Supporting Information

Tuning Magnetism and Photocurrent in Mn-Doped

Organic-Inorganic Perovskites

Lixia Ren[†], Yutao Wang[‡], Min Wang[†], Shuanhu Wang[†], Yang Zhao[†], Claudio Cazorla[‡],

Changle Chen[†], Tom Wu*, [‡] and Kexin Jin*, [†]

† Shaanxi Key Laboratory of Condensed Matter Structures and Properties,

School of Science, Northwestern Polytechnical University, Xi'an 710072, China

*School of Materials Science and Engineering, University of New South Wales,

Kensington, NSW, Australia

AUTHOR INFORMATION

Corresponding Author

* E-mail: jinkx@nwpu.edu.cn

* E-mail: tom.wu@unsw.edu.au

S1

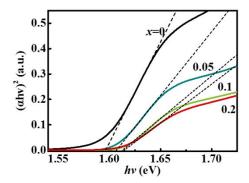
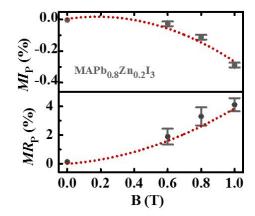



Figure S1. The Tauc plot method to deduce the optical bandgap of perovskite films.

Figure S2. MI_P and MR_P for MAPb_{0.8}Zn_{0.2}I₃ samples as a function of the magnetic field, respectively.

Table S1. The fitted positions and areas of Mn 2p XPS peaks.

Peak	Position (eV)	Area
Pb 4p _{3/2}	642.6	19631.6
Pb 4p _{1/2}	650.4	16026.4
$Mn^{2+} 2p_{3/2}$	640.0	21286.1
$Mn^{2+} 2p_{1/2}$	645.3	5739.7
$Mn^{3+} 2p_{3/2}$	641	8439.0