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S1. Raw Data Generation 

Main group diatomic molecules were selected for the training set based on the availability 

of experimental reference data from the CRC handbook (bond dissociation energies)1,2 and NIST 

(equilibrium bond distances and first vibrational constants).3 

All training data was generated using CASSCF4 and CASPT25,6 in MOLCAS 8.27 using 

the ANO-RCC-VTZP.8 Cholesky decomposition9 with the default threshold of 10-4 a.u. was used 

to simplify the calculation and storage of two-electron integrals. Spin was chosen to match the 

experimental ground state. Spatial symmetry was not employed, i.e., all calculations were in C1. 

Potential energy curves (PECs) were calculated in two sets of single-point calculations. All 

calculations began at the experimental equilibrium bond distance (re,exp) using the MOLCAS 

“GssOrb” guess orbitals as input orbitals. Following an initial CASSCF calculation at re,exp, single-

point CASSCF/CASPT2 calculations proceeded on a loop over a list of increasing or decreasing 

internuclear distances, with each distance using the MOLCAS “JobIph” binary file from the 
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previous calculation as input. The distance interval between data points was made small (0.004 Å) 

near re,exp and gradually increased to 1.000 Å at large distances. 

Active spaces were selected systematically such that every permitted combination of the 

total number of active orbitals and total number of active electrons was considered. The number 

of active electrons was allowed to be 2, 4, 6, 8, or 10 for even-electron systems and 1, 3, 5, 7, or 9 

for odd-electron systems, or up to the total number of electrons in the molecule if that number was 

less than 10. The number of active orbitals was allowed to be any integer value above half the 

number of electrons and less than or equal to 10. For a given active space size, the specific orbitals 

were chosen so that the given number of electrons would be active without any manual reordering 

of input orbitals (i.e., through the use of the MOLCAS “ALTER” keyword). A consequence of 

this approach is that orbitals were selected based on their proximity to the HOMO and LUMO 

rather than properties such as their binding character or atomic orbital contributions. We chose this 

way of selecting active spaces for simplicity at this initial stage, but in future work we intend to 

expand the training set to include more variety within a given active space size. 

The use of a post-MCSCF method such as CASPT2 was necessitated by the use of 

experimental reference data. We selected CASPT2 as it is the most popular post-MCSCF method, 

but our protocol could just as easily be used to train with other methods such as NEVPT210 or MC-

PDFT.11 For CASPT2 we used the default IPEA shift12 of 0.25 a.u. to correct the zeroth-order 

Hamiltonian, and also used an imaginary shift13 of 0.2 a.u. to minimize intruder states. While in 

principle our protocol could work with other settings for the IPEA shift if one were so inclined, 

we found that lower values of the imaginary shift led to significant increases in negative results 

due to discontinuous PECs. 



S4 

For each active space of the diatomic molecules investigated, potential energy curves were 

obtained with CASPT2 energies unless CASSCF/CASPT2 calculations fail to converge (Figure 

S1). The bond dissociative/spectroscopic properties (i.e., the bond dissociation energy (De), the 

equilibrium bond length (re), the vibrational constants including the harmonic (ωe)) from the 

computed potential energy curves were calculated using VIBROT module in MOLCAS14. The 

module solves the ro-vibrational Schrödinger equation numerically by fitting a potential energy 

curve using cubic splines. To obtain accurate the properties, the number of grid points and the 

internuclear distance range for the numerical solution were set to 1,000 and 1.0 to 10.0 Angstroms, 

respectively.  
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Figure S1-1. All potential energy curves using CASSCF/CASPT2 energies for homonuclear 

diatomic molecules, hydrides, and BN.  
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Figure S1-2. All potential energy curves using CASSCF/CASPT2 energies for oxides, fluorides, 

and CN. 
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S2. Featurization of Raw Data  

Predictive variables (i.e., features) include the numbers of active electrons and orbitals, the 

internuclear distance (in Ångstroms), occupation numbers, and molecular orbital (MO) 

coefficients. Only MO coefficients related to 1s, 2s, 2p, 3s, and 3p atomic orbitals are extracted 

from CASSCF calculation results in order to exclude insignificant information and reduce the 

computational cost of training the ML models. MO coefficients are set to zero for MOs where the 

occupation number is zero in order to ignore the virtual orbitals and insignificant orbitals regarding 

orbital occupancy. 

