role of Ni foam in OER, we prepared the CoPi and CoPi-350 

powder in the same method, the XRD of CoPi and CoPi-350 shown in Figure S18 

suggests the same crystal structure as the CoPi@NF and CoPi-350@NF. And then we 

coat the CoPi and CoPi-350 powder on the carbon paper to study the role of Ni foam 

in OER. The LSV curves shown in Figure S22a indicate a better OER performance of 

CoPi@NF and CoPi-350@NF. Moreover, the EIS Nyquist plots shown in Figure 

S22b suggest that the CoPi@NF and CoPi-350@NF exhibit better conductivity. As a 

result, the Ni foam could improve the conductivity to enhance the OER performance.
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Table S1 The Cdl and normalized ECSA of CoFeO-CoPi@NF and CoPi-350@NF.

Sample CoFeO-CoPi@NF CoPi-350@NF

Cdl 27 mF cm-2 11.4 mF cm-2

ECSA 675 cm2 285 cm2
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Table S2 Recent progress of the electrocatalysts for the oxygen evolution.

Catalysis Electrolyte Overpotential Tafel slope Ref

CoFeO-CoPi@

NF
 1 M KOH

235 mV 

(100mA cm-2)
56 mV dec-1 This work

Co@N-CS/N-

HCP@CC
1 M KOH

248 mV

(10 mA cm-2)
68 mV dec-1 S2

NiCoFeP 1 M KOH
273 mV

(10 mA cm-2)
56 mV dec-1 S3

Fe1Co1-ONS 0.1 M KOH
308 mV

(10 mA cm-2)
36.8 mV dec-1 S4

Co9S8 

−NSC@M2C
1 M KOH

293 mV 

(10 mA cm-2)
59.7 mV dec-1 S5

(Ni2Co1)0.925 Fe 

0.075 -MOF-NF
1 M KOH

257 mV

(10 mA cm-2)
41.3 mV dec-1 S6

NiCoFe 

LTHs/CFC
1 M KOH

239 mV

(10 mA cm-2)
32 mV dec-1 S7

CoFePi 0.1 M KOH
315

(10 mA cm-2)
33 mV dec-1 S8

nPBA@Co(OH)2 

/NF
1 M KOH

290

(20 mA cm-2)
46 mV dec-1 S9

Co1.8Ni(OH)5.6 

@Co1.8NiS0.4 

(OH)4.8

0.1 M KOH
274

(10 mA cm-2)
45 mV dec-1 S10

FeS2/CoS2 NSs 1 M KOH
302 mV

(100 mA cm-2)
42 mV dec-1 S11

Co3O4/Co-Fe 

oxide
1 M KOH

297 mV

(10 mA cm-2)
61 mV dec-1 S12

A2.7B-MOF-FeC

o1.6

1 M KOH
288 mV

(10 mA cm-2)
39 mV dec-1 S13
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NiFeII-PBA 1 M KOH
285 mV 

(50 mA cm-2)
53.1 mV dec-1 S14

Co3O4@C-N 

NSA/NiF
1 M KOH

245 mV

(20 mA cm-2)
63 mV dec-1 S15

CoFeZr oxides 1 M KOH
248 mV

(10 mA cm-2)
54.2 mV dec-1 S16
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Table S3. Comparison of the P atomic contents in CoFeO-CoPi@NF and 

CoPi-350@NF before and after OER test.

Atomic content Initial After OER test

CoFeO-CoPi@NF 12.89 2.27

CoPi-350@NF 27.12 2.67
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