Supporting Information

Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca²⁺-Dependent Pathway

Kenta Yokoi,^a Chandrasekar Balachandran,^a Masakazu Umezawa,^b Koji Tsuchiya,^b

Aleksandra Mitrić,^{a,c} and Shin Aoki, *,a,b

^aFaculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan, ^bResearch Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan, Faculty of Technology and Metallurgy, University of Belgrade, 4 Karnegijeva Street, Belgrade 11000, Serbia,

*Corresponding authors: E-mail, shinaoki@rs.noda.tus.ac.jp

Contents

Figure	S1.	Photophysical	properties	of	lr
comple	exes		S3		
Figure	S2. Density functio	n theory calculations of			
10		S4			
Figure	S3. Co-staining Exp	eriment of Jurkat Cells with	MitoTracker Green a	nd Rhod-2/AM	S4.
Figure	S4. Effect of BAPT.	A/AM on the Cell Death Inc	luced by 4		\$5.
Figure	S5. The affinity of I	complex 4,5, and 3c with (CaM measured by 27 M	МНz	
QCM	S6				
Figure	S6. The affinity of	anti-CaM antibody (Abca	m) with CaM measu	red by 27 MHz C	€CM
analysi	s				S
7					
Figure	S7. Flow cytometr	ic analysis of Jurkat cells	treated with celastro	l stained with	
Rhod-2	2 or				
Rhod-4	L				S
7					
Table S	51. Photophysical pro	operties of 1a , 1c , 15 , 3c , 1 0	0 , 4 , and 5		
Table	S2. Calculated	triplet transition stat	es of 10 and	15 using TD	-DFT
calcula	tionsS	3			

Table	S3.	Complexation	constants	of	anti-CaM	antibody	with
calmodulir	٦	S8					
Chart	S1.	Structures of	CCCP,	z-VA	D-fmk,	necrostatin-1,	and
3-methylad	lenine						
Chart S2.	Structure	of trifluoperazine					
Chart S3.	Structure	of DilC1(5)					
Chart S4.	Structures	s of SCH772984, S	P600125 and U01	26			S9

Figure S1. (a) UV/Vis absorption and (b) emission spectra of **3c** (dashed curve), **4** (plain curve) and **5** (bold curve) in degassed 100 mM HEPES (pH 7.4) at 25 °C. [Ir complex] = 10 μ M, excitation at λ = 366 nm. a.u. = arbitrary units. The photographs show the emission of **4**, **5**, and **3c** (excitation at λ = 366 nm).

Figure S2. HOMO and LUMO surfaces of **10** (a and b) and **15** (c and d) calculated by the DFT method with the B3LYP hybrid functional together with the LanL2DZ basis set for the Ir atoms and the 6-31G basis set for the H, C, O, and N atoms (green: iridium, gray: carbon, red: oxygen, blue: nitrogen; white: hydrogen).

Figure S3. Typical luminescence confocal microscopy images of Jurkat cells treated with MitoTracker Green and Rhod-2/AM. Jurkat cells (2.0×10^5 cells) were treated with 5 μ M Rhod-2/AM (Dojindo) in RPMI 1640 medium with 10% FBS at 37 °C under 5% CO₂ for 30 min, followed by 500 nM MitoTracker Green (Invitorogen) for 30 min. After washing with PBS three times, the cells were observed by congocal fluorescent microscopy (Fluoview, FV-1000, Olympus). Excitation wavelength was 478 nm for MitoTracker green and 559 nm for Rhod-2.

Figure S4. Effect of BAPTA-AM, a cytosolic Ca²⁺ chelator. (a) Typical luminescence microscopy images of Jurkat cells treated with BAPTA-AM (20 μ M). Scale bar (black) = 10 μ m. (b) MTT assays of Jurkat cells in the presence and/or absence of **4** (25 μ M), and BAPTA/AM (20 μ M)

Figure S5. Time course for the frequency change (ΔF (Hz)) of an Ir complex–calmodulin (CaM) or TFP–CaM complexation on 27 MHz QCM in the presence (80 µM) or absence of Ca²⁺ at 25 °C in phosphate buffer saline (PBS). (a) An aliquot of a solution of **4** (390 µM), **5** (500 µM), and **3c** (410 µM) was added to CaM fixed on the sensor chip (a) in the absence or (b) absence of Ca²⁺. (c) Trifluoperazine (2 mM) in H₂O was added to CaM fixed on the sensor chip. Addition times of analyses to CaM are indicated by the plain arrows.

Figure S6. Time course for the frequency change (ΔF (Hz)) of an anti-CaM antibody-CaM complexation in the absence or presence of Ca²⁺ on 27 MHz QCM at 25 °C in phosphate buffer saline (PBS). Addition times of analyses to CaM are indicated by the plain curve.

Figure S7. Flow cytometric analysis of Jurkat cells treated with celastrol (30 μ M) in RPMI 1640 medium with 10% FBS at 37 °C under 5% CO₂ for 1-5 h, and then stained with (a) Rhod-2 (5 μ M) or (b) Rhod-4 (5 μ M) in RPMI 1640 medium with 10% FBS at 37 °C under 5% CO₂ for 30 min. Different colors responds to the incubation time of celastrol: control (black), 1 h (blue), 3 h (light green), and 5 h (red).

Table S1. Photophysical properties of **1a**, **1c**, **15**, **3c**, **10**, **4**, and **5**. [Ir complex] = 10μ M in

Compound	λ_{\max} (absorption)	$\lambda_{\sf max}$ (emission)	Φ	τ
1a (in CH ₂ Cl ₂) ^a	287 nm, 373 nm	512 nm ^b	0.50	2.0 μs ^c
1c ^d	289 nm, 360 nm	495 nm⁵	0.65	1.8 μs
15 (in DMSO)	287 nm, 391 nm	543 nm ^b	0.24	1.0 μs
3c	283 nm, 383 nm	541 nm⁵	0.11	1.0 μs
10 (in DMSO)	290 nm, 360 nm	499 nm [∌]	0.37 ^e	0.65 μs ^ŕ
4	292 nm, 356 nm	505 nm⁵	0.43 ^e	0.78 μs ^ŕ
5	280 nm, 360 nm	507 nm [∌]	0.41 ^e	1.4 μs ^ŕ

degassed 100 mM HEPES (pH = 7.4), CH_2CI_2 or DMSO at 25 °C).

^{*a*}Ref. 18. ^{*b*}Excitation at 366 nm. ^{*c*}Ref. 2. ^{*d*}Ref. 19. ^{*e*}Quinine sulfate in 0.1 M H_2SO_4 (ϕ

= 0.55) was used as a reference compound. ^{*f*}A 495 nm longwave pass filter was used.

Table S2. Calculated triplet transition states of **10** and **15** using TD-DFT calculations atthe B3LYP (LanL2DZ/6-31G) level.

Compound	λ _{em} (nm) exp.	E (eV) exp.	<i>E</i> (eV) TD-DFT	State
10	499	2.49	2.64	T ₁
15	543	2.28	2.37	T ₁

Table S3. Complexation constants of anti-CaM antibody with calmodulin (assuming 1:1

complexation)

Analytes	<i>К</i> _{арр} (М ⁻¹)	K _d
anti-CaM antibody in the absence of Ca ²⁺	(4.22 ± 0.15) × 10 ⁸	2.4 ± 0.1 nM
anti-CaM antibody in the presence of Ca ²⁺ (80 μ M)	< 1.0 × 10 ³	> 1 mM

Chart S2.

Chart S3.

Chart S4.

