ACS Sustainable Chemistry & Engineering

Supporting Information for:

Aluminum Decoration on MoS2 Ultrathin Nanosheets for

Highly Efficient Hydrogen Evolution

Jiahuang Jian¹, Yang Li¹, Hai Bi^{1, 2}, Xinzhu Wang¹, Xiaohong Wu^{1*}, Wei Qin³

1 MIIT Key Laboratory of Critical Material Technology for New Energy Conversion

and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of

Technology, Harbin, 150001, P.R. China

2 School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street,

Cambridge, Massachusetts 02138, USA

3 School of Materials Science and Engineering, Harbin Institute of Technology,

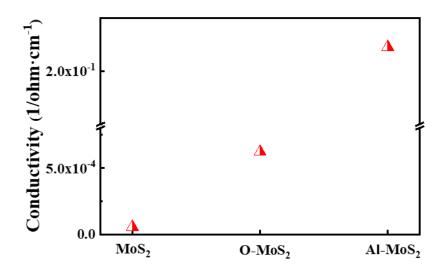
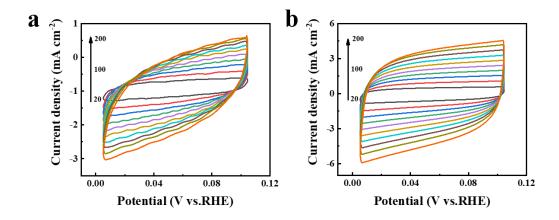
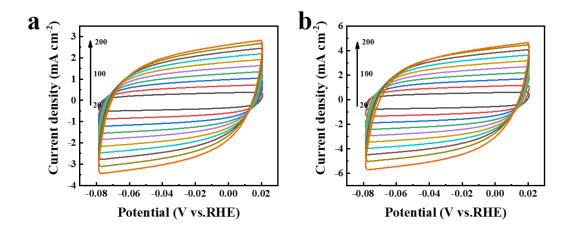
Harbin, Heilongjiang. 150001, P.R. China

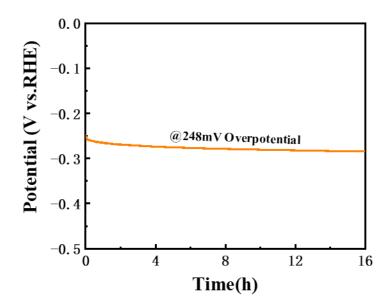
*Corresponding author. E-mail address: wuxiaohong@hit.edu.cn (Xiaohong Wu)

Number of Pages: 7

Number of Figures: 5

Number of Tables: 4


Figure S1: Hall conductivity of MoS_2 , O- MoS_2 and Al- MoS_2 .

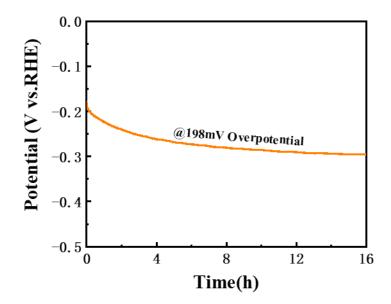

Figure S2: Cyclic Voltammetry curves for (a) O-MoS₂ and (b) Al-MoS₂ at different scan rates (20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mV s⁻¹) in 0.5 M H_2SO_4 .

Figure S3: Cyclic Voltammetry curves for (a) O-MoS₂ and (b) Al-MoS₂ at different scan rates (20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mV s⁻¹) in 1 M KOH.

Figure S4: Chronoamperometric curve of Al-MoS $_2$ at an overpotential of 248 mV for 16 h in 0.5 M $_{2}$ SO $_{4}$ solution.

Figure S5: Chronoamperometric curve of Al-MoS₂ at an overpotential of 198 mV for 16 h in 1 M KOH solution.

Table S1. Nyquist plot fitted data (0.5 M H₂SO₄):

Catalyst	$R_s(\Omega)$	$\mathbf{R}_{\mathrm{ct}}(\mathbf{\Omega})$
Al-MoS ₂	7.4	46.2
O-MoS ₂	7.1	249.6

Table S2. Calculated double layer capacitance (C_{dl}), electrochemically active Surface area (ECSA) values in 0.5 M H_2SO_4 solution:

Catalyst	C _{dl} (mF cm ⁻²)	ECSA (cm ²)
Al-MoS ₂	19.11	546
$O-MoS_2$	5.12	146.6

Table S3. Nyquist plot fitted data (1 M KOH):

Catalyst	$R_s(\Omega)$	$\mathbf{R}_{\mathrm{ct}}(\mathbf{\Omega})$
Al-MoS ₂	10.9	44.2
$O-MoS_2$	12.2	130.9

Table S4. Calculated double layer capacitance (C_{dl}), electrochemically active Surface area (ECSA) values in 1 M KOH solution:

Catalyst	C _{dl} (mF cm ⁻²)	ECSA (cm ²)
Al-MoS ₂	20.02	500.5
$O-MoS_2$	11.95	298.8