Supporting Information for

Visible Light-Driven Copper-Catalyzed C(sp³)-O Cross-Coupling of Benzylic Radicals with Phenols

Xiao-Ye Yu,[†] Jun Chen,[†] Hong-Wei Chen,[†] Wen-Jing Xiao,^{†,‡} and Jia-Rong Chen^{*,†}

[†]CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

[‡]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

E-mail: chenjiarong@mail.ccnu.edu.cn

Table of Contents

1. General Information	
2. Detailed Optimization of Reaction Conditions and Con	trol Experiments
2.1 Optimization of Reaction of Oxime Ester with o-M	ethoxyphenolS1
2.2 Control Experiments	
2.3 Optimization of Reaction of Benzylic Ester with o-	Methoxyphenol
3. General Procedure and Spectral Data of Products	
3.1 General Procedure for Synthesis of 3	
3.2 General Procedure for Synthesis of 3bp-br	
3.3 General Procedure for Synthesis of 5	
3.4 Spectral Data of Products	
4. Examination of Other Nucleophiles	
4.1 General Procedure for Synthesis of 7	
4.2 Spectral Data of Products	
5. Preparative Utility of the Methodology-Gram-Scale Co	ontinuous Flow Reaction
6. Derivatization of Product 3aa	
6.1 General Procedure for Synthesis of 8 and 9	
6.2 Spectral Data of Products of 8 and 9	
7. Mechanism Study and Possible Mechanisms	
8. The Spectra of Products	

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400 MHz spectrophotometers. Chemical shifts (δ) are reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on 100 or 150 MHz with complete proton decoupling spectrophotometers. The high resolution mass spectra (HRMS) were measured on a Shimadzu LCMS-IT-TOF mass spectrometer or DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer by ESI. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. And oxime esters were prepared according to literature.¹

2. Detailed Optimization of Reaction Conditions and Control Experiments

2.1 Optimization of Reaction of Oxime Ester 1a with o-Methoxyphenol 2a

MeC OMe [Cu] (20 mol%), Pr2NEt (2.0 equiv) NC 7 W blue LEDs (450-460 nm) ΩН NC **1a**, R = p-CF₃C₆H₄ 2a CH2Cl2 (0.05 M), 5 h 3aa 3aa-l Yield/3aa^[b][%] Entry^[a] Yield/3aa-I^[b][%] [Cu] 1 CuCl 70 N.D. 2 CuTc 44 12 3 Cu(CH₃CN)₄PF₆ N.D. 52 4 Cu(OTf)(Toluene)/(2:1) 22 32 5 Cu(OTf)₂ 43 39

Table S1. Screening of the copper catalysts

[a] Unless otherwise noted, reactions were carried out with **1a** (34.7 mg, 0.1 mmol), **2a** (24.8 mg, 0.2 mmol), [Cu] (20 mol%) and ${}^{i}Pr_{2}NEt$ (25.8 mg, 2.0 equiv) in CH₂Cl₂ (2.0 mL) at rt under 7 W blue LEDs (450-460 nm). [b] Yields were determined by GC analysis using 1,1'-biphenyl as an internal standard. CuTc = ((thiophene-2-carbonyl)oxy)copper(I); N.D. = not detected.

As shown in Table *S1*, among all the copper catalysts tested, CuCl gave the best results in terms of yield (70% yield), and was thus selected for further optimization studies.

Table S2. Screening of the solvents

$R \downarrow O N O \downarrow Ia, R = p-CF_3C_6H_4$	+ CuCl (20 r OH 7 W blu Sol	MeO mol%), ^{<i>i</i>} Pr ₂ NEt (2.0 equiv) ue LEDs (450-460 nm) vent (0.05 M), 5 h NC 3aa	
Entry ^[a]	Solvent	Yield/3aa ^[b] [%]	Yield/3aa-I ^[b] [%]
1	CH_2Cl_2	70	N.D.
2	CH ₃ CN	15	1
3	DCE	22	2
4	Toluene	27	13
5	THF	15	6
6	1,4-dioxane	18	9

[a] Unless otherwise noted, reactions were carried out with **1a** (34.7 mg, 0.1 mmol), **2a** (24.8 mg, 0.2 mmol), CuCl (1.98 mg, 20 mol%) and ${}^{i}Pr_{2}NEt$ (25.8 mg, 2.0 equiv) in solvent (2.0 mL) at rt under 7 W blue LEDs (450-460 nm). [b] Yields were determined by GC analysis using 1,1'-biphenyl as an internal standard. DCE = 1,2-dichloroethane; THF = Tetrahydrofuran; N.D. = not detected.

