
1

Supporting Information (SI) for:

Fast evaluation of two-center integrals over Gaussian charge distributions and
Gaussian orbitals with general interaction kernels

Mieke Peels and Gerald Knizia
J. Chem. Theory Comput. 2020, https://doi.org/10.1021/acs.jctc.9b01296

List of Appendices

A. Details of basis functions 1
A.1. Expressions for solid harmonics 1
A.2. Equivalence of Hermite and standard solid

harmonics 1
A.3. Normalization factors for Gaussian primitives 2

B. Aspects of code design 4
B.1. Basis function data representation 4
B.2. Representation of interaction kernels 4
B.3. Interfaces of integral routines 4

C. Proofs, Derivations, Theorems 6
C.1. Basic results and theorems 6
C.2. Proof of the used McMurchie-Davidson

Recurrence Relation (MDRR) 6

D. Evaluation of the I0 integral 7
D.1. General simplifications 7
D.2. Radially non-separable kernels 8

E. Expressions for concrete kernel functions 8
E.1. Coulomb kernel K(r12) = 1/r12 8
E.2. Gm(ρ,T) for various factorizable integral

kernels 8
E.3. Gm(ρ,T) for Gaussian fits of general K(r12) 9

F. Transformations of integral kernels 9
F.1. Transformation K̃(r12) = e−ωr2

12 K(r12) 9
F.2. Transformation K̃(r12) = r2

12K(r12) 10
F.3. Attenuated Coulomb kernel

K̃(r12) = erf(r12)/r12 11

G. Evaluation of the Boys function Fm(T) 12

Appendix A: Details of basis functions

A.1. Expressions for solid harmonics

While it is possible to use Cartesian Gaussian basis func-
tions directly (such as in Eq. (4)), in practice it is advanta-

geous to instead transform the Cartesian monomial prefac-
tors into polynomials which represent an (almost)-irreducible
representation of the rotation group around the center they
are based on. The representation used here, as in most non-
relativistic quantum chemistry programs, is given by the real
solid harmonics {Sl

m(r−A)} (where A is the chosen center of
the basis function). For a given angular momentum l around
the basis function’s center A, there are 2l + 1 real solid har-
monics {Sl

m(r−A); m = −l,(−l +1), . . . ,(l−1), l}, each of
which is a polynomial in the Cartesian components of vec-
tor (or vector-operator) r = (x,y,z) with monomials of total
degree l:

Sl
m(r) = Sl

m(x,y,z) =
l

∑
i=0

l−i

∑
j=0

l−i− j

∑
k=0

slm
i jkxiy jzk. (A1)

As described around Eq. (6), for a given integer l ≥ 0, this
sum with the restriction l = i+ j+ k, will be abbreviated as

Sl
m(r) =

(l)

∑
i jk

slm
i jkxiy jzk. (A2)

The real solid harmonics, and their relationship to complex
solid harmonics and spherical harmonics were provided in
Ref. 1 and are discussed in detail in Ref. 2. For completeness,
the recursive formulas used here are reproduced in Tab. I.
While in some applications it is beneficial to employ the recur-
sive formulas directly, we here use them to pre-compute and
tabulate the set of expansion coefficients {slm

i jk} from Eq. (6),
using either symbolic algebra or high-precision arithmetic;
Tab. II contains an explicit list of the first few Sl

m(r) obtained,
as polynomials in x, y, and z. From these, the slm

i jk coefficients
can be inferred. In our programs, the coefficients are then
used in generated code to perform both explicit and inlined
solid harmonic transformations without addressing overhead.

A.2. Equivalence of Hermite and standard solid harmonics

Apart from the fact that for a given l ≥ 2 there are less solid
harmonics (namely, 2l +1) than there are Cartesian functions
(namely, (l + 1)(l + 2)/2), the solid harmonic basis has an
important theoretical advantage, which is discussed in detail
by Weniger3,4 and later also by Reine et al.5: If applied to a

2

TABLE I. Recursive formulas for computing the real solid harmonics
Sl

m(r) used in this work. Taken from Ref. 2. Here δ1l is 1 when l = 1
and 0 otherwise, and non-existent terms (i.e., Sl

m with l < 0 or |m|> l)
are zero. Eqs. (A4) and (A5) are used for the terms with |m|= l and
Eq. (A6) is used for the remaining terms.

S0
0 := 1 (A3)

Sl
l =

√
2δ1l (2l−1)

2l

(
xSl−1

l−1− (1−δ1l)ySl−1
−(l−1)

)
(A4)

Sl
−l =

√
2δ1l (2l−1)

2l

(
ySl−1

l−1 +(1−δ1l)xSl−1
−(l−1)

)
(A5)

Sl
m =

1√
(l +m)(l−m)

(
(2l−1)zSl−1

m −√
(l−1+m)(l−1−m)

(
x2 + y2 + z2

)
Sl−2

m

)
(A6)

Gaussian exponential function, the polynomial and gradient
solid harmonics are identical:

Sl
m

(
1

2α
∇

)
exp
(
−α ‖r‖2

)
= Sl

m(r)exp
(
−α ‖r‖2

)
. (A7)

This is a result of the Hobson theorem discussed in Appx. C.1.
Here the spherical tensor gradient operator3 Sl

m(∇) is defined
analogously to Eq. (6), by inserting ∇ = (∂

∂x ,
∂

∂y ,
∂

∂ z) instead
of r = (x,y,z) as argument to Sl

m. This property shown in
Eq. (A7) means that, as long as monomials in (x,y,z) are
ultimately transformed into solid harmonics Sl

m(x,y,z), we
need not distinguish between Cartesian monomials as Gaus-
sian prefactors:

xlx ylyzlze−α‖r2‖

and derivative polynomial prefactors:(
1

2α

∂

∂x

)lx(1
2α

∂

∂y

)ly(1
2α

∂

∂ z

)lz
e−α‖r2‖,

as all monomial contributions xiy jzk with i+ j+ k < l around
the given center A are annihilated in the solid harmonic trans-
formation. Only the contributions at the order of exactly
i+ j+ k = l matter!

This property is central to the integral algorithm pre-
sented in this work, which ultimately allows eliminating all
exponent-dependent prefactors from the actual recursive in-
tegral computations. The property was also used in several
prior works to simplify or unify5 integral evaluation tech-
niques, or to construct entirely diffent approaches based di-
rectly on angular momentum coupling algebra, rather than
the conventional quantum chemical recursive Gaussian in-
tegration techniques.6–12 Under certain circumstances, these
simplifications also allowed massive increases in the compu-
tational efficiency compared to the computation of integrals
over Cartesian Gaussian basis functions.13

TABLE II. Explicit expressions for the real solid harmonics Sl
m(r)

with l ≤ 4 used in this work. These are obtained from the recurrence
formulas in Tab. I. A Python script to evaluate these at arbitrary
order is provided. The coefficients slm

i jk from Eq. (6) can be read off

from this: For example, the row for S4
4 shows that s44

040 =
√

35
8 , s44

220 =

− 3
√

35
4 , and s44

400 =
√

35
8 , with all other s44

i jk coefficients vanishing.

