Supporting Information

Highly Selective Reduction of CO₂ to C₂₊ Hydrocarbons at Cu/Polyaniline Interfaces

Xing Wei¹, Zhenglei Yin², Kangjie Lyu¹, Zhen Li¹, Jun Gong¹, Gongwei Wang¹, Li Xiao^{1,*}, Juntao Lu¹, Lin Zhuang^{1,2,*}

¹ College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
² The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China

* Corresponding authors. E-mails: chem.lily@whu.edu.cn, lzhuang@whu.edu.cn

Figure S1. Photos of the as-prepared Cu and Cu-PANI electrodes.

Figure S2. Schematic diagram of the H-type electrolytic cell.

Figure S3. Standard curves of (a) HCOOH, (b) CH_3COOH , (c) EtOH, and (d) n-PrOH components for ¹H NMR quantitative analysis.

Figure S4. Experimental details for the ATR-SEIRAS measurements. (a) Schematic diagram of the attenuated total reflection (ATR) infrared spectroscopy and (b) the photo of the in-situ electrochemical cell placed inside the sample chamber of the FTIR instrument.

Figure S5. Electrochemical LSV curves of the Cu and Cu-PANI electrodes recorded during the ATR-SEIRAS experiment. The potential scan rate was 5 mV/s.

Figure S6. The enlarged view of the CV in Figure 1c. A weak reduction processcorresponding the Cu+/Cu0 conversion can be observed at the potential region of 0.05 to-0.40V.Scanrate=100mV/s.

Figure S7. Cyclic voltammograms of (a) Cu foil and (c) Cu-PANI electrode in N_2 saturated 0.1 M KHCO₃ scanned from 0.2~0.4 V vs. RHE at various scan rates in order to estimate the double layer capacity; Current density plotted against CV scan rates for (b) Cu foil and (d) Cu-PANI electrode.

Figure S8. Electrochemical CO₂RR results on Ti and Ti-PANI electrodes.

Figure S9. Cu LMM spectra of Cu electrode before and after CO_2RR , and the Cu-PANI electrode after CO_2RR with removal of PANI layer so as to test the underneath Cu.

Figure S10. (a) Raman spectra of the Cu-PANI electrode before and after CO_2RR , and (b) *in situ* Raman spectra of PANI feature at the region of negative potentials.

Figure S11. Potential-dependent FTIR signal intensity of CO_L on Cu and Cu-PANI electrodes. All potentials were *iR* corrected.

Figure S12. Gas adsorption isotherms of PANI powder for N_2 and CO_2 at 273K.

Figure S13. SEM image of as-prepared Cu-PANI nano-catalyst, scale bar = 100 nm.

Figure S14. Electrochemical CO_2RR performance of commercial Cu NPs. (a) The Faradaic efficiency of each product and total geometric current density and (b) The FE of H₂, C₁ and C₂₊ production for the Cu/PANI catalyst.

Figure S15. The stability in the FE of C_2H_4 and the current density of commercial Cu NPs at -1.08 V_{RHE}. The electrolyte was CO₂ saturated 0.1 M KHCO₃ solution, and the electrode potentials were *iR* corrected.

Table S1. Summary of electrochemical surface area and corresponding surface roughness factor for Cu and Cu-PANI electrodes. The geometric surface area for both Cu and Cu-PANI electrodes is 0.785cm². Taking polycrystalline Cu as the reference standard, the roughness factor is set to 1, and the double layer capacitance is 29 μ F/cm².

	Cu foil	Cu-PANI
Electrochemical Surface Area (ECSA)	3.71	2.26
Surface Roughness Factor (SRF)	4.73	2.88

Table S2. Results of the Cu $2p_{3/2}$ peak fitting in Figure 3c.

Catalysts		Binding energy / e	V
	Cu^0 / Cu^I	Cu ^{II}	Cu ^{II} satellite
Cu before CO ₂ RR	932.7	934.7	944.1
Cu after CO ₂ RR	932.6	934.6	944.2
Cu-PANI after CO ₂ RR	932.6	934.6	944.2

Catalysts	Binding energy / eV			
	Cu ⁰	Cu ^I		
Cu before CO ₂ RR	568.3	570.1		
Cu after CO ₂ RR	568.3	570.1		
Cu-PANI after CO ₂ RR	568.2	570.0		

Table S3. Details of the Cu LMM peak fitting in Figure S6.