As show in Table *S2*, among all the solvent tested, CH_2Cl_2 gave the best results in terms of yield (70% yield), and was thus selected for further optimization studies.

Table S3. Screening of bases

Entry ^[a]	Base	Yield/3aa ^[b] [%]	Yield/3aa-I ^[b] [%]		
1	^{<i>i</i>} Pr ₂ NEt	70	N.D.		
2		18	12		
3	o_N_	32	26		
4	DABCO	10	9		
5	NEt ₃	35	7		
6	TMEDA	7	8		
7	Na ₂ CO ₃	14	18		

8	K ₂ CO ₃	37	6

[a] Unless otherwise noted, reactions were carried out with **1a** (34.7 mg, 0.1 mmol), **2a** (24.8 mg, 0.2 mmol), CuCl (1.98 mg, 20 mol%) and base (2.0 equiv) in CH₂Cl₂ (2.0 mL) at rt under 7 W blue LEDs (450-460 nm, distance ca. 3 cm.). [b] Yields were determined by GC analysis using 1,1'-biphenyl as an internal standard. DABCO = 1,4-Diazabicyclo[2.2.2]octane; TMEDA = N,N,N',N'-Tetramethylethylenediamine; N.D. = not detected.

As shown in Table S3, among the base tested, ${}^{i}Pr_{2}NEt$ gave the best results (70% yield), and was thus selected for further studies.

Table S4. Screening of concentration

[a] Unless otherwise noted, reactions were carried out with **1a** (34.7 mg, 0.1 mmol), **2a** (24.8 mg, 0.2 mmol), CuCl (1.98 mg, 20 mol%) and ${}^{i}Pr_{2}NEt$ (25.8 mg, 2.0 equiv) in CH₂Cl₂ (X mL) at rt under 7 W blue LEDs (450-460 nm, distance ca. 3 cm.). [b] Yields were determined by GC analysis using 1,1'-biphenyl as an internal standard. N.D. = not detected.

As shown in Table *S4*, among the concentration tested, 0.05 M gave the best result in terms of yield and the optimal condition was confirmed.

2.2 Control Experiments

Table S5. Control experiments

Entry ^[a]	[Cu]	hv	base	Yield/3aa ^[b] [%]	Yield/3aa-I ^[b] [%]
1 ^[c]	-	+	+	No reaction	38
2 ^[d]	+	-	+	57	N.D.
3 ^[e]	+	+	-	18	20
4	+	+	+	71	N.D.

[a] Unless otherwise noted, reactions were carried out with **1a** (34.7 mg, 0.1 mmol), **2a** (24.8 mg, 0.2 mmol), CuCl (1.98 mg, 20 mol%) and ${}^{i}Pr_{2}NEt$ (25.8 mg, 2.0 equiv) in CH₂Cl₂ (2.0 mL) at rt under 7 W blue LEDs (450-460 nm, distance ca. 3 cm.). [b] Yields were determined by GC analysis using 1,1'-biphenyl as an internal standard. [c] Without Cu. [d] No visible light irradiation. [e] Without base. N.D. = not detected.

The results of Table S5 reveal that Copper is necessary, and lighting can improve the yield.

