Selective Adsorption and Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Molecularly-Imprinted Graphitic Carbon Nitride

Qingbin Yuan, ^{†,#} Danning Zhang, ^{‡, §,#} Pingfeng Yu, ^{*, ‡, §} Ruonan Sun, ^{‡,§} Hassan Javed, ^{‡,§}

Gang Wu,[#] and Pedro J.J. Alvarez *, ‡, §

[†] College of Environment Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China

[‡] Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States

 $\$ Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT),

Houston, Texas 77005, United States

^{II} Department of Internal Medicine, University of Texas–McGovern Medical School, Houston, Texas

77030, United States

[#] Q. Yuan and D. Zhang contributed equally.

*Email: <u>pingfeng.yu@rice.edu</u> (P.Y.)

*Email: <u>alvarez@rice.edu</u> (P.J.J.A.)

The supporting information includes:

Methods

1. Synthesis of carboxylic carbon nitride (CN-COOH).

2. ARG quantification via quantitative PCR (qPCR).

Figures

Figure S1. Circular map of plasmid pET-29a(+)::*bla*NDM-1.

Figure S2. The morphology and thickness of g-C₃N₄ and MIP-C₃N₄ under AFM.

Figure S3. XRD pattern of carbon nitride (C₃N₄) and carboxylic carbon nitride (C₃N₄-COOH).

Figure S4. Raman spectrum of C₃N₄, MIP-C₃N₄ and NIP-C₃N₄.

Figure S5. The UV-VIS DRS spectra of bare C₃N₄, MIP-C₃N₄ and NIP-C₃N₄.

Figure S6. FTIR spectra of guanine imprinted MIP-C₃N₄ with different MIP contents (18.6%, 24.7%

and 30.2%) and after 10 reuse cycles.

Figure S7. XPS spectra of carbon nitride with vinyl groups (C₃N₄-C=CH₂).

Figure S8. Lack of ARG removal in DI water by MIP- C_3N_4 without UVA irradiation or by photolysis with UVA irradiation alone.

Figure S9. Adsorption isotherm and kinetics of bla_{NDM-1} by MIP-C₃N₄ or NIP –C₃N₄ in DI water.

Figure S10. Photocatalytic degradation and adsorption removal of oligonucleotides with different guanine contents by MIP-C₃N₄, C_3N_4 , and P25 in DI water.

Figure S11. ESR spectra of MIP-C₃N₄ and NIP-C₃N₄ before and after spiked with •OH scavenger (IPA).

Figure S12. The UV-Vis spectrum of bla_{NDM-1} sample treated by MIP-C₃N₄ photocatalytic reaction at different times.

Figure S13. The melting curve of bla_{NDM-1} sample treated by adsorption and photocatalytic reaction.

Figure S14. Reusability of MIP- C_3N_4 and P25 TiO₂ in secondary effluent. Catalysts were tested for 10 cycles.

Figure S15. SEM images of MIP-C₃N₄ after 10 cycles of reuse in secondary effluent.

Tables

Table S1. Water quality data of the secondary effluent from a wastewater treatment plant in Houston.

Table S2. Specific surface area of different catalysts.

Table S3. Chemical bonds composition of MIP- C_3N_4 pretreated with different oxidation time and their photoactivity.

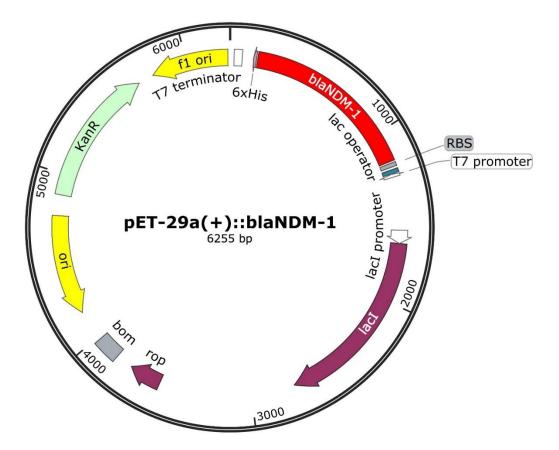

Table S4. First-order rate constant (k) of bla_{NDM-1} removal by MIP-C₃N₄ or NIP –C₃N₄, C₃N₄ and TiO₂ in different water matrix.

Table S5. Total read count and average DNA length of bla_{NDM-1} sample after treated by MIP-C₃N₄ or NIP-C₃N₄.