 

S3. Automated Labeling Procedure  

To select a reference potential energy curve (PEC) data for each system among simulated 

PECs obtained through CASSCF/CASPT2 calculations, the Hulburt-Hirschfelder (HH) potential 

function was adopted (equations below).15,16 Among the various complex potential functions for 

diatomic molecules, the Hulburt-Hirschfelder potential is helpful because it does not require 

additional high-level of calculations, only experimental data such as bond dissociation energy, 

equilibrium bond length, vibrational constants that are available for diatomic systems of our work. 
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 where 𝐷% is the energy of dissociation, 𝑟 is internuclear distance, 𝑟% is the equilibrium bond 

length, 𝜔% is the harmonic vibrational constant, 𝜔%𝑥% is the first anharmonicity constant (note 

that the symbol 𝜔%𝑥% is a single constant, not a product), 𝛼% is the first term rotational constant 

(also known as the vibration-rotation coupling constant), 𝐵% is the rotational constant in 

equilibrium position, 𝑎O is the Dunham’s coefficients, and 𝑏, 𝑐 are the Hulburt-Hirschfelder 

constants. 

To compare PECs, PECs needs to be shifted along y axis (i.e., energy) since the 

multiconfigurational calculations with different active spaces could result in different absolute 

energies even though the overall shape of the PECs are similar (See Figure S2, an example of 

BeH). By comparing with the HH potential or reference PECs, simulated PECs are shifted to 

minimize a sum of median absolute errors between energies of two PECs at each internuclear 

distance. 
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Figure S2. Comparison of original potential energy curves and shifted curves for BeH 

 

For selecting a reference PEC that is the most similar PEC to the corresponding Hulburt-

Hirschfelder (HH) PEC, deviation area was calculated. To do this, curves of the HH PEC and 

one of CASPT2 PECs were redefined as two different curves: upper and lower bound curves. 

After that, each curve was fitted separately based on the B-spline method using interpolate 

function in the open-source Python library SciPy.17 In the range from 0.65*re to 5.0*re, the area 

bound by the fitted upper and lower curves was computed numerically. As shown in Figure S3, 

the selected reference PECs are well matched with corresponding HH PECs except for BeO and 

LiF (Figure S4). In the case of BeO, calculated bond dissociation energies via CASSCF/CASPT2 

are much larger than the experimental value. For LiF, most cases with different active space 

resulted in a large discontinuity at large separation (i.e., larger than 10 Angstrom). The errors in 

BeO are likely due to dissociation to the wrong state. Our calculations are spin-constrained, 

meaning that the singlet spin of the BeO molecule is preserved throughout the entire 

dissociation. For most diatomic systems this does not pose a problem, but BeO dissociates to a 

singlet Be atom and a triplet O atom, which would be a triplet overall.18 The errors in our 
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calculated dissociation energies with respect to experiment can largely be explained by the 

energy difference between the ground-state 3P O atom and the excited-state 1D. For LiF, most 

PECs dissociate to Li+ and F˗, and at large distances abruptly transition to neutral Li and F, 

which introduces large discontinuities in the PEC. For both systems, most data points in all PECs 

are describing states other than the states of interest, and so BeO and LiF were both excluded 

from the ML protocol development. 

 

Table S1. Comparison of Experimental and Simulation Data of Bond Dissociative Properties for 

Reference PECs with the Best Active Space Selection 

System Active 
space 

De [kcal/mol] re [Å] ωe [cm-1] 
cal. exp. error cal. exp. error cal. exp. error 

H2 (2, 4) 107.4 109.5 -2.1 0.758 0.741 0.017 4389 4401 -12 
Li2 (4,10) 23.8 24.2 -0.4 2.688 2.673 0.015 348 351 -3 
B2 (6,10) 66.5 69.9 -3.5 1.608 1.590 0.018 1076 1060 16 
C2 (8, 7) 151.2 149.5 1.7 1.249 1.243 0.006 1852 1855 -3 
N2 (10,10) 261.2 228.3 32.9 1.104 1.098 0.006 2328 2359 -31 
O2 (8, 7) 122.3 120.5 1.8 1.213 1.208 0.005 1571 1580 -9 
F2 (6, 6) 36.7 38.3 -1.7 1.423 1.412 0.011 901 917 -16 

