Massively strained VO₂ thin film growth on RuO₂

Simon Fischer,^{*a*} Jon-Olaf Krisponeit,^{* *ab*} Michael Foerster,^{*c*} Lucia Aballe,^{*c*} Jens Falta,^{*ab*} and Jan Ingo Flege^{*d*}

Supporting Information

In order to verify the thickness of the VO₂ thin films that were deposited on the RuO₂ islands as described in the main article, x-ray reflectivity (XRR) measurements were carried out in the group of Andreas Stierle at DESY Deutscher Elektronensynchrotron Hamburg. The instrument provides a Cu K_a source with a spot size of 0.25 × 0.25 mm² and a divergence of 5 × 5 mrad².

The XRR curve shown in Figure 1 (left) along with the fit of the data. The curve exhibits weak oscillations because of the high roughness. A satisfying fit of the data could only be achieved using three different layer components with two of them having a different roughness σ as shown in Figure 1 (right). This can be interpreted in terms of the two primarily found types of RuO₂ islands ((110)-oriented and (100)-oriented) having different thicknesses.

Figure 1: Left: XRR data and fit. Right: Corresponding electron density profile of the sample surface region.

^c ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain

^a Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany. E-mail: krisponeit@ifp.uni-bremen.de; Tel: +49 421 218 62243

^b MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany

^d Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus, Germany