References

Synthesis of carboxylic carbon nitride (CN-COOH). Carboxylic carbon nitride (CN-COOH) was synthesized as previous reported.¹ Briefly, 1.0 g of g-C₃N₄ was dissolved in 30 mL concentrated sulfuric acid (> 98%) and heated at 80 °C for 60 min under vigorous stirring. The solution was then cooled in ice-bath and 1.2 g of KMnO₄ was slowly added after the temperature of the solution reaches 0 °C (caution: KMnO₄ must not be added abruptly, otherwise intensive temperature increase may cause explosion). The solution was then heated at 30 °C for oxidation. By manipulating the oxidation time, CN-COOH with various content of carboxylic group can be achieved. After oxidation in the previous step, 200 mL deionized water was moderately dropped into the above solution. The temperature of the solution should be strictly controlled between 30 to 35 °C. Then, 50 mL of hydrogen peroxide aqueous solution (5% v/v) was added and the color of the solution changed from dark brown to white. The precipitates were collected, washed with 5 % HCl and water sequentially to remove any excessive impurities. CN-COOH was obtained after drying the washed precipitates in vacuum drying oven under 40 °C overnight.

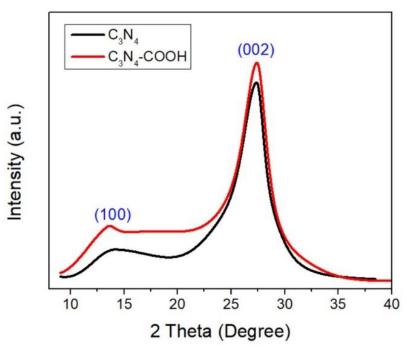

ARG quantification via quantitative PCR (qPCR). The standard curve (*Ct* value versus log of ARG copies) was generated using 10-fold serial dilution of the plasmids. The reaction mixture with a final volume of 15 μ L contain 7.5 μ L of SYBR Green Master Mix (Thermo Fisher Scientific, U.S.), 0.5 μ L of each primer (10 μ M) and 1 μ L of the template DNA. Thermal cycling and fluorescence detection were conducted on a CFX 96 Real-time Systems (BIO-RAD, U.S.) using the following protocol: 50 °C for 2 min, 95 °C for 2 min, followed by 40 cycles of 95 °C for 15 s, 57 °C for 30 s and 72 °C for 30 s. Each reaction was run in triplicate. The specificity of the qPCR products was further verified by melting curves.

Figure S1. Circular map of plasmid pET-29a(+):: bla_{NDM-1} . The length of bla_{NDM-1} (red fragment) is 813bp and that of the whole plasmid is 6255 bp.

Figure S2. The morphology and thickness of C_3N_4 and MIP- C_3N_4 under AFM.

Figure S3. XRD pattern of graphite-like carbon nitride (C₃N₄) and carboxylic carbon nitride (C₃N₄-COOH) with Cu K α radiation ($\lambda = 1.54178$ Å).

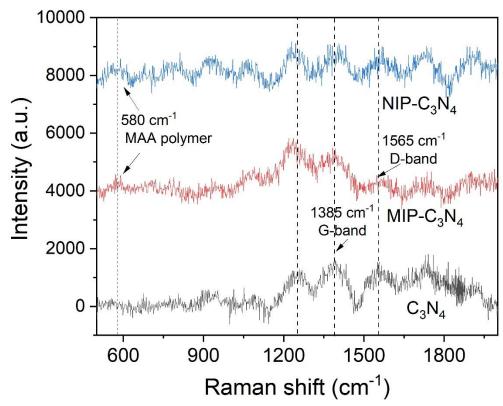


Figure S4. Raman spectrum of C₃N₄, MIP-C₃N₄ and NIP-C₃N₄.

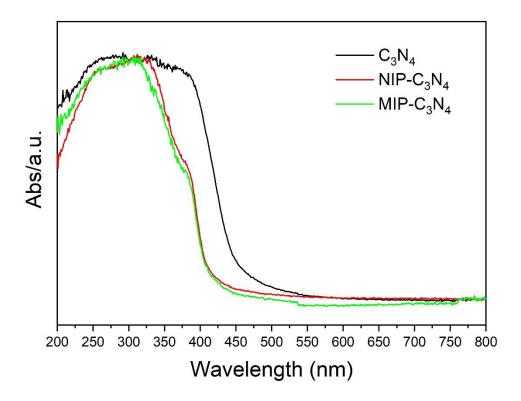


Figure S5. The UV-VIS DRS spectra of bare C₃N₄, MIP-C₃N₄ and NIP-C₃N₄.