LiH (4,10) 56.4 58.0 -1.6 1.605 1.595 0.010 1397 1405 -8 
BeH (5, 4) 51.4 54.9 -3.5 1.352 1.343 0.009 2040 2061 -21 
BH (6, 6) 84.6 85.0 -0.4 1.230 1.232 -0.002 2398 2367 31 
CH (7, 6) 81.5 84.0 -2.5 1.120 1.120 0.000 2834 2861 -27 
OH (7, 6) 106.7 107.2 -0.4 0.975 0.970 0.005 3720 3738 -18 
HF (8, 7) 140.4 141.1 -0.8 0.925 0.917 0.008 4081 4138 -57 
BN (6,10) 94.8 91.6 3.2 1.330 1.325 0.005 1515 1515 0 
CN (7, 6) 179.3 181.3 -2.0 1.173 1.172 0.001 2063 2069 -6 
LiO (9, 8) 80.3 81.7 -1.4 1.716 1.688 0.028 793 815 -22 
BeO (10,7) 172.3 105.6 66.6 1.334 1.331 0.003 19527 1457 18070 
BO (7, 8) 193.1 195.2 -2.1 1.212 1.205 0.007 1881 1885 -4 
CO (10, 9) 257.5 259.5 -2.0 1.134 1.128 0.006 2147 2170 -23 
NO (9, 7) 144.7 152.8 -8.1 1.159 1.151 0.008 1870 1904 -34 
FO (9, 6) 51.2 53.2 -2.0 1.360 1.354 0.006 1043 1053 -10 
LiF (10,6) 136.4 138.3 -2.0 1.765 1.564 0.201 4615 911 3704 
CF (5,10) 128.1 123.8 4.3 1.279 1.272 0.007 1435 1308 127 

*De: bond dissociation energy, re: equilibrium bond length, ωe: vibrational constant  
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All of the errors for bond dissociation energy (De) are larger than the chemical accuracy 

of 1 kcal/mol, indicating that chemical accuracy cannot be used to identify which active space 

selections would be good enough among available data. Errors larger than chemical accuracy for 

bond dissociation energy of diatomic molecules are not rare even using multiconfiguration 

calculations with a larger basis set than the one we used.19 In particular, N2 showed the largest 

error and it is known that a very large basis set is needed to obtain accurate bond dissociation 

energy for this triple-bonded system.19 Similarly, the errors for vibrational frequency show a 

large variation (~30 cm-1) that is beyond the spectroscopic accuracy (i.e, ±1 cm-1).20 However, 

many of the errors for equilibrium bond length are smaller than 0.01 Å. 
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Figure S3-1. Reference potential energy curves for diatomic molecules that are the most similar 

to the corresponding Hulburt-Hirschfelder potential energy curve 
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Figure S3-2. Reference potential energy curves for diatomic molecules that are the most similar 

to the corresponding Hulburt-Hirschfelder potential energy curve 
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Figure S4. Representative potential energy curves for BeO and LiF. There is no similar potential 

energy curve compared to the corresponding Hulburt-Hirschfelder potential energy curve. 
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Figure S5. Representative potential energy curves for H2 that show imbalanced data points. A 

portion of the bad-labeled data points are extremely small, and the data points only exist near the 

equilibrium bond length. 

 

Assigning a good or bad label to each data point is based on comparison between a test 

PEC of interest and the corresponding reference PEC with respect to energy and its derivative. 

