Supporting Information for

Ultrastable Thorium Metal-Organic Frameworks for Efficient Iodine

Adsorption

Zi-Jian Li, ^{†‡} Zenghui Yue, ^{†‡} Yu Ju, ^{†‡§} Xiaolin Wu, [†] Yiming Ren, [#] Shaofei Wang, [#] Yongxin Li, [±] Zhi-Hui Zhang, [§] Xiaofeng Guo, [#] Jian Lin, ^{*†‡} and Jian-Qiang Wang^{†‡}

[†]Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.

[‡]Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China

[§]Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China

^{*II*} Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang 621907, China.

[⊥]Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

[#]Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA

Tables and Figures

Code	Th-SINAP-8	Th-SINAP-8
	@I ₂ /cyclohexane	@I2 vapor
CCDC number	1966326	1966327
Formula	$C_{12}H_6O_{15.33}Th$	$C_9H_{4.5}O_{12.75}Th_{0.75}$
Mass	627.54	490.66
Habit	octahedral	octahedral
Space Group	Fm-3m	Fm-3m
<i>a</i> (Å)	24.9934(4)	24.9545(11)
<i>b</i> (Å)	24.9934(4)	24.9545(11)
<i>c</i> (Å)	24.9934(4)	24.9545(11)
$V(Å^3)$	15612.6(7)	15540(2)
Ζ	24	32
$T(\mathbf{K})$	139	139
λ (Å)	0.71073	0.71073
Max. 2θ (°)	54.896	54.99
$ ho_{calcd} ({ m g~cm^{-3}})$	1.602	1.678
$\mu \ ({\rm mm^{-1}})$	5.786	5.822
GoF on F^2	1.087	1.061
R_1 , wR_2 [I > 2 σ (I)]	0.0613,	0.0859,
	0.1643	0.2347
R_1 , wR_2 (all data)	0.0714,	0.1033,
	0.1749	0.2540
$(\Delta \rho)_{\text{max}}, (\Delta \rho)_{\text{min}}/e (\text{\AA}^{-3})$	3.96, -1.81	2.90, -1.87

Table S1. Crystallographic Data for Th-SINAP-8@ I_2 /cyclohexane and Th-SINAP-8@ I_2 vapour.

Table S2. Selected bond distances [Å] for Th-SINAP-7 and Th-SINAP-8.

Assignment	Bond Distances	Th-SINAP-7	Bond Distances	Th-SINAP-8
Th-O ²⁻ /OH ⁻	Th(1)-O(2) ×4	2.48(2)	Th(1)-O(2) ×4	2.44(3)
	Th(1)-O(2A) ×4	2.29(2)	Th(1)-O(2A) ×4	2.28(4)
Th-O _{CO-}	Th(1)-O(1) ×4	2.482(11)	Th(1)-O(1) ×4	2.457(15)
Th-O _w	Th(1)-O(3)	2.67(2)	Th(1)-O(3)	2.66(4)
	Th(1)-O(3A)	2.68(4)		

Table S3 Kinetic parameters of the pseudo-second-order model^a for iodine adsorption on **Th-SINAP-7** and **Th-SINAP-8**.

	\mathcal{C}_0	M/V	q_0	Removal	Second-order kinetic model			
	$(mg \cdot kg^{-1})$	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	(%)	q_e	h	k	R^2
					$(mg \cdot g^{-1})$	$(mg \cdot g^{-1} \cdot h^{-1})$	$(g \cdot mg^{-1} \cdot h^{-1})$	
Th-SINAP-7	200	2.5	80	86.84	91.231	71.5786	0.0086	0.998
Th-SINAP-8	200	2.5	80	99.99	100.00	178.4275	0.0178	0.982

 $a_t/q_t = 1/h + t/q_e$ (where q_t , q_e are the amounts of adsorbate at certain time t or at equilibrium time, h is the initial adsorption rate, $h = kq_e^2$, and k is the rate constant).

Table S4. Fitting results of the sorption isotherms according to the Langmuir^a and Freundlich^b equations

Sample	Langmuir			Freundlich		
	Q_m	K_L (L/mg)	R ²	k_F	п	R ²
	(mg/g)			$(L^n/mol^{n-1}g)$		
Th-SINAP-7	93.49	0.110	0.65	32.66	0.174	0.98
Th-SINAP-8	232.77	0.127	0.90	76.88	0.176	0.94

^aThe linear equation of the Langmuir isotherm model is expressed as followed:

$$\frac{C_e}{q_e} = \frac{1}{q_m k_L} + \frac{C_e}{q_m}$$

Where q_m is the maximum sorption capacity corresponding to complete monolayer coverage (mg/g) and k_L is a constant indirectly related to sorption capacity and energy of sorption (L/mg), which characterizes the affinity of the adsorbate with the adsorbent. The linearized plot was obtained when we plotted C_e/q_e against C_e and q_m and k_L could be calculated from the slope and intercept.

^bThe linear equation of Freundlich isotherm model can be expressed by:

$$\ln q_e = \ln k_F + \frac{1}{n} \ln C_e$$

Where k_F and *n* are the Freundlich constants related to the sorption capacity and the sorption intensity, respectively. The linear plot was obtained by plotting $\ln q_e$ against $\ln C_e$, and the values of k_F and *n* were calculated from the slope and intercept of the straight line.

Figure S1. Micrographs of single crystals of (a) Th-SINAP-7 and (b) Th-SINAP-8.

Figure S2. The Th₆(μ_3 -O)₄(μ_3 -OH)₄(NDC)₆(H₂O)₆ SBU in **Th-SINAP-7** and **Th-SINAP-8**. O atoms from μ_3 -OH/-O and NDC are shown in red, O atoms from water are shown in green, Th atoms are shown in sky blue and C atoms are shown in gray.

Figure S3. PXRD patterns of as-synthesized (a) Th-SINAP-7 and (b) Th-SINAP-8.

Figure S4. TGA curves of Th-SINAP-7 and Th-SINAP-8.

Figure S5. BET surface area plots for (a) Th-SINAP-7 and (b) Th-SINAP-8.

Figure S6. SEM-EDS mapping and EDS spectra profiles of (a) **Th-SINAP-7** after absorption of I_2 from cyclohexane, (b) **Th-SINAP-8** after absorption of I_2 from cyclohexane, (c) **Th-SINAP-7** after absorption of I_2 vapor, and (d) **Th-SINAP-8** after absorption of I_2 vapor.

Figure S7. The TGA trace of I_2 vapour adsorbed (a) **Th-SINAP-7** and (b) **Th-SINAP-8**.

Figure S8. PXRD patterns of (a) **Th-SINAP-7** and (b) **Th-SINAP-8** after one and three cycles of iodine vapor adsorption.

Figure S9. PXRD patterns of (a) **Th-SINAP-7** and (b) **Th-SINAP-8** after absorbing I_2 /cyclohexane or I_2 vapor.

Figure S10. IR spectra of (a) **Th-SINAP-7** and (b) **Th-SINAP-8** after absorbing I_2 /cyclohexane or I_2 vapor.