S0
0(r) = 1

S1
−1(r) = y
S1

0(r) = z
S1

1(r) = x

S2
−2(r) =

√
3xy

S2
−1(r) =

√
3yz

S2
0(r) = z2− 1

2 y2− 1
2 x2

S2
1(r) =

√
3xz

S2
2(r) =−

√
3

2 y2 +
√

3
2 x2

S3
−3(r) =−

√
10
4 y3 + 3

√
10

4 x2y

S3
−2(r) =

√
15xyz

S3
−1(r) =

√
6yz2−

√
6

4 y3−
√

6
4 x2y

S3
0(r) = z3− 3

2 y2z− 3
2 x2z

S3
1(r) =

√
6xz2−

√
6

4 xy2−
√

6
4 x3

S3
2(r) =−

√
15
2 y2z+

√
15
2 x2z

S3
3(r) =− 3

√
10

4 xy2 +
√

10
4 x3

S4
−4(r) =−

√
35
2 xy3 +

√
35
2 x3y

S4
−3(r) =−

√
70
4 y3z+ 3

√
70

4 x2yz

S4
−2(r) = 3

√
5xyz2−

√
5

2 xy3−
√

5
2 x3y

S4
−1(r) =

√
10yz3− 3

√
10

4 y3z− 3
√

10
4 x2yz

S4
0(r) = z4−3y2z2 + 3

8 y4−3x2z2 + 3
4 x2y2 + 3

8 x4

S4
1(r) =

√
10xz3− 3

√
10

4 xy2z− 3
√

10
4 x3z

S4
2(r) =− 3

√
5

2 y2z2 +
√

5
4 y4 + 3

√
5

2 x2z2−
√

5
4 x4

S4
3(r) =− 3

√
70

4 xy2z+
√

70
4 x3z

S4
4(r) =

√
35
8 y4− 3

√
35

4 x2y2 +
√

35
8 x4

A.3. Normalization factors for Gaussian primitives

As explained in Sec. 4, an integral code itself does not
need to be concerned with the normalization factors of Gaus-
sian basis functions, because those factors can be absorbed
as constants into the (anyway completely general) basis func-
tion contraction coefficients ω(τ,z) of Eq. (7). Nevertheless, in
most practical applications the basis function normalization is
important—and since there are multiple feasible choices (de-
pending on both usage context and free user choice), normal-
ization is a common source of both confusion and of incom-
patibility of formulas and numerical techniques obtained from
different sources. For this reason, we briefly discuss the two
most important types of normalization conventions of primi-
tive Gaussians and point out subtleties in their handling.

3

Charge/multipole normalization. In the simplest case, the
individual Gaussian basis functions themselves could be used
to represent electronic charges or multipoles, and should be
normalized accordingly. This may be relevant, for example, in
the evaluation of bare or effective interactions between finite
molecular charge distributions in the development of force
fields, model potentials (e.g., similar developments to MB-
pol14), solvation models, frozen-density embedding methods,
or other techniques (discussed in Sec. 2). For these, the molec-
ular charge distributions (as opposed to molecular orbitals,
see below) could be represented as a linear combination of
atomic Gaussian basis functions, and the presented integra-
tion techniques could be used to evaluate energy contribu-
tions from parameterized Coulomb, screened Coulomb, or ex-
change interactions, etc., and their nuclear gradients.15

For example, if a primitive basis function

ρc(r) = qCNchg(γ)e−γ‖r−C‖2 , (A8)

is to represent a finite spherically-symmetric Gaussian charge
distribution of total electronic charge qC at point C, then the
normalization factor Nchg(γ) is determined by the condition∫

ρc(r)d3r = qC. (A9)

Note the absence of a norm-squared in the integrand (cf
Eq. (A11)). This condition can be evaluated by applying the
basic Gaussian integral Eq. (C2) once in each Cartesian direc-
tion, and yields the normalization factor

Nchg(γ) =
(

γ

π

) 3
2
. (A10)

This factor qCNchg(γ) could then either be used as prefactor of
the basic integrals (with one contraction coefficient ω(τ,z) = 1
in Eq. (7)), or absorbed into the correponding contraction co-
efficient. The same charge normalization constant Eq. (A10)
would be used with basis functions of l ≥ 1 to represent finite
multipoles at points C in space (or, in general, finite linear
expansions of arbitrary charge distributions).

We note in passing that the given formulas can be taken into
the limit of the exponents ζ →+∞ to represent point-charges
or point-multipoles and the interactions of the same with finite
charges and multipoles. To do this, separate code may not be
necessary; as long as the target quantity is well-defined, the
given integral formulas are stable when used with very large
but finite exponents such as ζ = 1020; indeed, this is how our
own DFT program evaluates nuclear attraction integrals with
inline-contracted three-index integrals.

In some cases also the limit ζ → +0 may be useful, for
example to make basis functions represent static external po-
tentials V (x,y,z) = V0 · z or similar. But this limit is more
problematic numerically, and if used, the formulas and im-
plementation need to be carefully checked for compatibility.

Orbital basis function normalization. This kind of nor-
malization is relevant when the Gaussian basis functions are
used to represent atomic orbitals over which molecular or-
bitals are to be expanded, which may apply to both semi-
empirical (e.g., Refs. 16 and 17) and ab-initio quantum chem-
istry methods. In particular, in ab-initio quantum chemistry

methods, frequently well-defined and standardized sets of
Gaussian basis functions are used to expand molecular or-
bitals, with basis sets being researched and published inde-
pendently of the methods they are meant to be used for, and
carrying standardized names such as def2-nZVPP18,19, ano-
pVnZ20, or cc-pCVnZ-F12.21 A published basis set for an ele-
ment then specifies all primitive exponents ζτ and correspond-
ing modified contraction coefficients ω̃(τ,z) to be used for the
radial basis functions in Eq. (7). However, the contraction co-
efficients are typically published with respect to normalized
primitive Gaussians which fulfill∫

|ψ̃a(r)|2 d3r = 1, (A11)

unlike the unnormalized raw primitive Gaussians discussed in
Sec. 4 and the rest of this text. Consequently, the contraction
coefficients ω̃(τ,z) published in the ab initio basis function lit-
erature (or obtained from libraries such as the former EMSL
basis set exchange22 or its successor23) need to be divided by
the normalization integral of the raw Gaussian basis functions
Sl

m(r)e−ζ‖r‖2 ,

Nao(ζ , l) =

√∫ ∣∣∣Sl
m(r)e−ζ‖r‖2

∣∣∣2 d3r (A12)

=

(
π

2ζ

) 3
4
·

√
(2l−1)!!
(4ζ)l , (A13)

to obtain the coefficients ω(τ,z) as specified in Eq. (7):

ω(τ,z) :=
ω̃(τ,z)

Nao(ζ , l)
. (A14)

In these, the double factorial n!! for integers n≥−1 is defined
by the initial conditions and recurrence relation

(−1)!! := 1, 0!! := 1, n!! := (n−2)!! ·n. (A15)

In a practical program, this re-normalization norm would typ-
ically be evaluated only when the basis function data is first
loaded or converted from a basis set library, and then absorbed
via Eq. (A14) into the resident data structures characterizing
each element’s basis functions.

The Gaussian primitive norm in Eq. (A13) is compatible
with the solid harmonics as specified in Appendix A.1. If in-
stead angular factors employing spherical normalization con-
vention are used, or l-component weighting (e.g., the sphere
integral of the used harmonics evaluates to 4π or 4π

2l+1 instead
of 1 as here), then additional factors of

√
4π and/or 1√

2l+1
may

occur. For a detailed derivation of a related normalization con-
dition, see see Eq. (6.6.14) in Ref. 2 (note that unlike the here
presented formula, this derivation does include the additional√

2l +1 and
√

4π factors).

4

Appendix B: Aspects of code design

B.1. Basis function data representation

A suitable data structure representing all relevant details
of a generally contracted shell of Gaussian basis functions
(Sec. 4) in a program is given in Fig. 1. This can be imple-
mented in a flat, C-like structure, providing for a simple basis
function interface. These structures are simple enough that, if
required, they could be formed on the fly based on the internal
data structures of a host program.

Note that one such data structure represents a total of Nfn :=
(2l+1) ·Nco contracted basis functions, which themselves are
implicitly specified as contractions over (2l + 1) ·Nexp prim-
itive Gaussians. In a call to an integral routine, the integrals
over all of those relevant basis functions would be computed
together. This also means that a basis function order has to be
decided upon, which defines which of the (2l +1) ·Nco repre-
sented basis functions appears at which place.

In the case of valence atomic orbital basis functions in semi-
empirical methods, substantial efficiency gains could be ob-
tained by sharing primitive exponents across all basis func-
tions of a given atom, including basis functions differing in an-
gular momentum l. In this case, the data structure of Fig. 1 can
be modified to include an additional Nco-length array of angu-
lar momenta {lz, z = 1, . . . ,Nco}—one for each contraction—
instead of a common l for all contractions. The algorithms
presented can be easily adjusted to the shared-exponent case,
but for simplicity we will not discuss it explicitly.

B.2. Representation of interaction kernels

Routines for the presented integral algorithms can be writ-
ten in such a way that any of the supported interaction ker-
nels K12 (e.g., Tab. 1) can be handled with the same code and
interface. For example, to evaluate the integrals {(a|K12|c)}
via the base algorithm (Sec. 5.2), the routine only requires
the ability to obtain G̃m(ρ,T) integrals with 0 ≤ m ≤ L and
arbitrary (ρ,T)—these functions are the only required infor-
mation about the actual interaction K12.

