Supporting Material

Solubility determination, model correlation and solvent effect analysis of nisoldipine in different solvents system at a series of temperature

Xia Chen¹, Qianqian Xu¹, Zhiying Liu¹, Xianling Zhu¹, Huilin Zheng¹, Jia Zhao², Rongrong Li¹, Deman Han^{1,*}

¹ Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou, Zhejiang 318000, PR China.

² Industrial Catalysis Institute of Zhejiang University of Technology, Hangzhou,
310014, PR China.

*Corresponding author:

Tel.: +86 576 88660177. Fax: +86 576 85137169. E-mail: hdmtzc@126.com.

Modified Apelblat model

$$\ln x = A + B / (T / K) + C \ln (T / K)$$
(S1)

In above equation, A, B and C are the adjustable parameters in this model, x is the solubility of solute in mole fraction.

λh model

$$\ln\left[1 + \frac{\lambda(1-x)}{x}\right] = \lambda h\left(\frac{1}{T/K} - \frac{1}{T_{\rm m}/K}\right)$$
(S2)

In equation (S2), λ and h are two parameters in λh model, T_m is the melting temperature of nisoldipine in Kelvin.