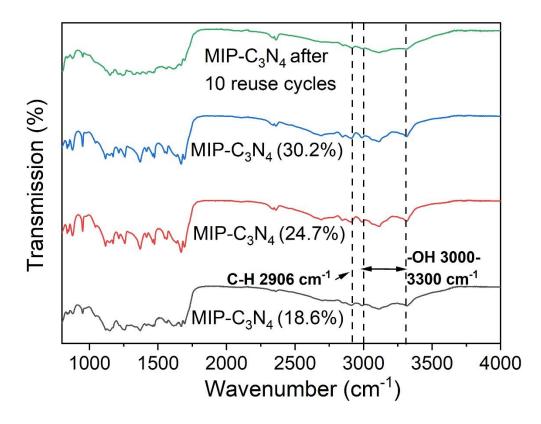


Figure S6. FTIR spectra of guanine imprinted MIP-C₃N₄ with different MIP contents (18.6%, 24.7% and 30.2%) and after 10 reuse cycles.

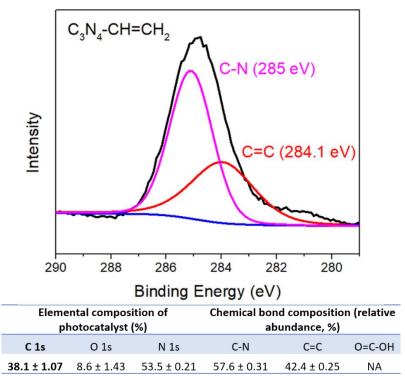
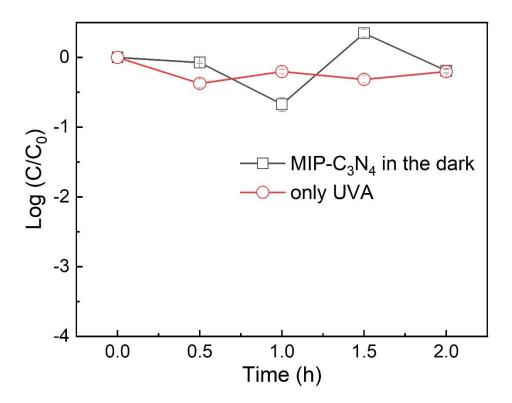



Figure S7. XPS spectra of carbon nitride with vinyl groups (C₃N₄-CH=CH₂).

Figure S8. Lack of ARG removal in DI water by MIP-C₃N₄ without UVA irradiation (after its ARG adsorption sites had been saturated), or by photolysis with UVA irradiation alone.

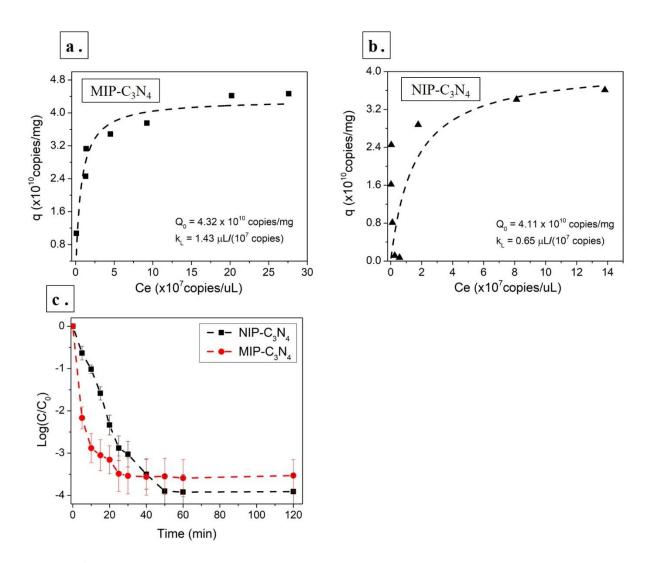


Figure S9. Adsorption isotherm (a, b) and kinetics (c) of *bla*_{NDM-1} by MIP-C₃N₄ or NIP –C₃N₄ in

DI water.