To represent the different interactions (see Tab. 1 and Ap-
pendix E.2), we recommend defining an abstract base class
IntegralKernel as interface, from which classes for spe-
cific interactions (e.g., Coulomb kernel, Overlap kernel, con-
tracted Gaussian kernel) are derived. These classes may con-
tain data members for parameters of the interaction (e.g., for
the generic Gaussian kernel of Tab. 1, the exponents {ωk} and
coefficients {ck} are required, while the Coulomb and Over-
lap kernels have no parameters).

As interface to the integral routines, the kernel class may
supply a (pure) virtual function EvalGmTilde with param-
eters (ρ,T,mmax, f), which computes and returns an ar-
ray of (mmax + 1) output quantities {(f · G̃m(ρ,T)), m =

struct RawShell:

• l: integer, angular momentum of the shell

• nExp: integer, number of exponents (primitives)

• nCo: integer, number of contractions

• pExp: double pointer to array of nExp primitive
exponents

• pCo: double pointer to array of (nExp × nCo)
contraction matrix

• pCen: double pointer to shell center (array of length 3)

FIG. 1. Data structure used for defining basis function data. In-
tegral evaluation routines take pointers to such structures as argu-
ments. One structure describes the (2l + 1)×Nco basis functions
Sl

m(r−C)∑
Nexp−1
e=0 Co[e+Nexp · c]exp

(
− Exp[e] · ‖r−C‖2) (where

m =−l . . . l and c = 0 . . .Nco−1).

0,1, . . . ,mmax}. Most kernel functions involve recurrences be-
tween or common intermediates for G̃m(ρ,T) of identical ρ

and T , but differing m. For this reason, all (mmax +1) output
quantities are computed in a single routine call. In this inter-
face, the parameter f represents a generic scalar prefactor with
which all output quantities {G̃m(ρ,T)} are multiplied; while
conceptually redundant, absorbing the prefactor f already at
the kernel level reduces floating point and memory overhead
if the G̃m(ρ,T) with 0≤ m≤ mmax are computed recursively.
To illustrate, a viable C-like protoype for such a routine is

void EvalTildeGm(double *pOut,
double rho, double T, unsigned MaxM,
double Factor) const;

This writes the output values to pOut[0],. . .,pOut[mmax].
For integral screening purposes, the kernel class may sup-

port additional interfaces to allow for estimating the effective
range of r12 for which |K(r12)| ≥ ε for a given threshold ε ≥ 0,
or to support additional interfaces for more efficient screening
protocols.24

B.3. Interfaces of integral routines

How should one define an interface of integral routines to
a host program, such that the routines can be called in a sim-
ple and general manner, but also allow for full efficiency and
generality? This question is of considerable practical impor-
tance. For example, the base algorithm of Sec. 5.2 calculates
(all) contracted integrals (a|K12|c) for a given kernel function
K12 and generally contracted basis function shells. If we were
to define a function EvalInt2e2c to execute this algorithm,
how should its inputs and outputs be transmitted? There are
many possible choices, and not all are equally good.

5

We found it most useful to define integral routine interfaces
in the following manner:

• The routine is supplied two pointers/references to con-
stant basis function objects as described in Sec. B.1:
one for the a-shells (representing Na

fn = (2la + 1) ·Na
co

basis functions total), and one for the c-shells (rep-
resenting Nc

fn = (2lc + 1) · Nc
co basis functions total).

It computes as output the Na
f n ·Nc

f n basis function in-
tegrals {(a|K12|c)} where a = 0,1, . . . ,(Na

fn − 1) and
c = 0,1, . . . ,(Nc

fn−1)}.

• The routine is supplied a pointer/reference to an inter-
action kernel object as described in Sec. B.2. This spec-
ifies the K(r12) interaction to evaluate.

• We allow the routine to directly write its computa-
tional result into a larger data structure (typically a
matrix or tensor), rather than allocating and filling a
separate intermediate data block for only the result-
ing shell integral block. To this end, the routine is
supplied with an output data pointer pOut and two
integer strides StrideA and StrideC, such that the
concrete output integral (a|K12|c) for function indices
a∈ {0,1, . . . ,(Nfn−1)a} and c∈ {0,1, . . . ,(Nc

fn−1)} is
addressed via memory location

pOut[a ·StrideA+ c ·StrideC]

In most cases, this construction allows directly writing
integrals into their final data structures without any need
for intermediate memory allocations or separate copy
operations. For example, to write the (a|c) block into
a N×N column-major overlap matrix, one would use
StrideA = 1 and StrideC = N, and supply as pOut
the memory address of the first element of the target
block in the matrix. Apart from efficiency gains, this
also simplifies the routine’s use.

• The routine may be asked to absorb a common scalar
prefactor (Prefactor) into all computed integrals,
and/or to add its results to the previous data at the out-
put location, rather than overwriting it (Add). Both as-
pects are commonly used in practice, and can be han-
dled most efficiently at the integral routine level.

All combined, a viable C-like protoype for such a routine is

void EvalInt2e2c(double *pOut,
size t StrideA, size t StrideC, const
RawShell &A, const RawShell &C,
double Prefactor, bool Add, const
IntegralKernel &Kernel);

With such an interface, many common operations (e.g., as-
sembly of an overlap matrix, or of the core Hamiltonian ma-
trix from multiple components such as for kinetic energy or
the nuclear potential) can be handled with simple code and
minimal overhead.

6

Appendix C: Proofs, Derivations, Theorems

C.1. Basic results and theorems

For the sake of completeness and accessibility, we repeat
some well-known mathematical results which have been used
in this text. Additionally, this clarifies the concrete versions
of the theorems used, in a form compatible with our notation.

Gaussian Product Theorem. A product of two s-type Gaus-
sians χ1(r) = e−σ(r−S)2

and χ2(r) = e−ρ(r−R)2
, placed on dif-

ferent centers S and R, can be expressed as a scaled single
Gaussian of (r−Z) located on a third center Z:

e−σ(r−S)2
e−ρ(r−R)2

= e−(σ+ρ)
(

r−Z
)2

e−
(

σρ

σ+ρ

)
(S−R)2

, (C1)

with Z := σS+ρR
σ+ρ

, which lies on the line segment between R
and S. Note that the second rhs exp-term is a constant prefac-
tor, as it does not depend on r.

Gaussian Integral.∫
∞

−∞

e−σx2
dx =

√
π

σ
. (C2)

Order m binary product rule. Let G : R 7→R and H : R 7→R
be two smooth scalar functions. Then the m-th t−derivative
of the product G(t)H(t) is obtained as:(

∂

∂ t

)m

G(t)H(t) =
m

∑
i=0

(
m
i

)[
∂ iG(t)

∂ t i

] [
∂ (m−i)H(t)

∂ t(m−i)

]
.

(C3)

The differential operators do not act beyond square brackets.
Hobson Theorem. A solid harmonic of r multiplied with

a function f (r2) depending on r2 := ‖r‖2 alone can be ex-
pressed with a solid harmonic differential operator (aka the
“spherical tensor gradient operator”) as follows:3

Sl
m(r) f (r2) = Sl

m
(1

2 ∇r
)

f (r2). (C4)

As a corrolarry, we get

Sl
m(r−A)e−α(r−A)2

= Sl
m
(1

2α
∇A
)

e−α(r−A)2
. (C5)

C.2. Proof of the used McMurchie-Davidson Recurrence
Relation (MDRR)

Commutator [(∂x)
k,x]: Notation: For brevity, we will here

abbreviate d
dx as ∂x; additionally, differential operators do not

act beyond square brackets. This paragraph establishes that
for any integer k′ = 1,2,3, . . ., it holds that:

∂
k′
x x = x ·∂ k′

x + k′ ·∂ (k′−1)
x . (C6)

For k′ = 0, we will treat the second term on the rhs as zero (it
has prefactor k′ = 0, but an undefined derivative); in this case
Eq. (C6) holds also for k′ = 0. Proof of Eq. (C6) for k′ 6= 0:
First note that for any smooth function g(x),

[∂x,x]g(x) = ∂xxg(x)− x∂xg(x) (C7)
= [∂xx]︸︷︷︸

1

g(x)+ x∂xg(x)− x∂xg(x)︸ ︷︷ ︸
0

= 1g(x).

