SUPPORTING INFORMATION

Simultaneous generation of a $[2 \times 2$] grid-like complex and a linear double helicate: a three-level self-sorting process

Jean-François Ayme, ${ }^{\dagger, \mp}$ Jean-Marie Lehn, ${ }^{*,+, \ddagger}$ Corinne Bailly ${ }^{\S}$ and Lydia Karmazin ${ }^{\S}$

[^0]
Table des matières

1. General experimental section 3
1.1 General material 3
1.2 Characterization and analysis methods 3
2. Synthesis 4
2.1 Synthesis of the ligands 4
2.1.1 Synthesis of dialdehyde 1 4
2.1.2 Synthesis of dialdehyde 36
2.1.3 Synthesis of dialdehyde 5 9
2.1.4 Synthesis of dialdehyde 7 12
2.2 Synthesis of polynuclear metal complexes 14
2.2.1 General synthetic procedure 14
2.2.2 Synthesis of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$ 14
2.2.3 Synthesis of $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ 15
2.2.4 Synthesis of $\mathrm{Zn}(\mathrm{II})$ complex $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$ 17
2.2.5 Synthesis of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{2}\left(7, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ 18
3. Self-sorting reactions 20
3.1 Self-sorting of complexes $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ 20
3.1.1 Synthetic procedure 20
3.1.2 Simultaneous generation of complexes $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ 20
3.1.3 Probing the selectivity of the self-assembly of $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ from a mixture of components 1, 2, 3 and 4 21
3.2 Self-sorting of complexes $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(\mathbf{5}, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ 22
3.2.1 Synthetic procedure 22
3.2.2 Simultaneous generation of complexes $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(\mathbf{5}, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ 23
3.2.3 Probing the selectivity of the self-assembly of $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ from a mixture of components 4, 5, 6 and 7 24
4. X-ray crystal structures 24
4.1 X-ray crystal structure of $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot x$ Solvent 25
$4.2 \quad$ X-ray crystal structure of $\left.\left[\left[\mathrm{Cu}_{4}(\mathbf{1}, \mathbf{2})_{2}\right)_{4}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}\right]\left(\mathrm{BPh}_{4}\right)_{4} \cdot x$ Solvent 25
4.3 X-ray crystal structure of $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{4} \cdot x$ Solvent 25
4.4 X-ray crystal structure of $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8} \cdot x$ Solvent 26
5. References 26

1. General experimental section

1.1 General material

Unless stated otherwise, solvents and commercial reagents were used as received. Dry toluene was obtained by passing the solvent through an activated alumina on a Pure Solv solvent purification system. All reactions requiring anhydrous conditions were carried-out in oven-dried glassware and all reactions requiring inert gas atmosphere were performed under nitrogen using standard Schlenk techniques. All reactions not performed in a NMR tubes were agitated using magnetic stirrer bars. Room temperature is taken as 293 K . Flash column chromatography was carried out using silica gel (Geduran Si60, 40-63 $\mu \mathrm{m}$, Merck) using eluents as specified. TLC was performed on precoated silica gel plates (Merck TLC silica gel 60 F254 aluminium plates) and product spots were visualized under UV light ($\lambda_{\max }=280 \mathrm{~nm}$ or 365 nm) or by staining with KMnO_{4}. Celite ${ }^{\oplus}$ was obtained for Sigma-Aldrich and refers to diatomaceous earth. Brine refers to a saturated aqueous solution of NaCl . Ammonia in methanol was prepared by bubbling gaseous ammonia in methanol.

1.2 Characterization and analysis methods

NMR spectra were recorded on a Bruker Avance III 400 MHz , Bruker Avance III HD 400 MHz spectrometer or Bruker Avance Neo 500 MHz spectrometer. NMR spectra were digitally processed (phase and baseline corrections, integration, peak analysis) using MestReNova 10.0. Deuterated acetonitrile $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ was obtained from Sigma-Aldrich and used without further purification. Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ was obtained from Sigma-Aldrich and was passed through a plug of sodium bicarbonate immediately before use to remove any acidic impurities. Chemical shifts are reported in parts per million (ppm) from low to high frequency using residual protonated solvent signals as reference (for ${ }^{1} \mathrm{H}$ NMR spectra $\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}=1.94 \mathrm{ppm}$; for ${ }^{13} \mathrm{C}$ NMR spectra $\mathrm{CDCl}_{3}=77.16$ $\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}=1.32 \mathrm{ppm}$). Coupling constants (J) are reported in hertz (Hz). The multiplicity of the 1 H signals are indicated using the following standard abbreviations: $s=$ singlet, $d=$ doublet, $t=$ triplet, $d d=$ double doublet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{ddd}=$ doublet of double doublets. NMR signals are reported in terms of chemical shift (δ), multiplicity, coupling constants (J), relative integral, and assignment, in that order. All resonances are reported to the nearest $0.01 \mathrm{ppm} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments were made using 2D-NMR methods (COSY, ROESY, TOCSY, HSQC, HMBC) and are unambiguous unless stated otherwise. High resolution ESI mass spectra were obtained in-house at the Institute of Science and Supramolecular Engineering (ISIS) by direct injection into a ThermoFisher Exactive Plus EMR Orbitrap mass spectrometer.

2. Synthesis

2.1 Synthesis of the ligands

2.1.1 Synthesis of dialdehyde 1

Scheme 1. Synthesis of dialdehyde 1. Reagents and conditions: (i) $\mathrm{HCl}: \mathrm{AcOH} 1: 1,90^{\circ} \mathrm{C}, 3 \mathrm{~h}, 2 \%$, (ii) I_{2}, TFA, DMSO, $150{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 58 \%$.