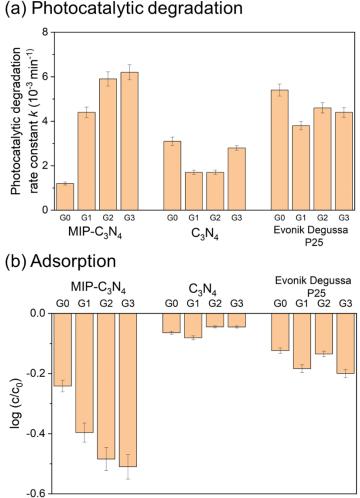


Figure S10. Photocatalytic degradation (a) and adsorption removal (b) of oligonucleotides with different guanine contents by MIP-C3N4, C3N4, and P25 in DI water. G0 (5'-CCCACCCACCCAAA-3'), G1 (5'-GCCACCCACCCAAA-3'), G2 (5'-CCCACCCACCGGCCCAAA-3') and G3 (5'-CGCACCCACCGGCCCAAA-3') contains zero, one, two and three guanines, respectively.

(a) Photocatalytic degradation

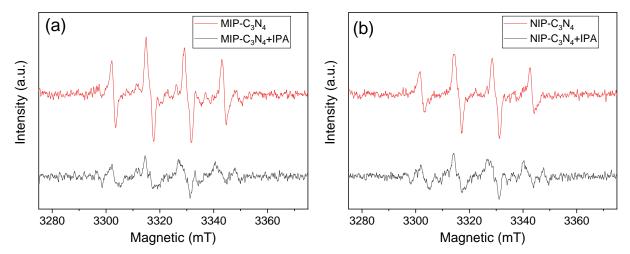
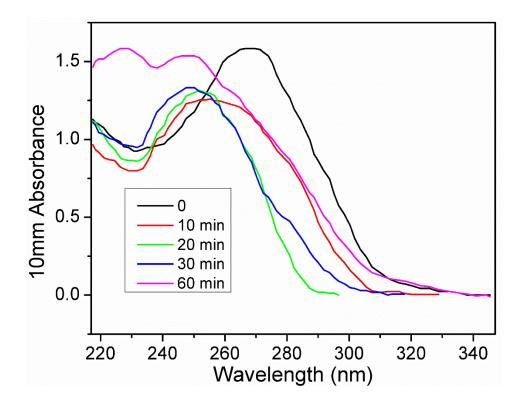
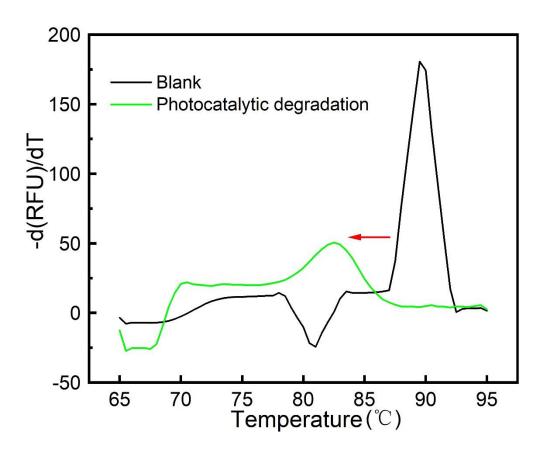




Figure S11. ESR spectra of MIP-C₃N₄ (a) and NIP-C₃N₄ (b) before and after spiked with \bullet OH scavenger (IPA).

Figure S12. The UV-Vis spectrum of bla_{NDM-1} sample treated by MIP-C₃N₄ photocatalytic reaction at different times. The adsorption peak of bla_{NDM-1} sample has a blue shift after treatment.

Figure S13. The melting curve of *bla*_{NDM-1} sample treated by adsorption and photocatalytic reaction.

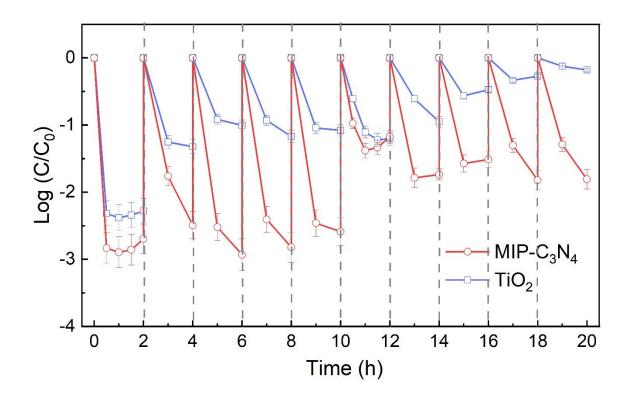


Figure S14. Reusability of MIP-C₃N₄ and P25 TiO_2 in secondary effluent. Catalysts were tested for 10 cycles (2 hours for each cycle).