This well-known relation shows that

∂xx = 1+ x∂x, (C8)

and therefore the validity of Eq. (C6) for k′ = 1. Now let k≥ 2
be an integer, and assume Eq. (C6) to hold for all integers
k′ ≤ k−1. Then we have, inserting Eq. (C6) for k′ = k−1 in
step 2 and Eq. (C8) in step 3:

∂
k
x x = ∂x

(
∂

k−1
x x

)
= ∂x

(
x∂

k−1
x +(k−1)∂ k−2

x

)
= (∂xx)∂

k−1
x +(k−1)∂ k−1

x

= (1+ x∂x)∂
k−1
x +(k−1)∂ k−1

x

= x∂
k
x + k∂

k−1
x . (C9)

By induction, this shows the general validity of Eq. (C6).
Scalar MDRR: Let ∂x :=

(d
dx

)
, t := ρx2, and ∂t :=

(
∂

∂ t

)
.

Then for any smooth function f (t), it holds that

∂
k
x ∂

m
t f (t) = 2ρ

(
x∂

(k−1)
x ∂

(m+1)
t f (t)

+(k−1)∂ (k−2)
x ∂

(m+1)
t f (t)

)
. (C10)

We only need to show that for any smooth function f (t)

∂
k
x f (t) = 2ρ

[
x∂

(k−1)
x ∂t f (t)+(k−1)∂ (k−2)

x ∂t f (t)
]

: (C11)

If this holds for any generic function f ′, it also holds for
f ′(t) := ∂ m

t f (t); so Eq. (C11) implies Eq. (C10).
To establish Eq. (C11), first note that

∂x f =
d f
dx

=
∂ f
∂ t

dt
dx

=
∂ f
∂ t

d(ρx2)

dx
= 2ρx

∂

∂ t
f . (C12)

Now invoke Eq. (C6) with k′ = k−1, and insert Eq. (C12):

∂
k
x f (t) = ∂

(k−1)
x (∂x f (t)) = ∂

(k−1)
x (x ·2ρ∂t f (t))

=
(

∂
(k−1)
x x

)
(2ρ∂t f (t))

=
(

x∂
(k−1)
x +(k−1)∂ (k−2)

x

)
(2ρ∂t f (t)) . (C13)

This establishes Eq. (C10).

7

It is easily confirmed that in the case of additional spa-
tial dimensions, i.e., t = ρ(x2 + y2 + z2) instead of t = ρx2,
Eq. (C10) holds for all partial derivatives ∂x, ∂y, ∂z indepen-
dently. In particular, if we define

T := ρ
(
R2

x +R2
y +R2

z
)
, (C14)

D̂T :=
(
+2ρ

∂

∂T

)
, (C15)

∂i :=
∂

∂Ri
(where i ∈ {x,y,z}), (C16)

then we get for any smooth function G(T) that

∂
k
i D̂m

T G(T) = +Ri∂
(k−1)
i D̂(m+1)

T G(T)

+(k−1)∂ (k−2)
i D̂(m+1)

T G(T). (C17)

This equation is a version of the well-known McMurchie-
Davidson recurrence relation,2,25,26 and allows building
higher spatial derivatives of a function of G(ρR2) from its
scalar parameter derivatives incrementally. A similar MDRR
for general smooth functions f (r) has been previously pro-
vided by Cisneros and coworkers;15 the current variant differs
in being formulated in terms of f (ρR2) instead of f (

√
R2).

Appendix D: Evaluation of the I0 integral

Following the original work of Ahlrichs,27 we here repro-
duce the detailed derivations required to construct concrete
base integral expressions relating Eqs. (12) and (13) of the
main text.

D.1. General simplifications

We here consider the evaluation of I0 in Eq. (12),

I0 :=
∫∫

e−α(r1−A)2
K(r12)e−γ(r2−C)2

dr1dr2. (D1)

We first substitute the integration over r1 and r2 into center-
of-mass and relative coordinates, by defining

r12 := r1− r2 R12 :=
1
2
(r1 + r2) (D2)

⇒ r1 = R12 +
1
2 r12 r2 = R12− 1

2 r12 (D3)

Inserting this yields

I0 =
∫∫

e−α((R12+
1
2 r12)−A)

2
K(r12)e−γ((R12− 1

2 r12)−C)
2
dR12dr12

=
∫∫

e−α(R12+(1
2 r12−A))

2
e−γ(R12−(1

2 r12−C))
2
K(r12)dR12dr12

(D4)

We now invoke the Gaussian Product Theorem Eq. (C1) to
transform the exponentials as

e−α(R12+(1
2 r12−A))

2
e−γ(R12−(1

2 r12−C))
2

(D5)

= e−(α+γ)(R12−Z)2
e−ρ((A−C)−r12)

2
(D6)

where we defined

ρ :=
αγ

α + γ
(D7)

Z :=
1

α + γ

(
α
(
A− 1

2 r12
)
+ γ
(
C+ 1

2 r12
))

.

Inserting Eq. (D6) into Eq. (D4) then yields

I0 =
∫

e−ρ((A−C)−r12)
2
K(r12)·(∫

e−(α+γ)(R12−Z)2
dR12

)
dr12. (D8)

In this expression, let us consider the inner integral over R12.
Its dependence on Z can be eliminated by shifting the coordi-
nate origin of the full-space integral: Substituting r :=R12−Z
and σ := α + γ , the R12 integral evaluates to∫

e−σr2
dr =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

e−σ(x2+y2+z2)dxdydz

=
∫

∞

−∞

e−σx2
dx ·

∫
∞

−∞

e−σy2
dy ·

∫
∞

−∞

e−σz2
dz

=

√
π

σ
·
√

π

σ
·
√

π

σ
=
(

π

σ

) 3
2
=

(
π

α + γ

) 3
2
. (D9)

Inserting this back into Eq. (D8), we obtain

I0 =

(
π

α + γ

) 3
2 ∫

e−ρ(R−r12)
2
K(r12)dr12, (D10)

where R = (A−C). Let us define

G0(ρ,T) :=
∫

e−ρ(R−r12)
2
K(r12)dr12. (D11)

As discussed by Ahlrichs,27 for many kernels K(r12), this
expression can be evaluated in closed form. In particular,

8

Eq. (D11) is a good starting point for integral kernels which
factorize into the Cartesian space directions. We will treat
various examples of those in Appendix E.2, where concrete
expressions of Gm(ρ,T) for various kernels K(r12) are given,
and their evaluation is discussed.

D.2. Radially non-separable kernels

Eq. (D11) is not necessarily a good starting point for all
integral kernels. To proceed with Eq. (D11) for more general
kernels, we introduce spherical coordinates (r,ϑ ,ϕ), which
are oriented in such a way that the z-axis faces in the direction
of R. Therefore the polar angle ϑ measures the angle between
r12 and R, so r12 ·R = rRcos(ϑ). By noting that

e−ρ(R−r12)
2
= e−ρ(R2+r2)e2ρrRcos(ϑ)

= e−T e−ρr2
e2ρrRcos(ϑ), (D12)

where T := ρR2, and inserting this into Eq. (D11), we obtain

G0(ρ,T) =
∫

∞

0

∫
π

0

∫ +π

−π

e−T e−ρr2
e2ρrRcos(ϑ)·

K(r)r2 sin(ϑ)dϕ dϑ dr.

As no terms depend on ϕ , its integral evaluates to 2π . The
terms depending on ϑ can be collected, and the ϑ -integral
can be evaluated by the substitution x := cos(ϑ) (→ dx =
−sin(ϑ)dϑ):∫

π

0
e2ρrRcos(ϑ) sin(ϑ)dϑ =

∫ 1

−1
e2ρrRxdx =

sinh(2ρrR)
ρrR

.