2.3 Optimization of Reaction of Benzylic Ester with *o*-Methoxyphenol

OMe CuBr (20 mol%) Ph Ph-PTZ (20 mol%) [/]Pr₂NEt (2.0 equiv) OH CH₂Cl₂ (0.05 M) 2a D 5aa Ph-PTZ $Ar = 3,5-(CF_3)_2C_6H_3$ 390 nm LED Ph Entry^[a] Yield^[b][%] Variation from the standard conditions 1 50 none 2 CuCl instead of CuBr 40 Cu(OTf)2 instead of CuBr 35 no CuBr 0 no Ph-PTZ 3 0

Table S6. Condition optimization^a

[a] Unless otherwise noted, reactions were carried out with **4a** (0.2 mmol,87.7 mg), **2a** (0.4 mmol, 49.6 mg), CuBr (3.96 mg, 20 mol%), Ph-PTZ (4.74 mg, 20 mol%) and ${}^{i}Pr_{2}NEt$ (51.6 mg, 2.0 equiv) in CH₂Cl₂ (4.0 mL) at rt under 390 nm LED. [b] Isolated yield.

The results of Table S6 reveal that both copper catalyst and photocatalyst are essential for this reaction.

3. General Procedure and Spectral Data of Products

3.1 General Procedure for Synthesis of 3

To a stirred solution of CuCl (3.96 mg, 20 mol%) in CH_2Cl_2 (4.0 mL) under nitrogen was added **2a** (49.6 mg, 0.4 mmol) and ^{*i*}Pr₂NEt (51.6 mg, 2.0 equiv). And **1a** (69.4 mg, 0.2 mmol) were added subsequently. After that, the solution was stirred at a distance of

~5 cm from a 7 W blue LEDs (450-460 nm) at room temperature about 5 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate $20:1\sim10:1$) directly to give the desired product **3aa** in 70% yield as a colorless oil.

3.2 General Procedure for Synthesis of 3bp-br

To a stirred solution of CuCl (3.96 mg, 20 mol%) in alcohol **2p-r** (4.0 mL) under nitrogen was added ^{*i*}Pr₂NEt (51.6 mg, 2.0 equiv). And **1b** (72.6 mg, 0.2 mmol) were added subsequently. After that, the solution was stirred at a distance of ~5 cm from a 7 W blue LEDs (450-460 nm, distance ca. 3 cm.) at room temperature about 5 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 20:1~10:1) directly to give the desired product **3bp-br** as a colorless oil.

3.3 General Procedure for Synthesis of 5

To a stirred solution of CuBr (5.74 mg, 20 mol%) in CH₂Cl₂ (2.0 mL) under nitrogen was added **2a** (49.6 mg, 0.4 mmol) and ^{*i*}Pr₂NEt (51.6 mg, 2.0 equiv). And **4a** (87.7 mg, 0.2 mmol) and Ph-PTZ (4.74 mg, 20 mol%) were added subsequently. After that, the solution was stirred at 390 nm LEDs at room temperature about 24 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate $30:1\sim20:1$) directly to give the desired product **5aa** in 50% yield as a colorless oil.

3.4 Spectral Data of Products

4-(2-methoxyphenoxy)-4-(p-tolyl)butanenitrile 3aa

39 mg, colorless liquid, yield: 70%. $R_f = 0.3$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.24 (d, *J*=7.9, 2H), 7.13 (d, *J*=7.8, 2H), 6.90 – 6.85 (m, 2H), 6.68 (d, *J*=7.3, 2H), 5.15 – 5.11 (m, 1H), 3.87 (s, 3H), 2.77 – 2.69 (m, 1H), 2.16 – 2.08 (m, 1H), 2.56 – 2.49 (m, 1H), 2.31 (s, 3H), 2.16 – 2.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.3, 146.9, 137.8, 137.2, 129.3, 125.9, 122.3, 120.5, 119.6, 117.5, 111.9, 79.7, 55.6, 34.1, 21.0, 13.8.

HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{18}H_{19}N NaO_2 304.1308$, found: 304.1309.