We have set two different criteria for the labeling: First, to assign a good label to a data point, 

energy of the data point of a target system should be within the energy tolerance of 3% on 

dimensionless PEC space that is generated by dividing the internuclear distance (i.e., x-axis) and 

the energy (i.e., y-axis) by the corresponding equilibrium bond length and bond dissociation 

energy, respectively. We used the dimensionless PEC space because the original x/y axes have 

different units, so the 3% energy tolerance could not capture similar trend of the PEC shapes at 

very short internuclear distance where slopes of the PECs are very large. To compute upper and 

lower E bounds of the given reference PEC at arbitrary distances for the comparison, two 

equidistant curves (i.e., parallel curves) with respect to the reference PEC were obtained via a 

fitted energy and its derivate of the reference PEC using the B-spline method (Python library 
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SciPy). Second, derivatives of energy were compared between the reference and test PECs. The 

derivatives were calculated from fitted PEC lines obtained via the B-spline method (Python 

library SciPy) on the dimensionless PEC space produced by dividing x axis and (y axis-y_min) 

by the corresponding equilibrium bond length and bond dissociation energy, respectively. The 

difference between E derivates for each PEC with a smaller derivate value was used to determine 

whether a given data point is labeled as good or bad as below. The smaller derivate was 

considered because E derivative tolerance needs to be larger when both slopes are large to 

capture the overall variation trend of PEC. Too small derivative is ignored and changed to 0.05. 

𝑙𝑎𝑏𝑒𝑙𝑒𝑑	𝑎𝑠	𝑔𝑜𝑜𝑑	𝑖𝑓	
abs(derivative	of	the	reference	PEC − derivative	of	the	test	PEC)
min	(derivative	of	the	reference	PEC, derivative	of	the	test	PEC) 	≤ 1.0 
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Figure S6. Confusing potential energy curves for C2. Both good and bad PECs have similar errors 

in dissociative properties, but only can be distinguished only by different curvatures compared to 

the reference PEC. 

 

Figure S7. Confusing potential energy curves for CO. Both good and bad PECs have similar errors 

in dissociative properties, but only can be distinguished only by different curvatures compared to 

the reference PEC. 
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Table S2. Errors of dissociative properties for C2 and CO. 

Diatomic 
molecule 

Active 
space 

PEC 
label 

Absolute error Relative error 

De [eV] re [Å] ωe [cm-1] De [%] re [%] ωe [%] 

C2 

(8, 7) 1 0.08 0.0067 3.0 1.23 0.54 0.16 
(10, 8) 1 0.01 0.0037 0.3 0.15 0.30 0.02 
(6, 9) 0 0.15 0.0070 9.5 2.31 0.56 0.51 
(6,10) 0 0.17 0.0073 25.4 2.62 0.59 1.37 
(8, 8) 0 0.12 0.0084 16.0 1.85 0.68 0.86 
(8, 9) 0 0.16 0.0084 10.5 2.47 0.68 0.57 
(8,10) 0 0.19 0.0076 137.0 2.93 0.61 7.39 
(10, 9) 0 0.09 0.0057 10.3 1.39 0.46 0.56 
(10,10) 0 0.13 0.0162 113.7 2.01 1.30 6.13 

CO 

(10, 9) 1 0.09 0.0061 23.2 0.80 0.54 1.07 
(10,10) 1 0.23 0.0063 22.4 2.04 0.56 1.03 
(4, 4) 0 0.07 0.0047 281.8 0.62 0.42 12.99 
(4, 6) 0 0.25 0.0038 10.7 2.22 0.34 0.49 
(4, 7) 0 0.04 0.0055 7.6 0.36 0.49 0.35 
(4, 8) 0 0.08 0.0057 10.6 0.71 0.51 0.49 
(4, 9) 0 0.05 0.0059 6.3 0.44 0.52 0.29 
(4,10) 0 0.06 0.0058 10.1 0.53 0.51 0.47 

*De: bond dissociation energy, re: equilibrium bond length, ωe: vibrational constant  

 

Table S3. Number of data points for the diatomic molecules used in this work. 

