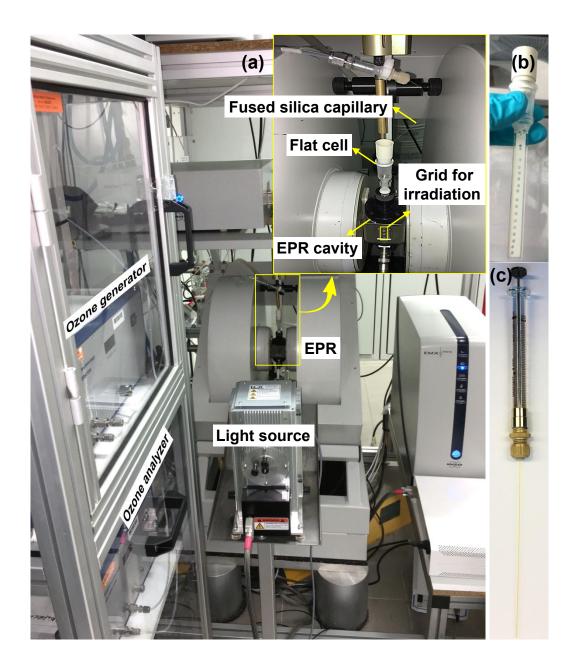
Supporting Information for

Visible-Light Photocatalytic Ozonation Using Graphitic-C₃N₄ Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment

Jiadong Xiao,^{†,‡,§,} Yongbing Xie,[†] Jabor Rabeah,[§] Angelika Brückner^{*,§} and Hongbin Cao^{*,†}

[†] Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China


[‡] School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Department of Catalytic In Situ Studies, Leibniz-Institute for Catalysis e. V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany

Corresponding authors.

* hbcao@ipe.ac.cn (H. Cao)

* Angelika.Brueckner@catalysis.de (A. Brückner).

Figure S1. Photographs of (a) the *in-situ* EPR spectroscopic set-up, (b) flat cell loaded with bulk $g-C_3N_4$ suspension under O_3 bubbling (0.5 mL/min) and (c) self-modified syringe. Full details about this EPR methodology are given in our previous publication.¹ Reproduced with permission from ref. ¹. Copyright 2017 American Chemical Society.

References

(1) Xiao, J. D.; Rabeah, J.; Yang, J.; Xie, Y. B.; Cao, H. B.; Brückner, A. Fast Electron Transfer and 'OH Formation: Key Features for High Activity in Visible-Light-Driven Ozonation with C₃N₄ Catalysts. *ACS Catal.* **2017**, *7*, 6198-6206.