Supporting information

Detection of active Granzyme A in NK92 cells with fluorescent activity-based probe

Sonia Kołt¹, Tomasz Janiszewski¹, Dion Kaiserman², Sylwia Modrzycka¹, Scott Snipas³, Guy Salvesen³, Marcin Drąg^{1,3}, Phillip I. Bird², Paulina Kasperkiewicz¹

^{1.} Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland,

^{2.} Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, 23 Innovation Walk, Clayton VIC 3800, Australia,

^{3.} NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA,

Corresponding: paulina.kasperkiewicz@pwr.edu.pl

Contents of Supporting Information

1.	Purity and MS analysis of synthesized compounds	.S2
2.	Specificity profiles	.S24
3.	Structures of amino acids	.S25
4.	Full-size blots	.S32

	Structure	[M+H] ⁺	[M+H] ⁺	nurity.
	Structure	calculated	measured	punty
SK8	Ac-Tic-Gly-Oic-3-Abz-ACC	747.3142	747.3138	≥99%
SK9	Ac-Tic-Abu(Bth)-Oic-3-Abz-ACC	908.3442	908.3450	≥98%
SK10	Ac-Ile-Gly-Oic-3-Abz-ACC	701.3299	701.3295	≥99%
SK12	Ac-Met(O)-Gly-Tyr(2,6-Cl ₂ -Bzl)-3-Abz-ACC	905.2139	905.2135	≥99%
SK13	Ac-Met(O)-Gly-Hyp(Bzl)-3-Abz-ACC	787.2761	787.2747	≥99%
SK14	Ac-Met(O)-Gly-Phe(4-F)-3-Abz-ACC	749.2405	749.2413	≥99%
SK15	Ac-Tic-Gly-Oic-Arg-ACC	784.3782	784.3790	≥97%
SK17	Ac-IIe-Gly-Oic-Arg-ACC	738.3939	738.3932	≥99%
SK18	Ac-Tic-Abu(Bth)-Oic-Arg-ACC	945.4081	945.4095	≥98%
SK19	Ac-Met(O)-Gly-Tyr(2,6-Cl ₂ -Bzl)-Arg-ACC	942.2778	942.2795	≥98%
SK20	Ac-Met(O)-Gly-Hyp(Bzl)-Arg-ACC	824.3401	824.3399	≥99%
SK21	Ac-Met(O)-Gly-Phe(4-F)-Arg-ACC	786.3045	786.3045	≥98%
SK22	Ac-Tic-Gly-Oic-Phe(guan)-ACC	832.3782	832.3781	≥97%
SK23	Ac-Tic-Abu(Bth)-Oic-Phe(guan)-ACC	993.4081	993.4070	≥97%
SK24	Ac-lle-Gly-Oic-Phe(guan)-ACC	786.3939	786.3940	≥99%
SK26	Ac-Met(O)-Gly-Tyr(2,6-Cl ₂ -Bzl)-Phe(guan)-ACC	990.2778	990.2772	≥95%
SK27	Ac-Met(O)-Gly-Hyp(Bzl)-Phe(guan)-ACC	872.3401	872.3403	≥99%
SK28	Ac-Met(O)-Gly-Phe(4-F)-Phe(guan)-ACC	834.3045	834.3040	≥99%
SK7	Ac-IIe-Gly-Pro-Arg-ACC	684.3469	684.3463	≥95%
SK15I	MeOSuc-Tic-Gly-Oic-Arg ^P (OPh) ₂	844.3799	844.3809	≥95%
SK15.5	Cy5-Ahx-Tic-Gly-Oic-Arg ^F (OPh) ₂	654.3615	654.3613	≥95%

Table S1. Purity and MS analysis of synthesized compounds.

SK8, Ac-Tic-Gly-Oic-3-Abz-ACC

SK9, Ac-Tic-Abu(Bth)-Oic-3-Abz-ACC

SK10, Ac-Ile-Gly-Oic-3-Abz-ACC

SK12, Ac-Met(O)-Gly-Tyr(2,6-Cl₂-Bzl)-3-Abz-ACC

SK13, Ac-Met(O)-Gly-Hyp(Bzl)-3-Abz-ACC

SK14, Ac-Met(O)-Gly-Phe(4-F)-3-Abz-ACC

0.20

0.00

2.00 4.00 6.00 8.00 10.00

12.00 14.00 Minutes 16.00 18.00 20.00 22.00 24.00

SK15, Ac-Tic-Gly-Oic-Arg-ACC

SK17, Ac-Ile-Gly-Oic-Arg-ACC

SK18, Ac-Tic-Abu(Bth)-Oic-Arg-ACC

SK19, Ac-Met(O)-Gly-Tyr(2,6-Cl₂-Bzl)-Arg-ACC

SK20, Ac-Met(O)-Gly-Hyp(Bzl)-Arg-ACC

SK21, Ac-Met(O)-Gly-Phe(4-F)-Arg-ACC

SK22, Ac-Tic-Gly-Oic-Phe(guan)-ACC

SK23, Ac-Tic-Abu(Bth)-Oic-Phe(guan)-ACC

SK24, Ac-Ile-Gly-Oic-Phe(guan)-ACC

SK26, Ac-Met(O)-Gly-Tyr(2,6-Cl₂-Bzl)-Phe(guan)-ACC

SK27, Ac-Met(O)-Gly-Hyp(Bzl)-Phe(guan)-ACC

SK28, Ac-Met(O)-Gly-Phe(4-F)-Phe(guan)-ACC

SK7, Ac-IIe-Gly-Pro-Arg-ACC

SK15I, MeOSuc-Tic-Gly-Oic-Arg^P(OPh)₂

SK15.5, Cy5-Ahx-Tic-Gly-Oic-Arg^P(OPh)₂

Figure S1. GrA substrate specificity profiles presented as heat maps.

Table S2. Structures of natural and unnatural amino acids used in P1-Arg HyCoSuL library and Ac-ISPX-ACC library.

S27

Figure S2. Selectivity of SK15 substrate toward selected serine proteases (GrA, GrB, GrM, GrK, PR3, and hNE). The reference substrates were as follows: Ac-IIe-Gly-Pro-Arg-ACC for GrA, Ac-Tyr-Arg-Phe-Lys-ACC for GrK, Ac-IIe-Glu-Pro-Asp-ACC for GrB, Ac-Lys-Val-Pro-Leu-ACC for GrM, Ac-Glu(O-BzI)-Lys(Ac)-Hyp(BzI)-Nva-ACC for PR3 and Ac-Arg(NO)₂-Glu(BzI)-Oic-Abu-ACC for hNE. Substrates were placed in a 96-well plate at a concentration of 67 μM and treated with optimal concentration of each enzyme (89 nM of GrA, 488 nM of GrK, 18 nM of GrB, 74 nM of GrM, 3.3 nM of hNE and 3.4 nM of PR3). The fluorescence increase was measured with 355 nm/460 nm excitation and emission wavelengths. Data present the average of 2 replicates as adjusted RFU/s.

Figure S3. Detection of active GrA in NK92 cells.

Figure S4. SK15.5 binds exclusively with the active GrA.