With this we obtain the one-dimensional integral

G0(ρ,T) = 2π

∫
∞

0
e−T sinh(2ρrR)

ρrR
r2e−ρr2

K(r)dr. (D13)

Noting ρR =
√

ρT , and substituting y :=
√

ρr (→ dr =
dy/
√

ρ), this can be evaluated to

G0 =
2πe−T
√

ρT

∫
∞

0
sinh

(
2r
√

ρT
)

r e−ρr2
K(r)dr

=
2πe−T√

ρ3T

∫
∞

0
sinh

(
2y
√

T
)

ye−y2
K
(

y
√

ρ

)
dy. (D14)

Appendix E: Expressions for concrete kernel functions

E.1. Coulomb kernel K(r12) = 1/r12

For some kernels K(r12), Eq. (D14) can be explicitly eval-
uated. In particular, if we substitute in the Coulomb kernel,
K(r12) =

1
r12

, we obtain an integral which can be evaluated by
standard techniques in closed form:

Gcoul
0 =

2πe−T√
ρ3T

∫
∞

0
sinh

(
2y
√

T
)

ye−y2
√

ρ

y
dy. (E1)

=
2π

ρ

e−T
√

T

∫
∞

0
sinh

(
2y
√

T
)

e−y2
dy︸ ︷︷ ︸

= 1
2
√

πeT erf(
√

T)

. (E2)

=
π

ρ

√
π√
T

erf
(√

T
)
=

2π

ρ
F0(T). (E3)

Here erf(x) = 1√
π

∫ x
−x e−t2

dt is the Error Function, and F0(T)
is the first Boys function (m = 0):

F0(T) :=
1
2

√
π√
T

erf
(√

T
)
. (E4)

The practical evaluation of F0(T) and its derivatives Fm(T) =(
− ∂

∂T

)m
F0(T) will be discussed in Appendix G. With the

given Boys function, we get

Gcoul
m (ρ,T) =

2π

ρ
Fm(T) (E5)

as kernel function for the Coulomb kernel K(r12) =
1

r12
.

E.2. Gm(ρ,T) for various factorizable integral kernels

By directly invoking Eq. (D11), we get for the simplest in-
tegral kernels:

K(r12) = δ (r12) ⇒ G0(ρ,T) = e−T (E6)

K(r12) = 1 ⇒ G0(ρ,T) =
(

π

ρ

)3/2

(E7)

K(r12) = r2
12 ⇒ G0(ρ,T) =

√
π3

ρ5

(
T +

3
2

)
(E8)

K(r12) = e−ωr2
12 ⇒ G0(ρ,T) =

(
π

ρ +ω

)3/2

e−
(

ω
ρ+ω

)
T
.

(E9)

All of these kernels factorize into the three Cartesian direc-
tions. Eq. (E6) is a useful kernel; if inserted into (a|c), it
evaluates overlap integrals. Also kinetic energy integrals and
related kernels can be obtained from this kernel, as discussed
above in Sec. 6.1. Eq. (E7) is easily evaluated by shifting the

9

coordinate system origin in the full-space integral Eq. (D11)
to R, and factorizing the integral into the three Cartesian di-
rections. It is not a particularly useful kernel, though: it results
in (a|c) =

(∫
a(r1)d3r1

)
·
(∫

c(r2)d3r2
)
, and could at best be

used to compute a’s multipole-normalization integrals if com-
bined with a function c(r) = 1 (by setting γ = 0 and lc = 0).
Eq. (E8) will be derived in Appendix F.2, and the Gaussian
kernel Eq. (E9) next in Appendix E.3.

E.3. Gm(ρ,T) for Gaussian fits of general K(r12)

Eq. (E9) is one of the most useful kernels, as it allows
(approximately) computing integrals over almost arbitrary in-
teraction potentials K(r12)—by first non-linearly fitting them
into a fixed linear combination of multiple Gaussians in r12:

K(r12)≈
N

∑
k=1

cke−ωkr2
12 , (E10)

where the {ck} and {ωk} denote suitable coefficients and ex-
ponents. As a direct extension of (E9), the corresponding
Gm(ρ,T) function is then

Gm(ρ,T) =
(
− ∂

∂T

)m N

∑
k=1

ck

(
π

ρ +ω

)3/2

e−ρ̃kT

=
N

∑
k=1

ck

(
π

ρ +ω

)3/2

ρ̃
m
k e−ρ̃kT , (E11)

where ρ̃k =
(

ωk
ρ+ωk

)
. In F12 theory, this is commonly

used to compute integrals over the Slater geminals K(r12) =
− 1

γ
exp(−γr12) (or other F12 correlation factors) by fitting

them with a fixed number of Gaussians;28 however, also ar-
bitrary other kernels can be fitted, and there may be reasons to
do so, particularly in semi-empirical methods. The Gm(ρ,T)
in Eq. (E9) is obtained by noticing that the integral factors into
the three Cartesian directions, and using the Gaussian product
theorem Eq. (C1) (with S = 0 and Z irrelevant)

e−ρ(Rx−x)2
e−ωx2

= e−(ρ+ω)(x−Z)2
e−

ρω

ρ+ω
R2

x . (E12)

With this and the standard Gaussian integral Eq. (C2), we get∫
∞

−∞

e−ρ(Rx−x)2
e−ωx2

dx =
∫

∞

−∞

e−(ρ+ω)(x−Z)2
e−
(

ρω

ρ+ω

)
R2

x dx

= e−
(

ρω

ρ+ω

)
R2

x

√
π

ρ +ω
. (E13)

This directly yields Eq. (E9) if multiplied by the equivalent
results from the other Cartesian directions. This kernel has
been previously presented by Höfener and coworkers.29

Appendix F: Transformations of integral kernels

As pointed out by Ahlrichs,27 if a concrete expression
G0(ρ,T) for an integral kernel K(r12) is already known, it is
in some cases possible to construct from this the correspond-
ing G̃0(ρ,T) quantity for a related kernel K̃(r12). We here
outline and derive the known general kernel transformations.

F.1. Transformation K̃(r12) = e−ωr2
12 K(r12)

If the new kernel K̃(r12) is given by

K̃(r12) = e−ωr2
12K(r12), (F1)

then the corresponding G̃0(ρ,T) can be obtained as follows:
Via Eq. (D11) we obtain

G̃0(ρ,T) =
∫

e−ρ(R−r12)
2
K̃(r12)dr12

=
∫

e−ρ(R−r12)
2
e−ωr2

12 K(r12)dr12. (F2)

For the integrand we can invoke the Gaussian product theorem
Eq. (C1) (with S = 0):

e−ρ(R−r12)
2
e−ωr2

12 = e−(ρ+ω)(r−Z)2
e−

ρω

ρ+ω
R2

(F3)

Z =
ρR+ω0

ρ +ω
=

(
ρ

ρ +ω

)
R. (F4)

Inserting this back into Eq. (F2) and subsequently substituting
in Eq. (D11), we get

G̃0(ρ,T) =
∫

e−
(

ρω

ρ+ω

)
R2

e−(ρ+ω)(r−Z)2
K(r12)dr12

= e−
(

ω
ρ+ω

)
T
∫

e−(ρ+ω)
(

r−
(

ρ

ρ+ω

)
R
)2

K(r12)dr12

= e−
(

ω
ρ+ω

)
T G0

(
ρ +ω,

(
ρ

ρ +ω

)
T
)

(F5)

= e−ρ̃T G0(ρ +ω, ρ̂T) (F6)

where we have defined

ρ̃ :=
(

ω

ρ +ω

)
ρ̂ :=

(
ρ

ρ +ω

)
. (F7)

10

So the G̃0(ρ,T) function of the new kernel can be obtained by
a simple transformation of the function G0(ρ,T) of the orig-
inal kernel. This allows attenuating arbitrary kernels with a
Gaussian function e−ωr2

. The simple structure of the prefac-
tor also allows computing the needed derivatives in a simple
way. The transformed G̃m(ρ,T) is

G̃m(ρ,T) :=
(
− ∂

∂T

)m

G̃0(ρ,T)

=

(
−∂

∂T

)m

e−ρ̃T G0(ρ +ω, ρ̂T) . (F8)

First note that(
− ∂

∂T

)i

e−ρ̃T = ρ̃
ie−ρ̃T (F9)(

− ∂

∂T

)m

G0(ρ +ω, ρ̂T) = ρ̂
mGm (ρ +ω, ρ̂T) . (F10)

Inserting this into the order-m product rule Eq. (C3), we get

G̃m(ρ,T) =
m

∑
i=0

(
m
i

)[(
− ∂

∂T

)i

e−ρ̃T

]
·[(

− ∂

∂T

)(m−i)

G0(ρ +ω, ρ̂T)

]

=
m

∑
i=0

(
m
i

)
ρ̃

i
ρ̂
(m−i) e−ρ̃T Gm−i (ρ +ω, ρ̂T) .