No. Diatomic 
molecule 

Spin 
multiplicity 

Total 
number of 
data points 

Number of 
good labeled 

points 

Number of 
bad labeled 

points 

% of good 
data points 

1 H2 1 1746 1712 34 98.05 
2 Li2 1 6797 5093 1704 74.93 
3 B2 3 8754 6262 2492 71.53 
4 C2 1 8897 5192 3705 58.36 
5 N2 1 7674 5472 2202 71.31 
6 O2 3 8427 4400 4027 52.21 
7 F2 1 8718 7006 1712 80.36 
8 LiH 1 4581 3936 645 85.92 
9 BeH 2 5293 3788 1505 71.57 
10 BH 1 6992 5195 1797 74.30 
11 CH 2 6985 5459 1526 78.15 
12 BN 3 8552 4803 3749 56.16 
13 CN 2 7691 4881 2810 63.46 
14 OH 2 7810 6004 1806 76.88 
15 LiO 2 8800 7175 1625 81.53 
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16 BeO 1 8541 4357 4184 51.01 
17 BO 2 7853 5450 2403 69.40 
18 CO 1 9370 5568 3802 59.42 
19 NO 2 7076 4583 2493 64.77 
20 HF 1 7361 6873 488 93.37 
21 CF 2 7734 6096 1638 78.82 
22 FO 2 6720 5211 1509 77.54 
23 LiF 1 10095 7892 2203 78.18 

 

S4. Development of XGBoost (eXtreme Gradient Boosting) Models 

The open source gradient boosting decision tree Python library XGboost21 was used to 

build and train the classification ML models for this work. XGBoost is known to be powerful for 

practical ML problems in the Kaggle competitions,22,23 and it is appropriate for training a large 

number of data points since it supports parallelization of training procedure. It is also easier to 

optimize hyperparameters in XGBoost than in artificial neural networks, which enables 

automation of the hyperparameter optimization procedure. Hyperparameter tuning was performed 

using Hyperopt,24 a Bayesian optimization tool in Python with 10-fold cross-validation. The 

explored hyperparameter space was set as listed in Table S4, and 20 cycles were conducted for the 

hyperparameter optimization. 

For both of the training and evaluations of ML models, accuracy is adopted as a metric, 

meaning that the same number of good and bad data points were sampled with the maximum 

available number of data points for each system randomly for each run. In general, for an 

imbalanced data set (i.e., different number of data points for each class), the area under the curve 

(AUC) of the receiver operating curve (ROC) is used as the evaluation metric. However, we did 

not use the AUC because it measures binary classifier performance across all possible decision 

thresholds,25 not for a specific threshold such as 50% in this work. In addition, accuracy is easier 

to interpret than the AUC. All of ML prediction results in Figures 3 and 4 were obtained by 
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averaging results from 10 different ML models with different random seeds that changed the 

shuffling/sampling of training/test data and hyperparameters of the ML models. 

 

Table S4. Hyperparameter search space. 

No. Hyperparameter Search space 

1 Number of trees 
(n_estimator) From 100 to 1000 in intervals of 10 

2 Boosting learning rate  
(learning_rate) 

1e-4, 1e-3, 1e-2, 1e-1, 1e0,  
2e-4, 2e-3, 2e-2, 2e-1, 2e0,  
3e-4, 3e-3, 3e-2, 3e-1, 3e0,  
5e-4, 5e-3, 5e-2, 5e-1, 5e0 

3 
Minimum sum of instance 
weight needed in a child 

(min_child_weight) 
0.1, 0.5, 1, 2, 3, 4, 5, 6. 7, 8, 9, 10 

4 Maximum tree depth 
(max_depth) From 5 to 50 in intervals of 1 
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Figure S8. Comparison of ML model prediction performances when the models are trained on the 

same numbers of training data points (i.e., 1000, 2000, 3000, 5000) per a diatomic molecule and 

then predicted on all the diatomic systems we investigated. 
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Figure S9. Average root-mean-square deviation between heat maps generated using different 

number of training data points and the heat map produced with all available training data points. 

 

 

Figure S10. Average prediction accuracy of ML models trained on single diatomic system over 

other 19 diatomic systems versus the number of possible active spaces limited to the maximum 

size of 10. 
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Figure S11. Average prediction accuracy of ML model trained on single diatomic system over 

other 19 diatomic systems versus (a) average electronegativity and (b) new metric obtained by 

averaging max-min rescaled bond order and average electronegativity. 
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Table S5. Top 3 correlated diatomic systems for a target system. 