Catalysts	Electrolyte	; (300) /			C ₂₊	Stability	
		mAcm ⁻²	vs. RHE	C ₂ H ₄ FE / %	FE / %	/ h	Ref
Cu-PANI nano-catalyst	0.1 M KHCO ₃	28.3	-1.08	43.8	77.4	20	This work
Cu-PANI nano-catalyst	0.1 M KHCO ₃	34.7	-1.13	48.8	78.4	\	This work
Amino acid modified Cu	0.1 M KHCO ₃	10.8	-1.25	13	34.1	12	1
Poly(acrylamide) modified Cu	0.1 M NaHCO ₃	60	-0.96	26	١	2	2
Cu-porphyrin complex	0.5 M KHCO ₃	49	-0.976	17	١	1	3
B-doped Cu	0.1 M KCl	70	-1.1	52±2	79±2	40	4
Hydrophobic Cu dendrites	0.1 M CsHCO ₃	30	~-1.4	56	74	5	5
Bi-phasic Cu ₂ O-Cu	0.1 M KCl	~7	-1.6	22	58.5	1	6
Cu(100) single electrode	0.1 M KHCO ₃	5	-1	40.4	57.8	١	7
Cu NPs covered Cu foil	0.1 M KClO ₄	١	-1.1	36	١	\	8
Polycrystalline Cu	0.1 M KHCO ₃	~7.5	-1.05	26	40.6	1	9
$3 \ \mu m$ thick Cu ₂ O	0.5 M NaHCO ₃	19.6	-0.85	3.9	21.4	\	10
Cu ₂ O-derived Cu NPs	0.1 M KHCO ₃	38.5	-1.1	32.5	34	/	11
Cu ₂ O film on Cu disk	0.1 M KHCO ₃	34.4	-0.99	37.5	54.8	1	12
O ₂ plasma Cu foil	0.1 M KHCO ₃	12	-0.92	60	١	5	13
Oxide-derived Cu foam	0.5 M NaHCO ₃	~11.5	-0.8	20	55	\	14
44 nm Cu cubes	0.1 M KHCO ₃	~4	-1.1	41.1	46.4	1	15
Cu nanocubes	0.25 M KHCO ₃	68.1	-0.96	32.5	60.5	2.5	16
Anodized Cu nanowire arrays	0.1 M KHCO ₃	19.2	-1.08	38.1	~60	40	17
Electro-redeposition Cu	0.1 M KHCO3	57.9	-1.2	38	54	1	18

Table S4. Comparison of Cu-based catalysts reported in the literature toward the CO_2RR performance and stability in aqueous solution.

"\" represents "not available".

References

Xie, M. S.; Xia, B. Y.; Li, Y.; Yan, Y.; Yang, Y.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang,
 X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. *Energy Environ. Sci.* 2016, 9 (5), 1687–1695.

(2) Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla,
F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. *ACS Catal.* 2018, 8 (5), 4132–4142.

(3) Weng, Z.; Jiang, J.; Wu, Y.; Wu, Z.; Guo, X.; Materna, K. L.; Liu, W.; Batista, V. S.;
Brudvig, G. W.; Wang, H. Electrochemical CO₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. *J. Am. Chem. Soc.* 2016, 138 (26), 8076–8079.

(4) Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E. H. Dopant-Induced Electron Localization Drives CO₂ Reduction to C₂ Hydrocarbons. *Nat. Chem.* 2018, 10 (9), 974–980.

(5) Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO₂ reduction on a Cu surface. *Nat. Mater.* 2019, 1-6.

(6) Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO₂ on a chloride-induced bi-phasic Cu₂O-Cu catalyst. *Angew. Chem. Int. Ed.* 2015, 127, 14914–14918.

(7) Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical Reduction of Carbon Dioxide at Various Series of Copper Single Crystal Electrodes. *J. Mol. Catal. A: Chem.* 2003, 199 (1–2), 39–47.

(8) Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl,
S.; Norskov, J. K.; Chorkendorff, I. The Importance of Surface Morphology in Controlling the Selectivity of Polycrystalline Copper for CO2 Electroreduction. *Phys. Chem. Chem. Phys.* 2012, 14, 76–81.

(9) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. *Energy Environ*.

Sci. 2012, 5, 7050-7059.

(10) Li, C. W.; Kanan, M. W. CO₂ reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu₂O films. *J. Am. Chem. Soc.* 2012, 134, 7231–7234.

(11) Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO₂ reduction on Cu₂O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. *Phys. Chem. Chem. Phys.* 2014, 16, 12194–201.

(12) Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) oxide catalysts. *ACS Catal.* 2015, 5, 2814–2821.

(13) Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y.-w.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Roldan Cuenya, B. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. *Nat. Commun.* 2016, 7, 12123.

(14) Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology Matters: Tuning the Product Distribution of CO₂ Electroreduction on Oxide-Derived Cu Foam Catalysts. *ACS Catal.* 2016, 6, 3804–3814.

(15) Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.;
Buonsanti, R. Tailoring Copper Nanocrystals towards C₂ Products in Electrochemical CO₂
Reduction. *Angew. Chem. Int. Ed.* 2016, 55, 5789–5792.

(16) Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D.C.; Nørskov, J.K.; Chan, K.;
Wang, H. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO₂
reduction. *Nat. Catal.* 2018, 1 (2), 111–119.

(17) Lee, S. Y.; Jung, H.; Kim, N.-K.; Oh, H.-S.; Min, B. K.; Hwang, Y. J. Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO₂ Reduction. *J. Am. Chem. Soc.* 2018, 140 (28), 8681–8689.

(18) De Luna, P.; Quintero-Bermudez, R.; Dinh, C.T.; Ross, M.B.; Bushuyev, O.S.;
Todorović P.; Regier T.; Kelley, S.O.; Yang P.; Sargent E.H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. *Nat. Catal.* 2018, 1 (2), 103–110.