(F11)

Here the Gm(ρ,T) on the rhs of Eq. (F11) is the Gm function
of the original kernel K(r12).

Formulas of this kind have been presented by Höfener29 in
the context of F12 theory, where they are used in conjunction
with the Gaussian fit of Slater geminal correlation factors

− 1
β

exp(−β r12)≈
N

∑
k=1

cke−ωkr2
12 =: F12(r12) (F12)

(see Eq. (E10)) to compute integrals over their products with
Coulomb interaction potentials 1/r12:

K̃(r12) =
F12(r12)

r12
=

N

∑
k=1

ck
exp
(
−ωkr2

12
)

r12
(F13)

However, the Gaussian transformation is very general, and
may find uses in many other cases, for example in the rep-
resentation of interaction pseudo-potentials.

F.2. Transformation K̃(r12) = r2
12K(r12)

As pointed out by Ahlrichs,27 the Gaussian kernel transfor-
mation K̃(r12) = e−ωr2

12 K(r12) of the previous section affords
a systematic way to construct the transformed G̃0(ρ,T) func-
tion for the kernel

K̃(r12) = r2
12K(r12), (F14)

if K(r12) is associated with a known G0(ρ,T) function.
First, note that

K̃(r12) = r2
12K(r12) (F15)

= lim
ω→0

(
−∂

∂ω

)
e−ωr2

12 K(r12), (F16)

and that, according to Eq. (D11), for any kernel K(r12), the
associated kernel function G0(ρ,T) is obtained as a linear
transformation of this K(r12). Consequently, we can obtain
G̃0(ρ,T) for K̃(r12) = r2

12K(r12) by combining Eq. (F16) with
Eqs. (F6) and (F7) from the Gaussian transformation of the
original kernel function:

G̃0(ρ,T) = lim
ω→0

(
−∂

∂ω

)
e−ρ̃T G0(ρ +ω, ρ̂T) (F17)

= lim
ω→0

(
−∂

∂ω

)
e−
(

ω
ρ+ω

)
T G0

(
ρ +ω,

(
ρ

ρ +ω

)
T
)
.

Explicitly evaluating the ω-derivatives at ω = 0 then yields
Ahlrichs’ transformation formula27

G̃0(ρ,T) =
T
ρ

(
∂G0(ρ,T)

∂T
+G0(ρ,T)

)
− ∂G0(ρ,T)

∂ρ
.

(F18)

Unfortunately, this transformed G̃0(ρ,T) includes a ρ-
derivative of G0(ρ,T); consequently, the ability to numer-
ically evaluate the original kernel’s Gm(ρ,T) functions for
arbitrary m (and therefore arbitrary T -derivatives) is gener-
ally not sufficient to also evaluate the transformed kernel’s
G̃m(ρ,T) via product rules—unlike for the discussed Gaus-
sian transformation, where Eq. (F11) affords a general ab-
stract numerical implementation. That means that generally
this K̃(r12) = r2K(r12) transformation requires explicit sym-
bolic computations to derive and implement G̃m(ρ,T) based
on a known symbolic expression for the original G0(ρ,T).

There are two special integral kernels of interest which
this transformation gives access to; both were pointed out by
Ahlrichs.27 First, we have

K̃(r12) = r12

⇒ G̃0(ρ,T) =
2π

ρ2 ((1+T)F0(T)−T ·F1(T)) , (F19)

which is obtained from Eqs. (E5) and (F18) by applying the
r2

12 transformation to the Coulomb kernel K(r12) = 1/r12.
Fm(T) denotes the Boys function described in Appendix G.
Note also that higher G̃m(ρ,T) of this G̃0(ρ,T) can be evalu-
ated with product rule Eq. (C3). Second,

K̃(r12) = r2
12 ⇒ G̃0(ρ,T) =

√
π3

ρ5

(
T +

3
2

)
, (F20)

which is obtained from Eqs. (E7) and (F18) by applying the
r2

12 transformation to the identity K(r12) = 1.

11

F.3. Attenuated Coulomb kernel K̃(r12) = erf(r12)/r12

In ab-initio quantum chemistry, the Coulomb interaction
kernel K(r12) = 1/r12 (see Appendix E.1) is occasionaly split
into short-range and long-range parts via30

K(r12) =
1

r12
=:

erfc(θ · r12)

r12︸ ︷︷ ︸
short-range

+
erf(θ · r12)

r12︸ ︷︷ ︸
long-range

, (F21)

where θ > 0 is a chosen range separation parameter (with
unit of inverse length, and often called “ω”). Here erf(z) and
erfc(z) denote the ‘Error Function’ and ‘Complementary Er-
ror Function’, which are defined as

erf(z) :=
2√
π

∫ z

0
e−t2

dt, (F22)

erfc(z) := 1− erf(z). (F23)

This split is particularly prevalent in various range-separated
density functional theory methods, where the split is used for
one of two distinct reasons. First, in range-separated hybrid
functionals (e.g., Refs. 31 and 32) to correct the asymptotic
long-range behavior of Kohn-Sham orbitals relevant for ex-
citation energies, by using only long-range exact exchange.
Secondly, in the reverse, to save computational cost in large
molecules, by using only short-range exact exchange,30 be-
cause many properties of chemical systems turn out to be
rather insensitive to the long-range part of the Coulomb
interaction.33,34 Also, other kinds of attenuation strategies
have been discussed.35,36

We only need to consider the G̃m(ρ,T) construction for
one of the terms on the rhs of Eq. (F21), because the other
one is trivially obtained as difference from an un-attenuated
Coulomb kernel. We consider

K̃(r12) :=
erf(θ · r12)

r12
(F24)

and aim to construct the corresponding G̃0(ρ,T). To this end,
note that

erf(θ · r12) =
2√
π

∫ (θ ·r12)

0
e−t2

dt (F25)

=
2r12√

π

∫
θ

0
e−u2r2

12 du (F26)

=
r12√

π

∫
θ 2

0

1√
ω

e−ωr2
12 dω. (F27)

Into Eq. (F22) we insert z := θ · r12 to yield Eq. (F25);
then change the integration variable via t =: u · r12 to yield
Eq. (F26); then insert ω :=

√
u to yield Eq. (F27). Conse-

quently, Eq. (F24) can be re-expressed as

K̃(r12) =
erf(θ · r12)

r12
=

1√
π

∫
θ 2

0

1√
ω

e−ωr2
12 dω. (F28)

As noted earlier, Eq. (D11) implies that for any kernel K(r12),
the associated kernel function G0(ρ,T) is obtained as a lin-
ear transformation of this K12(r). Consequently, we can ob-
tain the kernel function G̃0(ρ,T) associated with K̃(r12) from
Eq. (F28) via

G̃0(ρ,T) =
1√
π

∫
θ 2

0

1√
ω

Ggauss(ω)
0 (ρ,T)dω (F29)

where the quantity

Ggauss(ω)
0 (ρ,T) =

(
π

ρ +ω

)3/2

e−
(

ω
ρ+ω

)
T (F30)

denotes the kernel function for the Gaussian interaction ker-
nel K(r12) = e−ωr2

12 described in Eq. (E9). Inserting this into
Eq. (F29) and evaluating the integral, we get

G̃0(ρ,T) =
1√
π

∫
θ 2

0

√
1
ω

(
π

ρ +ω

)3

· e−
(

ω
ω+ρ

)
T dω

=
π3/2

ρ
√

T
erf

(
η

√
T

η2 +ρ

)
. (F31)

Comparing this result to Eq. (E3), and substituting as interme-
diate κ := η2

η2+ρ
, we obtain

G̃0(ρ,T) =
π

ρ

√
π√
T

erf

(√(
η2

η2 +ρ

)√
T

)
(F32)

=
√

κ ·
(

π

ρ

√
π√

κT
erf
(√

κT
))

(F33)

=

√
η2

η2 +ρ
·Gcoul

0

(
ρ,

(
η2

η2 +ρ

)
T
)
, (F34)

where Gcoul
0 (ρ,T) denotes the Coulomb kernel function from

Eq. (E3). Consequently, the integrals over the range-separated
Coulomb kernels on the rhs of Eq. (F21) can be easily ob-
tained from regular Coulomb kernel function Gcoul

0 (ρ,T) by
variable transformation. The result Eq. (F34) is equivalent to
Eq. (52) in Ref. 27.