S1 was prepared by a modified literature procedure. ${ }^{[11]}$
Benzene-1,4-diamine ($10 \mathrm{~g}, 92.59 \mathrm{mmol}$, 1eq.) and crotonaldehyde ($20 \mathrm{~mL}, 245.14 \mathrm{mmol}, 2.5$ eq.) were successively added to a mixture of $\mathrm{HCl}(50 \mathrm{~mL})$ and $\mathrm{AcOH}(50 \mathrm{~mL})$. The resulting mixture was heated to $90^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The dark organic layers were discarded and the combined aqueous layers were made basic using NaOH pellets. This solution was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water (200 mL) and brine (200 mL), dried over with MgSO_{4} and evaporated. Flash chromatography (SiO_{2}, EtOAc:petroleum ether 1:1 to EtOAc:petroleum ether: $\mathrm{MeOH} 47: 47: 6$) afforded crude $\mathbf{S 1}$ which was recrystallized from acetone to yield $\mathbf{S 1}(342 \mathrm{mg}, 1.64 \mathrm{mmol}, 2 \%)$ as a brown solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.68\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 8.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, H^{3}), $2.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 158.98\left(\mathrm{C}^{2}\right), 147.04\left(\mathrm{C}^{6}\right), 131.69\left(\mathrm{C}^{7}\right), 130.73\left(\mathrm{C}^{4}\right)$, $122.63\left(\mathrm{C}^{5}\right)$, $122.33\left(C^{3}\right), 25.16\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for [$\mathbf{S 1 + H}]^{+} 209.1073$ found 209.1082.

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1}$.

1 was prepared by a modified literature procedure. ${ }^{[52]}$
Iodine ($939 \mathrm{mg}, 3.71 \mathrm{mmol}, 3.8 \mathrm{eq}$.), and trifluoroacetic acid ($0.551 \mathrm{~mL}, 7.19 \mathrm{mmol}, 7.5 \mathrm{eq}$.) were added to a degassed solution of $\mathbf{S 1}\left(200 \mathrm{mg}, 0.96 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) in DMSO (7 mL). Then N_{2} was bubbled through the solution for 10 min and the mixture was stirred at $150^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the solution was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}(1.37 \mathrm{~g}, 8.64 \mathrm{mmol}, 9 \mathrm{eq}$.) in water (5 mL), causing discharge of the I_{2} color, and was made neutral with saturated NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 25 \mathrm{~mL})$ and the organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 98: 2\right.$) afforded 1 as a brown solid ($130 \mathrm{mg}, 0.55$ mmol, 58\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 10.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 9.14\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 8.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 8.31(\mathrm{~d}, \mathrm{~J}$ $\left.=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 193.34\left(\mathrm{C}^{1}\right), 153.44\left(\mathrm{C}^{2}\right), 148.67\left(\mathrm{C}^{6}\right), 133.41\left(\mathrm{C}^{7}\right), 132.90\left(\mathrm{C}^{4}\right)$, $127.16\left(C^{5}\right), 119.00\left(C^{3}\right)$.

HRMS (ESI+): m/z calcd. for [1+H]+ 237.0659 found 237.0656 .

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 1 .

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 1.

2.1.2 Synthesis of dialdehyde 3

Scheme 2. Synthesis of dialdehyde 3. Reagents and conditions: (i) a) i-PrMgCI, THF, $-10{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, b) DMF, $10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$; (ii) ethylene glycol, p-TsOH, toluene, reflux, $44 \mathrm{~h}, 91 \%$; (iii) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Cu}(\mathrm{I}), \mathrm{DBU}$, toluene, $60^{\circ} \mathrm{C}, 15 \mathrm{~h}, 47 \%$; (iv) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{THF} /$ methanol 2:1, 24 h ; (v) $10 \% \mathrm{HCl}$, reflux, $1 \mathrm{~h}, 79 \%$ over two steps.

S2 was synthesized as described in the literature. NMR and mass data were consistent with those previously reported. ${ }^{[53]}$

S3 was synthesized as described in the literature. NMR and mass data were consistent with those previously reported. ${ }^{[53]}$

S4
S4 was prepared by a modified literature procedure. ${ }^{[54]}$
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(92 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.1 \mathrm{eq}$.) and $\mathrm{Cu}(\mathrm{I})(50 \mathrm{mg}, 0.26 \mathrm{mmol}, 0.2 \mathrm{eq}$.) were added to a solution of S3 ($600 \mathrm{mg}, 2.62 \mathrm{mmol}, 2$ eq.) in N_{2} purged dry toluene (13 mL). Then 1,8-diazabicyclo[5.4.0]undec-7ene (DBU; $2.35 \mathrm{~mL}, 15.72$ mmol, 6 eq.) was added to the mixture and N_{2} bubbled through the solution for 5 min . Ice-cooled ethynyltrimethylsilane ($181 \mu \mathrm{~L}, 1.31 \mathrm{mmol}, 1 \mathrm{eq}$.) was added to the reaction mixture and the solution was stirred at $60^{\circ} \mathrm{C}$ for 15 h . The solvent was removed under reduced pressure
and $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ was added to the residue. The resulting mixture was extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and the organic layer was washed with brine $(30 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resulting solid was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone 5:1 then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone: $\mathrm{MeOH} 80: 16: 4$) to yield as an off-white solid ($200 \mathrm{mg}, 0.62$ mmol, 47\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 7.87\left(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}^{4}\right), 5.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 4.24-4.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 156.63\left(\mathrm{C}^{3}\right), 151.92\left(\mathrm{C}^{7}\right), 139.51\left(\mathrm{C}^{5}\right), 120.32\left(\mathrm{C}^{4}\right), 120.01\left(\mathrm{C}^{6}\right)$, $103.33\left(C^{2}\right), 89.48\left(C^{8}\right), 65.76\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for [S4+H] ${ }^{+} 325.1183$ found 325.1195 .