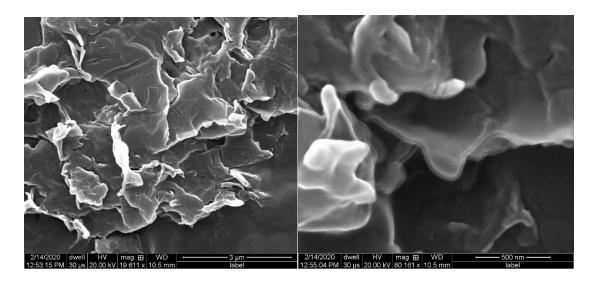


Figure S15. SEM images of MIP-C₃N₄ after 10 cycles of reuse in secondary effluent.

Table S1. Water quality data of the secondary effluent from a wastewater treatment plant inHouston, TX (i.e., West University Place WWTP).

^a TOC	рН	^b DO	° TDS	Conductivity	^d UV ₂₅₄
(mg/L)	(-)	(mg/L)	(mg/L)	(µS/cm)	(-)
16.1 ± 0.2	7.0 ± 0.01	6.9 ± 0.3	425 ± 17.5	770.7 ± 0.1	0.156 ± 0.001
^a TOC: total orga	anic carbon				

^bDO: dissolved oxygen

^cTDS: total dissolved solid

^d UV₂₅₄: UV-absorbance at 254 nm

Catalyst Name	Specific Surface Area (m ² /g)
C ₃ N ₄	85.4
MIP-C ₃ N ₄	61.2
NIP-C ₃ N ₄	60.5
TiO ₂	57.4

 Table S2. Specific surface area of different catalysts.

Oxidation treatment	Chemical bond composition (relative abundance, %)			Zeta potential	Photocatalytic degradation rate
duration (min)	C-N	С-О-С	О=С-ОН	(mV)	constant k (min ⁻¹)
0	100 ± 0.1	NA	NA	0.42	NA
30	59.0 ± 0.3	22.4 ± 0.1	18.6 ± 0.2	-0.88	0.126 ± 0.023
60	47.2 ± 0.2	28.1 ± 0.2	24.7 ± 0.1	-1.08	0.084 ± 0.007
90	35.9 ± 0.1	33.9 ± 0.2	30.2 ± 0.3	-1.45	0.045 ± 0.004
120	31.3 ± 0.2	35.1 ± 0.3	33.6 ± 0.2	-1.58	0.045 ± 0.004

Table S3. Chemical bonds composition of MIP-C₃N₄ pretreated with different oxidation time and their photoactivity in removing bla_{NDM-1} .

Table S4. First-order rate constant (k) of bla_{NDM-1} removal by MIP-C₃N₄ or NIP –C₃N₄, C₃N₄ and TiO₂ (Evonik P25) in different water matrices.

Water matrix	Photocatalytic degradation rate constant k (min ⁻¹)			k (min ⁻¹)
	MIP-C ₃ N ₄	NIP –C ₃ N ₄	C3N4	P25
DI water	0.126 ± 0.023	0.123 ± 0.022	0.090 ± 0.020	0.116 ± 0.070
Peptone (50 mg/L)	0.114 ± 0.022	0.006 ± 0.012		
Sucrose (200 mg/L)	0.117 ± 0.021	0.029 ± 0.01		
Humic Acid (10 mg/L)	0.132 ± 0.022	0.006 ± 0.005		
Secondary effluent	0.111 ± 0.028	0.003 ± 0.003	0.003 ± 0.001	0.067 ± 0.009
(TOC = 16.1 mg/L)				

Table S5. Total read count and average DNA length of bla_{NDM-1} sample after treated by MIP- C_3N_4 or NIP- C_3N_4 in DI water.

Material	Reaction time (min)	Total read count	Average length (bp)
MIP-C ₃ N ₄	10	7490	867.5
MIP-C ₃ N ₄	60	1794	829.4
NIP-C ₃ N ₄	120	5371	2675.3

References

1. Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Edge-functionalized g-C₃N₄ nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. *Chem* **2019**, 5 (3): 664-680.