12

Appendix G: Evaluation of the Boys function Fm(T)

Eq. (E4) introduced the first Boys function F0(T), given by

F0(T) :=
1
2

√
π√
T

erf
(√

T
)
. (G1)

F0(T) and its derivatives Fm(T) play an important role in the
evaluation of molecular integrals over both raw and attenuated
Coulomb potentials. Namely, the Gm(ρ,T) kernel function
for interaction potential K(r12) =

1
r12

, is given by27

Gm(ρ,T) =
(

1∂

∂T

)m

G0(ρ,T)

=

(
1∂

∂T

)m 2π

ρ
F0(T)

=:
2π

ρ
Fm(T). (G2)

Here we denoted the Boys function of order m with Fm(T):

Fm(T) =
(
− ∂

∂T

)m

F0(T)

=

(
− ∂

∂T

)m 1
2

√
π√
T

erf
(√

T
)
. (G3)

Due to its relevance in Coulomb integral evaluation, its an-
alytical properties have been investigated at length (see Ref. 2
ch. 9.8), and several dozen research articles have been writ-
ten about the efficient and accurate evaluation of Fm(T) in
Eq. (G3). For this reason, we do not discuss all approaches
proposed, but only refer to Ref. 37 for a recent article also
discussing earlier references.

In the following, we will only describe the technique used
in our program; this technique is reasonably efficient on mod-
ern CPU architectures and obtains results with full double-
precision accuracy for arbitrary arguments. An example im-
plementation in C++ is provided in the electronic supporting
information to this article, as well as the Python scripts used
for computing the data tables used in the C++ code. The tech-
niques described next are by no means unique or unprece-
dented (indeed, most quantum chemistry programs evaluate
the Boys function with similar methods in practice). They are
just described for the sake of completeness and transparency.

First, a direct calculation on Eq. (G3) shows that the higher
Boys functions Fm(T) with integer m≥ 1 fulfill the following
“upward” recurrence relation:

Fm(T) =
1
T

(
(2m−1)Fm−1(T)− e−T) . (G4)

This relation looks promising at first glance, as it appears to
allow computing all higher Fm(T) from F0(T) via a simple re-
cursion. However, it cannot be used in production-level code
directly, because it becomes numerically unstable for either

small T or large m—in these cases (some of) the e−T and
(2m−1)Fm−1(T) terms become equal in magnitude and oppo-
site in sign, leading to a near complete cancellation of signifi-
cant digits in the subtraction. The corresponding “downward”
recurrence formula

Fm(T) =
2T Fm+1(T)+ e−T

2m+1
. (G5)

does not suffer from this problem; however, it requires com-
puting at least a single FM(T) value, namely, the one for the
largest M required, via alternative means. The Fm(T) with
m < M can then be obtained by repeatedly appyling Eq. (G5).

While, due to its numerical instability, Eq. (G4) cannot be
directly used in production code, it is entirely feasible to em-
ploy it in conjunction with arbitrary-precision arithmetic to
precompute and tabulate full-precision values of Fm(T) on a
fixed grid of points Ti = i ·h (where h is a constant step width
and i is an integer) and for a given set of m = 0 . . .Mmax. This
is a simple brute force approach; it does not incur any run-
time overhead, as the corresponding tables only have to be
constructed once. To this end, we precompute and tabulate
the values of Fm(i · h) for m = 0 . . .Mmax where Mmax = 31,
table step h = 1

8 , and i = 0,1, . . . ,(Ntab− 1) (corresponding
to T ≤ 12.0). This is done offline, in a Python script using
arbitrary precision arithmethic with 1000 significant decimal
digits via the mpmath library. The values thus computed are
then saved to a static constant Mmax ×Ntab array of double
precision numbers in a C++ source file (with Mmax as the fast
dimenion, and Ntab as the slow dimension), which is simply
included in the compilation of our actual program.

Case 1: T inside the tabulated range (T ≤ 12.0). With the
stored values of Fm(Ti), we can then proceed as follows to
compute Fm(T) for any T within the table range and for all
m = 0,1, . . . ,M for a given integer M:

• Find the tabulated Ti = i ·h which is closest to our given
T , by computing i = floor(T/h+0.5).

• Compute δT := T − Ti, the difference between T and
the closest tabulated point Ti = i ·h.

• Approximate the value of FM(T) for the highest re-
quired integer M via a P = 8’th order Taylor expansion
of FM(T) around the tabulated Ti = i ·h. As FM+k(Ti) =(
− ∂

∂T

)k
FM(Ti) (see Eq. (G3)), all the required infor-

mation is contained in the precomputed table:

FM(T)≈
P

∑
k=0

(−δT)k

k!
FM+k(Ti)

= p0−δT ·
(

p1−δT ·
(p2

2!
−δT ·(p3

3!
−δT ·

(p4

4!
−δT ·

(
. . .
)))))

. (G6)

In the second line, the coefficients pk = F(M+k)(Ti) de-
note the expansion coefficients taken from the embed-
ded Boys-function data table at index i · (Mmax + 1)+

13

M+ k. With the memory layout described, they lie lin-
early in memory. k! = k · (k−1) · (k−2) · . . . ·1 denotes
the factorial. We also tabulate the { 1

k!} prefactors.

• Compute Fm(T) for the remaining m = (M− 1),(M−
2), . . . ,1,0 from FM(T) via the (numerically stable)
downward recurrence formula Eq. (G5). In this, we
pre-tabulate the constant factors 1/(2m+1) to avoid di-
visions at runtime, and compute the value of e−T only
once.

With these combinations, Fm(T) for m = 0 . . .M and i < Ntab
(i.e., technically T < 12.0+h/2) can be computed with only
a single evaluation of an exponential function (namely, e−T)
and otherwise only linear-memory table lookups, and floating
point multiplications and additions. In practice, the evalua-
tion of e−T is the most expensive partial operation. Addition-
ally, with the given dimensions of Ntab and Mmax, the entire
pretabulated table has a size of only 24.25 kiB, and therefore
fits into the L1 data cache of most current computing archi-
tectures. As the lower derivatives are obtained from the ex-
act recurrence relation Eq. (G5), furthermore all Fm(T) for a
given T and m = 0, . . . ,M are automatically consistent with
each other, even if there should be a residual approximation
error for FM(T).

Case 2: Intermediate range (12.0 < T ≤ 36.0). If a given
T is outside of the tabulated range, we proceed as follows. Let
us define the function

S(x) = x erfc(x)ex2
. (G7)

With this and erf(x)+ erfc(x) = 1, we have

erf(x) = 1− S (x)e−x2

x
(G8)

⇒ erf(
√

T) = 1− S(
√

T)e−T
√

T
. (G9)

This can be inserted into F0(T) from Eq. (G1),

F0(T) =
1
2

√
π√
T

erf
(√

T
)

(G10)

where erf(
√

T) is evaluated by means of Eq. (G9).
The significance of this construction is that S(x) is a well-

behaved function, which can be accurately approximated as

S(x)≈ R(x)
(
for
√

Tmin ≤ x≤
√

Tmax
)

(G11)

using a low-order polynomial R(x):

R(x) := c0 + x · (c1 + x · (c2 + x · (c3 + x · (. . .)))).

Concretely, we obtained the following approximation of
erf(
√

T) by inserting Eq. (G11) into Eq. (G9) for x =
√

T :

erf(x) = 1− e−x2

x
R(x) (G12)

The numerical coefficients {ck} are given by

c0 =+1.6057555044955896 ·10−01

c1 =+4.8560557460742598 ·10−01

c2 =−3.1344877124388754 ·10−01

c3 =+1.3230181851498005 ·10−01

c4 =−3.8962506318633815 ·10−02

c5 =+8.1949930595442508 ·10−03

c6 =−1.2313078185300554 ·10−03

c7 =+1.2945938765877632 ·10−04

c8 =−9.0663179364002847 ·10−06

c9 =+3.8045328994203999 ·10−07

c10 =−7.2445454685049530 ·10−09.