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 4}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 4}$.

S5 was prepared by a modified literature procedure. ${ }^{[53]}$
S4 (100 mg, 0.309 mmol$)$ was dissolved in THF:MeOH 2:1 (25 mL) and $10 \% \mathrm{w} / \mathrm{w}$ Pd/C (49 mg) was added. The mixture was stirred under H_{2} for 24 hours. The mixture was filtered through Celite and the residue washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate fractions were combined and the solvent removed under reduced pressure to give $\mathbf{S 5}$ as an off-white solid which was used in the subsequent step without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.44\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 7.47\left(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.43(\mathrm{~d}, J$ $\left.=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 5.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 4.21-4.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{1}\right), 2.93\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{8}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 155.10\left(\mathrm{C}^{3}\right)$, $149.54\left(\mathrm{C}^{7}\right), 136.85\left(\mathrm{C}^{5}\right), 136.51\left(\mathrm{C}^{6}\right), 120.55\left(\mathrm{C}^{4}\right)$, $103.59\left(C^{2}\right), 65.64\left(C^{1}\right), 34.36\left(C^{8}\right)$.

HRMS (ESI+): m/z calcd. for [S5+H] 329.1496 found 329.1498.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 5 .}$

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 5}$.

3 was prepared by a modified literature procedure. ${ }^{[53]}$
S5 was dissolved in 10% aqueous $\mathrm{HCl}(40 \mathrm{~mL})$ and refluxed. After 1 h the reaction mixture was cooled to room temperature and neutralized by slow addition of solid NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the organic fraction was washed with brine (50 mL), dried over MgSO_{4} and concentrated under reduced pressure. Flash chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$: NEt_{3} 97:2:1) afforded 3 as a colorless solid ($59 \mathrm{mg}, 0.245 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 10.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 8.57\left(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.91(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, H^{3}), $7.64\left(\mathrm{dd}, \mathrm{J}=7.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 3.10\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{7}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 193.34\left(\mathrm{C}^{1}\right), 151.90\left(\mathrm{C}^{2}\right), 150.73\left(\mathrm{C}^{6}\right), 140.89\left(\mathrm{C}^{5}\right), 137.31\left(\mathrm{C}^{4}\right)$, $122.05\left(C^{3}\right), 34.64\left(C^{7}\right)$.

HRMS (ESI+): m/z calcd. for [3+H] 241.0972 found 241.0966 .

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 3.

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 3 .

2.1.3 Synthesis of dialdehyde 5

S8

Scheme 3. Synthesis of dialdehyde 5. Reagents and conditions: (i) $\mathrm{Br}_{2}, \mathrm{I}_{2}$, dark, $0{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 47 \%$; (ii) NBS, CCl_{4}, hv, reflux $9 \mathrm{~h}, 72 \%$; (iii) $\mathrm{AgNO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux $0.5 \mathrm{~h}, 91 \%$; (iv) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cu}(\mathrm{I})$, diisopropylamine, toluene, r.t., $6 \mathrm{~h}, 36 \%$; (v) methanolic ammonia, $\mathrm{MW}, 130^{\circ} \mathrm{C}, 15 \mathrm{~min}, 48 \%$; (vi) $10 \% \mathrm{HCl}$, reflux, $1 \mathrm{~h}, 92 \%$.

S5 was synthesized as described in the literature. NMR and mass data were consistent with those previously reported. ${ }^{[55]}$

S6 was synthesized as described in the literature. NMR and mass data were consistent with those previously reported. ${ }^{[55]}$

S7 was synthesized as described in the literature. NMR and mass data were consistent with those previously reported. ${ }^{[55]}$

S7 ($453 \mathrm{mg}, 1.57 \mathrm{mmol}, 1$ eq.) was suspended in a mixture of dry toluene (15 mL) and diisopropylamine $(4.5 \mathrm{~mL})$ and N_{2} was bubbled through the solution for 5 min . Then propargylaldehyde diethyl acetal (422 $\mathrm{mg}, 3.30 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) , \mathrm{Cu}(\mathrm{I})(60 \mathrm{mg}, 0.32 \mathrm{mmol}, 20 \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(109 \mathrm{mg}, 0.09 \mathrm{mmol}, 6 \%)$ were added to the solution. The reaction mixture was stirred at r.t. for 6 h before being concentrated under reduced pressure. The residue was dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and absorbed onto SiO_{2}. Flash chromatography (SiO_{2}, cyclohexane:EtOAc 90:10 to 85:15) afforded S8 as a yellow oil ($220 \mathrm{mg}, 0.57$ mmol, 36\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 10.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 8.42(\mathrm{~s}, 1 \mathrm{H}),, 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}), 5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 3.75$ (ddq, J=61.4, 9.4, 7.1, 8H, H ${ }^{2}$), $1.29\left(t, J=7.1,12 H, H^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 189.49\left(\mathrm{C}^{9}\right), 139.05\left(\mathrm{C}^{7}\right), 135.95\left(\mathrm{C}^{8}\right), 129.43\left(\mathrm{C}^{6}\right), 127.27\left(\mathrm{C}^{10}\right), 95.73$ $\left(C^{4}\right), 91.70\left(C^{3}\right), 79.34\left(C^{5}\right), 61.61\left(C^{2}\right), 15.24\left(C^{1}\right)$.

