Supporting Information

Environmental Processing of Short-Chain Fatty Alcohols Induced by Photosensitized Chemistry of Brown Carbons

Bo You,[†] Siyang Li,[†]Narcisse T. Tsona,[‡] Jianlong Li,[†] Li Xu,[†] Zhaomin Yang, [†] Shumin Cheng, [†] Qingcai Chen,[§] Christian George,^{I,⊥} Maofa Ge,⁺ and Lin Du^{*,†}

[†]Environment Research Institute, Shandong University, Qingdao 266237, China

[‡]School of Life Science, Shandong University, Qingdao 266237, China

[§]School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China

¹Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France

⁺State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

* Correspondence to: Lin Du (<u>lindu@sdu.edu.cn</u>)

Summary: 7 pages, 3 tables, 3 figures, 1 scheme.

Absorption Bands (cm ⁻¹)			A		
MG-AS	MG-Gly	IC	Assignment	runction Group	
-	2958	2958	vas (C-H)	$-CH_3$	
2923	2923	2926	vs (C-H)	$-CH_2$	
2858	2854	2857	vas (C-H)		
1456	1463	1459	σ (C-H)	CH ₃	
1049	1047	1054	ν (C-O)	-C-OH	
1382	1378	1375	σ (C-H)	-CH	
1112	1120	1124	σ (C-C-C)	-c-c- c	
1707/1713	1709/1710	1707/1708	ν (C=O)	0 0	
-	3095	-	ν (O-H)	—Ё-ОН	
			ν	0 I	
1675	1662	1652	(unsaturated	—C=C-Ё-Н	
			C=O)		
1635	1635	-	v (C=C)		

Table S1. Peak assignments of FTIR spectra (v, stretching vibration; σ , bending vibration).

 Table S2. Detected compounds by GC-MS during 1-octanol coated BrC samples under irradiation.

	Formula		Source		
Classification		A coice and	MG	MG	
Classification		Assignment	+	+	IC
			AS	Gly	
	C5H10	pentene		\checkmark	\checkmark
	C6H12	4-methyl-1-pentene	√a	√a	√a
Alkenes	C7H14	1-heptene		✓	✓
	C8H16	1-octene		\checkmark	\checkmark
		2-octene	\checkmark	\checkmark	\checkmark
	C ₆ H ₁₂ O	hexanal	\checkmark	\checkmark	\checkmark
Saturated	C7H14O	heptanal		\checkmark	\checkmark
aldehydes	C8H16O	octanal		\checkmark	\checkmark
Unsaturated aldehydes	C8H14O) octenal		~	~
Saturated	Saturated C ₄ H ₈ O 2-b		\checkmark	\checkmark	\checkmark
ketones	C8H16O2	8-hydroxy-2-octanone	\checkmark	\checkmark	\checkmark
	C ₂ H ₄ O ₂	acetic acid	\checkmark	✓	-
	C7H14O2	heptanoic acid		\checkmark	\checkmark
Saturated acids	C8H16O2	octanoic acid		✓	~
	$C_8H_{14}O_3$	7-oxo-octanoic acid		√ a	√ a
Unsaturated acids	C8H14O2	octenoic acid		~	~
Saturated	C8H18O2	1,3-octanediol	√a	√ a	√ a
Saturated		1,2-octanediol		√a	√a
alconol		1,7-octanediol	√a	√ a	√ a
	C9H18O2	formic acid, octyl ester	\checkmark	\checkmark	-
E st	C9H14O3	4-pentenoic acid, 2-acetyl-, ethyl ester		✔ a	√ a
Esters	$C_{10}H_{20}O_{2}$	acetic acid, octyl ester	\checkmark	\checkmark	-
	$C_{11}H_{20}O_2$	2-propenoic acid, octyl ester		\checkmark	\checkmark
	C16H32O2	octanoic acid, octyl ester		\checkmark	\checkmark
Dimers	C15H30O2	_		✓	✓
	C16H32O4	-		\checkmark	\checkmark
	C ₆ H ₁₁ N ₃ O ₃	-	\checkmark	\checkmark	_
	C21H38O6	-	\checkmark	✓	_
	C25H48O6	-	\checkmark	✓	-

^a Tentative assignment.

Location	Туре	Period	Fatty alcohols	
Beijing, China ¹	PM2.5	2013.9-2014.7	109 - 190	
Changdao, China ²	PM2.5	2003.3-2004.1	19.7 – 29.1	
East China Sea ³	TSP	2014.5-2014.6	18.4 - 222	
Jeju Island, Korea ⁴	TSP	2001.4	5.0 - 134	
Sapporo, Japan ⁴	TSP	2001.4	0.80 - 38.0	
Arctic Ocean ⁵	TSP	2009.8	0.42 - 8.13	

Table S3. Concentrations of fatty alcohols in marine and urban aerosols (ng m⁻³).

Figure S1. Time-resolved infrared spectra: phototransformation of 1-octanol under irradiation without photosensitizers. ATR-FTIR absorbance spectra of (A) the surface reaction and (B) the bulk reaction, and they were obtained by measuring the samples that have reacted in-situ on the ATR crystal and in the quartz reactor, respectively.

Figure S2. Time-resolved infrared spectra: phototransformation of 1-octanol in the presence of IC photosensitizer (A) under irradiation and (B) in the dark condition. ATR-FTIR absorbance spectra of the bulk reaction were obtained by measuring the samples that have reacted in the quartz reactor.

Figure S3. Time-resolved infrared spectra: phototransformation of 1-octanol in the presence of (A) MG-AS BrC and (B) MG-Gly BrC in the dark condition. ATR-FTIR absorbance spectra of the bulk reaction were obtained by measuring the samples that have reacted in the quartz reactor (D: dark).

Scheme S1. Proposed mechanism for producing butene through C4 lactone formation.

REFERENCES

Zhao, W.; Kawamura, K.; Yue, S.; Wei, L.; Ren, H.; Yan, Y.; Kang, M.; Li, L.; Ren,
 L.; Lai, S., Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China. *Atmos. Chem. Phys.* 2018, *18* (4), 2749-2767.

(2) Feng, J.; Guo, Z.; Chan, C. K.; Fang, M., Properties of organic matter in PM2.5 at Changdao Island, China—a rural site in the transport path of the Asian continental outflow. *Atmos. Environ.* **2007**, *41* (9), 1924-1935.

(3) Kang, M. J.; Yang, F.; Ren, H.; Zhao, W. Y.; Zhao, Y.; Li, L. J.; Yan, Y.; Zhang, Y. J.; Lai, S. C.; Zhang, Y. Y.; Yang, Y.; Wang, Z. F.; Sun, Y. L.; Fu, P. Q., Influence of continental organic aerosols to the marine atmosphere over the East China Sea: insights from lipids, PAHs and phthalates. *Sci. Total Environ.* 2017, 607, 339-350.

(4) Simoneit, B. R.; Kobayashi, M.; Mochida, M.; Kawamura, K.; Lee, M.; Lim, H. J.; Turpin, B. J.; Komazaki, Y., Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. *J. Geophys. Res.-Atmos.* **2004**, *109* (D19), 4598.

(5) Fu, P.; Kawamura, K.; Chen, J.; Charriere, B.; Sempere, R., Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation. *Biogeosciences* **2013**, 653-667.