In the range of T = 12 . . .36, this approximation has a numer-
ical error of ≤ 1.16 ·10−16 for erf(

√
T) (Eq. (G12)).

The other required Fm(T) for m = 1,2, . . . ,M are then ob-
tained by the upward recurrence relation Eq. (G4). For large
T , which is the case invoked here, this relation is numerically
reasonably stable.

Case 3: Long range (T > 36.0). We proceed with the same
code as for the intermediate range, but make two adjustments
to reduce numerical effort:

• For T > 36, the factor e−T in Eq. (G9) is so small
that we can approximate erf(

√
T) = 1 in Eq. (G10).

We therefore need not evaluate Eq. (G12) to compute
erf(
√

T), but can just set its result variable to 1.

• However, for 36≤ T ≤ 36+2M, we still need to evalu-
ate e−T , as it may become relevant in the upward recur-
rence Eq. (G4) to compute higher Fm(T) from F0(T).

• For T ≤ 36 + 2M, we can then also set e−T = 0 for
purposes of the upward recurrence.

In practice, these aspects are handled by having separate vari-
ables representing exp(−T) and erf(

√
T), which are initial-

ized to their boundary values (0 and 1, respectively), and only
explicitly evaluated if required.

14

References

1Schlegel, H. B.; Frisch, M. J. Transformation between Cartesian and pure
spherical harmonic Gaussians. Int. J. Quantum. Chem. 1995, 54, 83–87.

2Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic Structure The-
ory; Wiley: Chichester, 2000.

3Weniger, E. J.; Steinborn, E. O. New representations for the spherical tensor
gradient and the spherical delta function. J. Math. Phys. 1983, 24, 2553–
2563.

4Weniger, E. J. The spherical tensor gradient operator. Collect. Czechoslov.
Chem. Commun. 2005, 70, 1225–1271.

5Reine, S.; Tellgren, E.; Helgaker, T. A unified scheme for the calculation of
differentiated and undifferentiated molecular integrals over solid-harmonic
Gaussians. Phys. Chem. Chem. Phys. 2007, 9, 4771–4779.

6Giese, T. J.; York, D. M. Contracted auxiliary Gaussian basis integral and
derivative evaluation. J. Chem. Phys. 2008, 128, 064104.

7Giese, T. J.; York, D. M. Spherical tensor gradient operator method for
integral rotation: A simple, efficient, and extendable alternative to Slater–
Koster tables. J. Chem. Phys. 2008, 129, 016102.

8Golze, D.; Benedikter, N.; Iannuzzi, M.; Wilhelm, J.; Hutter, J. Fast eval-
uation of solid harmonic Gaussian integrals for local resolution-of-the-
identity methods and range-separated hybrid functionals. J. Chem. Phys.
2017, 146, 034105.

9Dunlap, B. I. Three-center Gaussian-type-orbital integral evaluation using
solid spherical harmonics. Phys. Rev. B 1990, 42, 1127.

10Dunlap, B. I. Direct quantum chemical integral evaluation. Int. J. Quantum
Chem. 2001, 81, 373–383.

11Hu, A.; Dunlap, B. I. Three-center molecular integrals and derivatives using
solid harmonic Gaussian orbital and Kohn-Sham potential basis sets. Can.
J. Phys. 2013, 91, 907–915.

12Dunlap, B. I. Angular momentum in solid-harmonic-Gaussian integral eval-
uation. J. Chem. Phys. 2003, 118, 1036–1043.

13Ahlrichs, R. Efficient evaluation of three-center two-electron integrals over
Gaussian functions. Phys. Chem. Chem. Phys. 2004, 6, 5119–5121.

14Babin, V.; Leforestier, C.; Paesani, F. Development of a “first principles”
water potential with flexible monomers: Dimer potential energy surface,
VRT spectrum, and second virial coefficient. J. Chem. Theory Comput.
2013, 9, 5395–5403.

15Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. Generalization of the Gaus-
sian electrostatic model: Extension to arbitrary angular momentum, dis-
tributed multipoles, and speedup with reciprocal space methods. J. Chem.
Phys. 2006, 125, 184101.

16Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-
binding quantum chemical method for structures, vibrational frequencies,
and noncovalent interactions of large molecular systems parametrized for
all spd-block elements (Z=1–86). J. Chem. Theory Comput. 2017, 13,
1989–2009.

17Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An accurate and
broadly parametrized self-consistent tight-binding quantum chemical
method with multipole electrostatics and density-dependent dispersion con-
tributions. J. Chem. Theory Comput. 2019, 15, 1652–1671.

18Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta
valence and quadruple zeta valence quality for H to Rn: Design and assess-
ment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

19Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta
valence quality for atoms H–Kr. J. Chem. Phys. 2003, 119, 12753.

20Neese, F.; Valeev, E. F. Revisiting the atomic natural orbital approach for
basis sets: Robust systematic basis sets for explicitly correlated and con-
ventional correlated ab initio methods? J. Chem. Theory Comput. 2010, 7,
33–43.

21Hill, J. G.; Mazumder, S.; Peterson, K. A. Correlation consistent basis sets
for molecular core-valence effects with explicitly correlated wave func-
tions: The atoms B–Ne and Al–Ar. J. Chem. Phys. 2010, 132, 054108.

22Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.;
Chase, J.; Li, J.; Windus, T. L. Basis set exchange: a community database
for computational sciences. J. Chem. Inf. Model 2007, 47, 1045–1052.

23Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New
Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sci-
ences Community. J. Chem. Inf. Model 2019, 59, 4814–4820.

24Hollman, D. S.; Schaefer, H. F.; Valeev, E. F. A tight distance-dependent

estimator for screening three-center Coulomb integrals over Gaussian basis
functions. J. Chem. Phys. 2015, 142, 154106.

25McMurchie, L. E.; Davidson, E. R. One-and two-electron integrals over
Cartesian Gaussian functions. J. Comput. Phys. 1978, 26, 218–231.

26Gill, P. M.; Head-Gordon, M.; Pople, J. A. An efficient algorithm for the
generation of two-electron repulsion integrals over gaussian basis functions.
Int. J. Quantum Chem. 1989, 36, 269–280.

27Ahlrichs, R. A simple algebraic derivation of the Obara-Saika scheme for
general two-electron interaction potentials. Phys. Chem. Chem. Phys. 2006,
8, 3072–3077.

28May, A. J.; Manby, F. R. An explicitly correlated second order Møller-
Plesset theory using a frozen Gaussian geminal. J. Chem. Phys. 2004, 121,
4479–4485.

29Höfener, S.; Bischoff, F. A.; Glöß, A.; Klopper, W. Slater-type geminals
in explicitly-correlated perturbation theory: application to n-alkanols and
analysis of errors and basis-set requirements. Phys. Chem. Chem. Phys.
2008, 10, 3390–3399.

30Dombroski, J. P.; Taylor, S. W.; Gill, P. M. KWIK: Coulomb energies in O
(N) work. J. Phys. Chem 1996, 100, 6272–6276.

31Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation
functional using the Coulomb-attenuating method (CAM-B3LYP). Chem.
Phys. Lett. 2004, 393, 51–57.

32Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.;
Neaton, J. B.; Baer, R.; Kronik, L. Quasiparticle spectra from a nonempir-
ical optimally tuned range-separated hybrid density functional. Phys. Rev.
Lett. 2012, 109, 226405.

33Adamson, R. D.; Dombroski, J. P.; Gill, P. M. Chemistry without Coulomb
tails. Chem. Phys. Lett. 1996, 254, 329–336.

34Gill, P. M.; Adamson, R. D.; Pople, J. A. Coulomb-attenuated exchange
energy density functionals. Mol. Phys. 1996, 88, 1005–1009.

35Gill, P. M.; Adamson, R. D. A family of attenuated Coulomb operators.
Chem. Phys. Lett. 1996, 261, 105–110.

36Lee, A. M.; Taylor, S. W.; Dombroski, J. P.; Gill, P. M. Optimal partition of
the Coulomb operator. Phys. Rev. B 1997, 55, 3233.

37Weiss, A. K.; Ochsenfeld, C. A rigorous and optimized strategy for the eval-
uation of the Boys function kernel in molecular electronic structure theory.
J. Comput. Chem. 2015, 36, 1390–1398.