HRMS (ESI+): m/z calcd. for [S8+Na] 409.1627 found 409.1620.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 8}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 8}$.

S9 was prepared by a modified literature procedure. ${ }^{[56]}$
A stirred solution of $\mathbf{S 8}(102 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry ammonia in methanol ($2 \mathrm{M}, 2.6 \mathrm{~mL}$) was heated at $130^{\circ} \mathrm{C}$ in a sealed tube for 15 min in a microwave oven. The solvent was removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}\right.$ to $\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeOH} 96: 4\right)$ yielded $\mathbf{S 9}$ as a a brown solid ($49 \mathrm{mg}, 0.13 \mathrm{mmol}, 48 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 8.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 8.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 8.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{5}\right)$, $5.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 3.84-3.65\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{2}\right), 1.32\left(\mathrm{t}, \mathrm{J}=7.1,12 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 155.08\left(\mathrm{C}^{10}\right), 151.25\left(\mathrm{C}^{4}\right), 135.26\left(\mathrm{C}^{9}\right), 129.07\left(\mathrm{C}^{8}\right), 127.25\left(\mathrm{C}^{6}\right)$, $125.29\left(C^{7}\right), 117.13\left(C^{5}\right), 102.18\left(C^{3}\right), 62.34\left(C^{2}\right), 15.45\left(C^{1}\right)$.

HRMS (ESI+): m/z calcd. for [S9+H]+ 385.2122 found 385.2121.

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 9}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 9}$.

5 was prepared by a modified literature procedure. ${ }^{[53]}$
$\mathbf{S 9}$ (49 mg, 0.13 mmol) was dissolved in 10% aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ and refluxed. After 1 h the reaction mixture was cooled to room temperature and neutralized by slow addition of solid NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the organic fraction was washed with brine $(30 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure to afford 5 as a slightly yellow solid ($27 \mathrm{mg}, 0.12$ mmol, 92\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 10.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 9.76\left(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 9.00(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{5}\right), 8.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 8.60\left(\mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 192.64\left(\mathrm{C}^{1}\right), 155.94\left(\mathrm{C}^{6}\right), 146.74\left(\mathrm{C}^{2}\right), 134.39\left(\mathrm{C}^{4}\right), 130.06\left(\mathrm{C}^{5}\right)$, $129.67\left(C^{8}\right), 129.40\left(C^{7}\right), 121.85\left(C^{3}\right)$.

HRMS (ESI+): m/z calcd. for [5+H]+ 237.0659 found 237.0655.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5}$.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 5.

2.1.4 Synthesis of dialdehyde 7

Scheme 4. Synthesis of dialdehyde 7. Reagents and conditions: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, dioxane/ $\mathrm{H} 2 \mathrm{O}, 90^{\circ} \mathrm{C}$, $18 \mathrm{~h}, 41 \%$.

7 was prepared by a modified literature procedure. ${ }^{[57]}$
6-Bromo-2-pyridinecarboxaldehyde ($1 \mathrm{~g}, 5.37 \mathrm{mmol}, 2 \mathrm{eq}$.) and 1,3-benzenediboronic acid ($444 \mathrm{mg}, 2.69$ $\mathrm{mmol}, 1$ eq.) were dissolved in dioxane (36 mL) and water (4 mL) and flushed with $\mathrm{N}_{2} . \mathrm{Pd}^{\left(\mathrm{PPh}_{3}\right)_{4}(290}$ $\mathrm{mg}, 0.25 \mathrm{mmol}, 9 \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(8.1 \mathrm{~g}, 25 \mathrm{mmol}, 9 \mathrm{eq}\right.$.) were added and the mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ were added, the organic phase isolated and the aqueous phase washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine and the solvent removed under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\left.\mathrm{EtOH} 9: 1\right)$ afforded crude 7 which was further purified by flash chromatography (SiO_{2}, petroleum ether: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: E t O A c: \mathrm{NEt}_{3} 98.9: 0.5: 0.5: 0.1$ to $96.8: 2: 2: 0.2$), to afford 7 as a slightly yellow solid (320 mg , 1.11 mmol 41\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 10.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 8.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 8.20\left(\mathrm{dd}, \mathrm{J}=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{9}\right)$, 8.09 (dd, J = 7.7, 1.2 Hz, 2H, H^{5}), $8.04-7.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 7.95\left(\mathrm{dd}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.68(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{10}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 193.90\left(\mathrm{C}^{1}\right), 157.49\left(\mathrm{C}^{6}\right), 152.80\left(\mathrm{C}^{2}\right), 138.93\left(\mathrm{C}^{8}\right), 137.99\left(\mathrm{C}^{4}\right)$, $129.65\left(C^{10}\right), 128.21\left(C^{9}\right), 125.71\left(C^{7}\right), 124.72\left(C^{5}\right), 120.13\left(C^{3}\right)$.

HRMS (ESI+): m/z calcd. for [7+H] 289.0972 found 289.0966.

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 7 .