No. Target system Best correlated 
system 

2nd best correlated 
system 

3rd best correlated 
system  

1 Li2 LiH OH BO 
2 B2 F2 CN NO 
3 C2 CN N2 NO 
4 N2 O2 FO CO 
5 O2 N2 CO C2 
6 F2 BN NO CH 
7 LiH Li2 O2 C2 
8 BeH BO O2 CH 
9 BH BO C2 NO 
10 CH OH LiO Li2 
11 OH LiO C2 LiH 
12 HF OH CO C2 
13 BN N2 CN O2 
14 CN CO NO C2 
15 LiO CN BN C2 
16 BO CN CO CF 
17 CO BN N2 CN 
18 NO CO CN FO 
19 FO N2 LiH O2 
20 CF Li2 BO CO 
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Figure S12. Representative potential energy curves for each case of the confusion matrixes for 

BeH. 
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Figure S13. Representative potential energy curves for each case of the confusion matrixes for CH. 
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Figure S14. Representative potential energy curves for each case of the confusion matrixes for BN. 
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Figure S15. Representative potential energy curves for each case of the confusion matrixes for BO. 
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Figure S16. Representative potential energy curves for each case of the confusion matrixes for CO. 

 



S30 

 

Figure S17. Representative potential energy curves for each case of the confusion matrixes for 

LiH. 
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Figure S18. Representative potential energy curves for each case of the confusion matrixes for BH. 
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Figure S19. Representative potential energy curves for each case of the confusion matrixes for CN. 
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Figure S20. Representative potential energy curves for each case of the confusion matrixes for 

LiO. 
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Figure S21. Representative potential energy curves for each case of the confusion matrixes for 

NO. 
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Figure S22. Representative potential energy curves for each case of the confusion matrixes for HF. 
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Table S6. Comparison of Top 3 good active space selections with the smallest number of 

configurations between those identified via the automated labeling procedure and those predicted 

via the ML protocol. The numbers with the underline indicate a bad active space identified via the 

automated labeling. 

Number of 
good active 

spaces matched 
System 

Automated labeling ML protocol 

Good active space Number of 
configurations 

Good active 
space 

Number of 
configurations 

3 CH (3, 5), (3, 6), (5, 5) 40, 70, 75 (3, 5), (3, 6), (5, 5) 40, 70, 75 

2 

HF (4, 3), (2, 4), (6, 4) 6, 10, 10 (4, 3), (6, 4), (8, 5) 6, 10, 15 
BN (6, 6), (6, 7), (4, 9) 189, 588, 630 (6, 7), (4, 9), (6, 8) 588, 630, 1512 
BO (5, 5), (5, 8), (5, 9) 75, 1008, 1890 (5, 5), (5, 8), (9, 8) 75, 1008, 2352 

CO (4, 6), (6, 8), (6, 9) 105, 1176, 2520 (6, 8), (6, 9), 
(6,10) 

1176, 2520, 
4950 

CF (5, 5), (7, 7), (5, 8) 75, 784, 1008 (7, 7), (5, 8), (5, 9) 784, 1008, 1890 

1 OH (3, 5), (7, 5), (9, 6) 40, 40, 70 (3, 5), (5, 5), (3, 7) 40, 75, 112 
FO (3, 5), (3, 6), (9, 6) 40, 70, 70 (9, 6), (5, 6), (7, 6) 70, 210, 210 

0 
CN (5, 6), (7, 6), (5, 7), 

(9, 7) 210, 210, 490, 490 (9, 8), (5,10), (9, 
9) 

2352, 3300, 
8820 

LiO (3, 4), (3, 5), (7, 5) 20, 40, 40 (5, 6), (5, 7), (7, 7) 210, 490, 784 
NO (5, 5), (5, 6), (7, 6) 75, 210, 210 (9, 9), (9,10) 8820, 27720 

N/A 
LiH (2, 4), (2, 5), (2, 6) 10, 15, 21 N/A N/A 
BeH (3, 3), (5, 4) 8, 20 N/A N/A 
BH (4, 5), (4, 6), (6, 6) 50, 105, 175 N/A N/A 
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