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}$) of compound 7 .

2.2 Synthesis of polynuclear metal complexes

2.2.1 General synthetic procedure

General synthetic procedure: $\mathrm{A} \mathrm{CDCl}_{3}$ solution of the dialdehyde containing component ($100 \mu \mathrm{~L}$ of 160 $\mathrm{mM}, 16 \mu \mathrm{~mol}, 1$ eq.) and a $\mathrm{CD}_{3} \mathrm{CN}$ solution of the amine containing component ($100 \mu \mathrm{~L}$ of $320 \mathrm{mM}, 32$
$\mu \mathrm{mol}, 2$ eq.) were combined. The resulting mixture was either treated with a $\mathrm{CD}_{3} \mathrm{CN}$ solution of $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(100 \mu \mathrm{~L}\right.$ of $160 \mathrm{mM}, 16 \mu \mathrm{~mol}, 1$ eq.) or a $\mathrm{CD}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)(100 \mu \mathrm{~L}$ of $160 \mathrm{mM}, 16 \mu \mathrm{~mol}, 1 \mathrm{eq}$.$) or a \mathrm{CD}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}(100 \mu \mathrm{~L}$ of $160 \mathrm{mM}, 16 \mu \mathrm{~mol}, 1 \mathrm{eq}$.) and heated at $60^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, diisopropyl ether ($\approx 1 \mathrm{~mL}$) was added. A fine suspension of material formed which was collected on Celite, washed with water, EtOH, diethylether. The resulting solid was dissolved in acetonitrile and concentrated under reduced pressure to give the desired complex. In all cases, the desired complex appeared pure by NMR spectroscopy.

2.2.2 Synthesis of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$

Scheme 5. Synthesis of the $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$.
$\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$ was synthesized using the general procedure described in section 2.2.1.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 9.27\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{12}\right), 8.85\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}^{9}\right), 8.15(\mathrm{~d}, \mathrm{~J}=8.6$ $\left.\mathrm{Hz}, 8 \mathrm{H}, \mathrm{H}^{11}\right), 6.83\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}^{15}\right), 6.78-6.68\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}^{4+6}\right), 6.40\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{5}\right), 6.29(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 8 \mathrm{H}$, H^{3}), 4.69 (d, J = $\left.13.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{H}^{8 \mathrm{a}}\right), 4.28\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{8 b}\right), 3.31\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 160.64\left(\mathrm{C}^{9}\right)$, $158.15\left(\mathrm{C}^{2}\right), 151.98\left(\mathrm{C}^{10}\right), 145.36\left(\mathrm{C}^{14}\right)$, $134.67\left(C^{12}\right), 131.75\left(C^{15}\right), 131.60\left(C^{6}\right), 130.20\left(C^{4}\right), 127.38\left(C^{13}\right), 125.36\left(C^{11}\right), 125.23\left(C^{7}\right), 120.57\left(C^{5}\right)$, $110.76\left(C^{3}\right), 58.92\left(C^{8}\right), 55.38\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for $\left[\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}\right]^{2+} 1162.7715$ found 1162.7747.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $297 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$.

2.2.3 Synthesis of $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(3, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$

Scheme 6. Synthesis of the $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$.
$\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ was synthesized using the general procedure described in section 2.2.1.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, 285 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3}\right.$ 2:1): $\delta(\mathrm{ppm}) 11.87$ (br s, 4H, H ${ }^{11}$), $9.40\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{8}\right)$, $8.47\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{13}\right), 8.30\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{6}\right), 8.19\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{7}\right), 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{H}^{4}\right), 7.91\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{14}\right), 7.45\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{H}^{16}\right), 7.29\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{3}\right), 2.72(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}$, $H^{17 a}$), $2.63\left(d, J=11.3 \mathrm{~Hz}, 2 H, H^{17 b}\right), 2.01\left(b r s, 12 H, H^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, 285 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right.$): $\delta(\mathrm{ppm}) 174.21\left(\mathrm{C}^{2}\right), 160.20\left(\mathrm{C}^{11}\right), 155.69\left(\mathrm{C}^{12}\right), 152.52$ $\left(C^{16}\right), 148.48\left(\mathrm{C}^{10}\right), 143.80\left(\mathrm{C}^{15}\right), 142.37\left(\mathrm{C}^{5}\right), 139.15\left(\mathrm{C}^{4}\right), 137.56\left(\mathrm{C}^{14}\right), 132.74\left(\mathrm{C}^{6}\right), 131.53\left(\mathrm{C}^{13}\right), 129.78$ $\left(C^{3+9}\right), 129.01\left(C^{7}\right), 121.15\left(C^{8}\right), 30.91\left(C^{17}\right), 26.39\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for $\left[\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{3}\right]^{+} 1413.3563$ found 1413.3539.

Figure S21. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, 285 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1\right)$ of $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$.

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 285 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of the $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ at variable temperature from 272 K to 297 K . VT-NMR was performed from low to high temperature, starting from 272 K.

2.2.4 Synthesis of $\mathrm{Zn}(\mathrm{II})$ complex $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$

Scheme 7. Synthesis of the $\mathrm{Zn}(\mathrm{II})$ complex $\left[\mathrm{Zn}_{4}\left(\mathbf{5 , 4} \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$.
$\left[\mathrm{Zn} 4\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$ was synthesized using the general procedure described in section 2.2.1.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 9.87\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}^{11}\right), 8.78\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}^{8+15}\right)$, $8.61\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}^{13}\right), 8.53\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{16}\right), 8.51\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}^{18}\right), 8.45\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{4}\right), 8.25\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{6}\right)$, $8.05\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{7}\right), 7.40\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{3}\right), 2.06\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 162.66\left(\mathrm{C}^{2}\right), 157.15\left(\mathrm{C}^{11}\right)$, $156.01\left(\mathrm{C}^{18}\right)$, 141.30 $\left(C^{12}\right), 141.02\left(C^{4}\right), 140.65\left(C^{10}\right), 135.99\left(C^{14}\right), 134.79\left(C^{16}\right), 134.50\left(C^{9}\right), 132.11\left(C^{6}\right), 130.59\left(C^{13}\right), 130.09$ $\left(C^{15}\right), 129.18\left(C^{17}\right), 128.74\left(C^{5}\right), 128.09\left(C^{7}\right), 125.94\left(C^{3}\right), 120.87\left(C^{8}\right), 24.63\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for $\left[\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)\right]^{7+} 344.9342$ found 344.9334 .

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of $\mathrm{Zn}(\mathrm{II})$ complex $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of Zn (II) complex $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of Zn (II) complex $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$ at 273 K and 297 K . VTNMR was performed from low to high temperature, starting from 273 K .

2.2.5 Synthesis of $\mathrm{Cu}(1)$ complex $\left[\mathrm{Cu}_{2}\left(7, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$

(Cu) $\underset{\substack{\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CDCl}_{3} \\ 2 \mathrm{~h} \\ 18 \mathrm{~h}, 60^{\circ} \mathrm{C}}}{\underset{\sim}{2}}$

Scheme 8. Synthesis of the $\mathrm{Cu}(1)$ complex $\left[C U_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(B F_{4}\right)_{2}$.
$\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{G}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ was synthesized using the general procedure described in section 2.2.1.

$\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 9.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{13}\right), 8.43\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{6}\right), 7.94(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{H}^{9}\right), 7.71\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{10}\right), 7.50\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{8}\right), 7.14\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{14}\right), 7.11-7.04$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{15}\right), 6.63\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{4}\right), 6.52\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{3}\right), 3.70\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}^{1}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} \mathbf{2 : 1}\right): \delta(\mathrm{ppm}) 161.20\left(\mathrm{C}^{2}\right)$, $155.93\left(\mathrm{C}^{11}\right), 155.40\left(\mathrm{C}^{6}\right), 151.57$ $\left(C^{7}\right), 140.08\left(C^{9}\right), 139.44\left(C^{5}\right), 138.35\left(C^{12}\right), 129.91\left(C^{15}\right), 128.56\left(C^{13}\right), 128.05\left(C^{14}\right), 127.15\left(C^{8}\right), 126.53$ $\left(C^{10}\right), 124.54\left(C^{4}\right), 114.76\left(C^{3}\right), 56.23\left(C^{1}\right)$.

HRMS (ESI+): m / z calcd. for $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+} 562.1342$ found 562.1327.

Figure S27. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1\right)$ of $\mathrm{Cu}(1)$ complex $\left[\mathrm{Cu}_{2}\left(7, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$.

Figure S28. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1$) of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{2}\left(7, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathrm{Cu}(\mathrm{I})$ complex $\left[\mathrm{Cu}_{2}\left(7, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ at 273 K and 297 K . VTNMR was performed from low to high temperature, starting from 273 K.

3. Self-sorting reactions

3.1 Self-sorting of complexes $\left[\mathrm{Cu}_{4}\left(1, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$

3.1.1 Synthetic procedure

$\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$

$\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{2}\right]^{4+}$

Scheme 9. Synthesis of of complexes $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ through the self-sorting of their initial reactants.
CDCl_{3} solutions of the dialdheydes $\mathbf{1}$ ($100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1$ eq.) and $\mathbf{3}(100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6$ $\mu \mathrm{mol}, 1$ eq.) and $\mathrm{CD}_{3} \mathrm{CN}$ solutions of the amine containing components $2(100 \mu \mathrm{~L}$ of $32 \mathrm{mM}, 3.2 \mu \mathrm{~mol}, 2$ eq.) and 4 ($100 \mu \mathrm{~L}$ of $32 \mathrm{mM}, 3.2 \mu \mathrm{~mol}, 2 \mathrm{eq}$.) were combined. The resulting mixture was treated with $\mathrm{CD}_{3} \mathrm{CN}$ solutions of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)(100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1 \mathrm{eq}$.$) and \mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L}$ of 16 $\mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1 \mathrm{eq}$.) and heated at $60^{\circ} \mathrm{C}$ for 18 h . The complexes were never isolated, all the present experiments and analysis were done on the crude reaction mixture.

3.1.2 Simultaneous generation of complexes $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{\mathbf{2}}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$

Figure S30. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,297 \mathrm{~K}$) of: (top) complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$, (middle) complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$, (bottom) synthesis of complexes $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ through the self-sorting of their initial reactants. Reaction conditions: 1:2:3:4:Cu($\left.\mathrm{BF}_{4}\right): \mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}(2: 2: 1: 1: 1: 1)$, $\mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,60^{\circ} \mathrm{C}, 18 \mathrm{~h}$. The diagnostic signals of the complexes are colour coded, $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ in red and $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ in purple.

3.1.3 Probing the selectivity of the self-assembly of $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$ and $\left[\mathrm{Fe}_{\mathbf{2}}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ from a mixture of components 1, 2, 3 and 4

$\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{4}\right]^{4+}$
C

Figure S31. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,297 \mathrm{~K}$) of: (A) complex $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]^{4+}$, (B) the crude reaction mixture obtained by reacting components $\mathbf{1 , 2 , 3}$ and $\mathbf{4}$ with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ in the molar ratio 2:2:1:1:1 at $60{ }^{\circ} \mathrm{C}$ for 18 h , (C) complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ and (D) the crude reaction mixture obtained by reacting components $\mathbf{1 , 2 , 3}$ and $\mathbf{4}$ with $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}$ in the molar ratio 2:2:1:1:1 at $60{ }^{\circ} \mathrm{C}$ for 18 h . Diagnostic signals of the complex $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]^{4+}$ are colour coded in purple.

3.2 Self-sorting of complexes $\left[\mathrm{Cu}_{2}\left(7,6_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]^{8+}$

3.2.1 Synthetic procedure

Scheme 10. Synthesis of of complexes $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(\mathbf{5}, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ through the self-sorting of their initial reactants.
CDCl_{3} solutions of the dialdheydes $\mathbf{5}$ ($100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1$ eq.) and $\mathbf{7}(100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6$ $\mu \mathrm{mol}, 1 \mathrm{eq}$.) and $\mathrm{CD}_{3} \mathrm{CN}$ solutions of the amine containing components 4 ($100 \mu \mathrm{~L}$ of $32 \mathrm{mM}, 3.2 \mu \mathrm{~mol}, 2$ eq.) and 6 ($100 \mu \mathrm{~L}$ of $32 \mathrm{mM}, 3.2 \mu \mathrm{~mol}, 2$ eq.) were combined. The resulting mixture was treated with $\mathrm{CD}_{3} \mathrm{CN}$ solutions of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)(100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1$ eq. $)$ and $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}(100 \mu \mathrm{~L}$ of $16 \mathrm{mM}, 1.6 \mu \mathrm{~mol}, 1 \mathrm{eq}$.) and heated at $60^{\circ} \mathrm{C}$ for 18 h . The complexes were never isolated, all the present experiments and analysis were done on the crude reaction mixture.

3.2.2 Simultaneous generation of complexes $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]^{8+}$

$$
\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}
$$

Figure S32. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,297 \mathrm{~K}$) of: (top) complex $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]^{8+}$, (middle) complex $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$, (bottom) synthesis of complexes $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(\mathbf{5}, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ through the self-sorting of their initial reactants. Reaction conditions: 4:5:6:7:Cu($\left.\mathrm{BF}_{4}\right): \mathrm{Zn}\left(\mathrm{BF}_{4}\right)_{2}(2: 2: 1: 1: 1: 1)$, $\mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,60^{\circ} \mathrm{C}, 18 \mathrm{~h}$. The diagnostic signals of the complexes are colour coded, $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ in red and $\left[\mathrm{Zn}_{4}\left(\mathbf{5}, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ in green.

3.2.3 Probing the selectivity of the self-assembly of $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]^{8+}$ from a mixture of components 4, 5, 6 and 7

A

C

Figure S33. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3} 2: 1,297 \mathrm{~K}$) of: (A) complex $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]^{8+}$, (B) the crude reaction mixture obtained by reacting components $\mathbf{4}, \mathbf{5}, \mathbf{6}$ and $\mathbf{7}$ with $\mathrm{Zn}\left(B F_{4}\right)_{2}$ in the molar ratio 2:2:1:1:1 at $60{ }^{\circ} \mathrm{C}$ for $18 \mathrm{~h},(\mathrm{C})$ complex $\left[\mathrm{Cu}_{2}\left(7, \boldsymbol{6}_{2}\right)_{2}\right]^{2+}$ and (D) the crude reaction mixture obtained by reacting components $4,5,6$ and 7 with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ in the molar ratio $2: 2: 1: 1: 1$ at $60^{\circ} \mathrm{C}$ for 18 h. Diagnostic signals of the complex $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]^{8+}$ are colour coded in green.

4. X-ray crystal structures

Single-crystal X-ray diffraction experiments were carried out by the service of the University of Strasbourg (Corinne Bailly and Dr. Lydia Karmazin). The crystals were placed in oil, and a single crystal was selected, mounted on a glass fibre and placed in a low-temperature N_{2} stream.

CCDC-1947518 ([Cu $\left.\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot x$ xolvent), CCDC-1947519 $\left(\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{4} \cdot x\right.$ Xolvent), CCDC-1947520 $\left(\left[\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}\right]\left(\mathrm{BPh}_{4}\right)_{4} \cdot x\right.$ Solvent $)$ and CCDC-1947521 $\left(\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8} \cdot x\right.$ Solvent) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4.1 X-ray crystal structure of $\left[\mathrm{Cu}_{2}\left(7,6_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot x$ Solvent

Single crystals of $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ were grown by solvent diffusion of diisopropyl ether into an acetonitrile solution of $\left[\mathrm{Cu}_{2}\left(\mathbf{7}, \mathbf{6}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ containing excess KClO_{4}.

X-ray diffraction data collection was carried out on a Bruker APEX II DUO Kappa-CCD diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using Mo-Ka radiation ($\lambda=0.71073 \AA$ Å). The crystal-detector distance was 38 mm . The cell parameters were determined (APEX2 software) ${ }^{[88]}$ from reflections taken from three sets of 6 frames, each at 10 s exposure. The structure was solved by Direct methods using the program SHELXS-2013. ${ }^{[59]}$ The refinement and all further calculations were carried out using SHELXL-2013. ${ }^{[510]}$ The H -atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F^{2}. A semi-empirical absorption correction was applied using SADABS in APEX2; ${ }^{[88]}$ transmission factors: $\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}=0.6421 / 0.7460$.

4.2 X-ray crystal structure of $\left.\left[\left[\mathrm{Cu}_{4}(1,2)_{2}\right)_{4}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}\right]\left(\mathrm{BPh}_{4}\right)_{4} \cdot x$ Solvent

X - Single crystals of $\left[\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}\right]\left(\mathrm{BPh}_{4}\right)_{4}$ were grown by solvent diffusion of benzene into an acetonitrile solution of $\left[\mathrm{Cu}_{4}\left(\mathbf{1}, \mathbf{2}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$ containing excess KBPh_{4}.

X-Ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). The crystaldetector distance was 40 mm . The cell parameters were determined (APEX3 software) ${ }^{[511]}$ from reflections taken from two sets of 10 frames, each at 10s exposure. The structure was solved using the program SHELXT-2014. ${ }^{[12]}$ The refinement and all further calculations were carried out using SHELXL2014. ${ }^{[513]}$ The H -atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix leastsquares on F^{2}. A semi-empirical absorption correction was applied using SADABS in APEX3;[511] transmission factors: $\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}=0.5257 / 0.7528$

The SQUEEZE instruction in PLATON ${ }^{[514]}$ was applied. The residual electron density was assigned to half a molecule of the benzene solvent.

4.3 X-ray crystal structure of $\left[\mathrm{Fe}_{2}\left(3,4_{2}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{4} \cdot x$ Solvent

Single crystals of $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{4}$ were grown by solvent diffusion of diisopropyl ether into an acetonitrile solution of $\left[\mathrm{Fe}_{2}\left(\mathbf{3}, \mathbf{4}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ containing excess KPF_{6}.

X-ray diffraction data collection was carried out on a Bruker PHOTON III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$ Å). The crystaldetector distance was 40 mm . The cell parameters were determined (APEX3 software) ${ }^{[511]}$ from reflections taken from two sets of 10 frames, each at 10s exposure. The structure was solved using the program SHELXT-2014. ${ }^{[512]}$ The refinement and all further calculations were carried out using SHELXL2014. ${ }^{[513]}$ The H -atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix leastsquares on F^{2}. A semi-empirical absorption correction was applied using SADABS in APEX3;[511] transmission factors: $\mathrm{T}_{\min /} \mathrm{T}_{\max }=0.4013 / 0.7528$. The SQUEEZE instruction in PLATON ${ }^{[141]}$ was applied. The residual electron density was assigned to half a molecule of the acetonitrile solvent.

4.4 X-ray crystal structure of $\left[\mathrm{Zn}_{4}\left(5,4_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8} \cdot x$ Solvent

Slow diffusion of benzene into a solution of $\left[\mathrm{Zn}_{4}\left(5, \mathbf{4}_{2}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{8}$ in acetonitrile yellow crystals.
X-Ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N_{2} device, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). The crystaldetector distance was 40 mm . The cell parameters were determined (APEX3 software) ${ }^{[51]]}$ from reflections taken from two sets of 6 frames, each at 10s exposure. The structure was solved using the program SHELXT-2014. ${ }^{[512]}$ The refinement and all further calculations were carried out using SHELXL2014. ${ }^{[513]}$ The H -atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix leastsquares on F^{2}. A semi-empirical absorption correction was applied using SADABS in APEX3;[511] transmission factors: $\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}=0.6255 / 0.7528$.

The SQUEEZE instruction in PLATON ${ }^{[514]}$ was applied. The residual electron density was assigned to half a molecule of the tetrafluoroborate anion and three molecules of the acetonitrile solvent.

5. References

[S1] Choi, H. Y.; Srisook, E.; Jang, K. S.; Chi, D. Y. J. Org. Chem. 2005, 70, 1222-1226.
[S2] Cao, X.-Y.; Harrowfield, J.; Nitschke, J.; Ramírez, J.; Stadler, A.-M.; Kyritsakas-Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn, J.-M. Eur. J. Inorg. Chem. 2007, 2944-2965.
[S3] Ayme, J.-F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15-20.
[S4] Bhalla, V.; Vij, V.; Dhir, A.; Kumar, M. Chem. Eur. J. 2012, 18, 3765-3772.
[S5] Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522-8526.
[S6] Alfonsi, M. ; Dell'Acqua, M. ; Facoetti, D. ; Arcadi, A. ; Abbiati, G. ; Rossi, E. Eur. J. Org. Chem. 2009, 2852-2862.
[S7] Campbell, C. J.; Leigh, D. A.; Vitorica-Yrezabal, I. J.; Woltering, I. J. Angew. Chem. Int. Ed. 2014, 53, 13771-13774.
[S8] "M86-E01078 APEX2 User Manual", Bruker AXS Inc., Madison, USA, 2006.
[S9] Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
[S10] Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
[S11] "M86-EXX229V1 APEX3 User Manual", Bruker AXS Inc., Madison, USA, 2016.
[S12] Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
[S13] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
[S14] Spek, A.L. J. Appl. Cryst. 2003, 36, 7-13.

[^0]: ${ }^{\dagger}$ Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
 ${ }^{\ddagger}$ Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg ,8 allée Gaspard Monge, 67000 Strasbourg, France
 Email : lehn@unistra.fr