4-(2-methoxyphenoxy)-4-(4-methoxyphenyl)butanenitrile 3ba

52.3 mg, colorless liquid, yield: 88%. $R_f = 0.4$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 (d, J = 8.8 Hz, 2H), 6.93 – 6.86 (m, 4H), 6.73 – 6.66 (m, 2H), 5.14 – 5.10 (m, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 2.80 – 2.72 (m, 1H), 2.59 – 2.53 (m, 1H), 2.40 – 2.31 (m, 1H), 2.17 – 2.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.4, 150.4, 146.8, 132.2, 127.4, 122.5,

2.05 (m, 1H). ⁻⁻C NMR (100 MHz, CDCl₃) δ (ppm) 159.4, 150.4, 146.8, 132.2, 127.4, 122.5, 120.6, 119.7, 117.8, 114.0, 111.9, 79.6, 55.7, 55.2, 34.1, 13.9. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₈H₁₉NNaO₃: 320.1257, found: 320.1260.

4-(2-methoxyphenoxy)-4-phenylbutanenitrile 3ca

NC

21.9 mg, colorless liquid, yield: 41%. $R_f = 0.4$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.28 (q, J = 7.9 Hz, 4H), 7.22 (d, J = 6.8 Hz, 1H), 6.86 – 6.80 (m, 2H), 6.65 – 6.59 (m, 2H), 5.12 – 5.08 (m, 1H), 3.82 (s, 3H), 2.75 – 2.67 (m, 1H), 2.53 – 2.45 (m, 1H), 2.33 – 2.24 (m, 1H), 2.14 – 2.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.4, 146.9, 140.3, 128.7, 128.1, 126.1, 122.5, 120.7, 119.6, 117.7, 112.0, 80.0, 55.8, 34.2, 13.9. HRMS (EI): m/z [M + Na]⁺

calcd for C₁₇H₁₇NNaO₂: 290.1151, found: 290.1148.

OMe

4-(4-bromophenyl)-4-(2-methoxyphenoxy)butanenitrile 3da

20.8 mg, white solid, yield: 30%. $R_f = 0.5$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.48 (d, J = 8.4 Hz, 2H), 7.27 – 7.24 (m, 2H), 6.95 – 6.87 (m, 2H), 6.72 (t, J = 7.6 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.16 – 5.13 (m, 1H), 3.88 (s, 3H), 2.84 – 2.76 (m, 1H), 2.60 – 2.53 (m, 1H), 2.37 – 2.28 (m, 1H), 2.16 – 2.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.5, 146.5, 139.4, 131.9, 127.8, 122.9, 122.1, 120.7, 119.5, 117.9, 112.0, 79.4, 55.7,

34.0, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{17}H_{16}BrNNaO_2$: 368.0257, found: 368.0270.

4-(3-fluorophenyl)-4-(2-methoxyphenoxy)butanenitrile 3ea

13.1 mg, colorless liquid, yield: 23%. $R_f = 0.4$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.34 – 7.29 (m, 1H), 7.15 – 7.11 (m, 2H), 7.01 – 6.88 (m, 3H), 6.75 – 6.67 (m, 2H), 5.19 – 5.16 (m, 3H), 3.89 (s, 3H), 2.84 – 2.76 (m, 1H), 2.61 – 2.54 (m, 1H), 2.38 – 2.29 (m, 1H), 2.20 – 2.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.0 (*J* = 245.4 Hz), 150.4, 146.6, 143.0 (*J* = 6.8 Hz), 130.3 (*J* = 8.2 Hz), 122.9, 121.7 (*J* = 2.9 Hz), 120.6, 119.5, 117.7, 115.1 (*J* = 21.1 Hz), 113.0 (*J* = 22.1 Hz), 112.0, 79.3, 55.7, 34.0, 13.9. HRMS (EI): m/z [M + Na]⁺ calcd for

 $C_{17}H_{16}FNNaO_2$: 308.1057, found: 308.1056.

4-(2-methoxyphenoxy)-4-(o-tolyl)butanenitrile 3fa

28.1 mg, colorless liquid, yield: 50%. $R_f = 0.4$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49 – 7.47 (m, 1H), 7.21 – 7.14 (m, 3H), 6.92 – 6.85 (m, 2H), 6.72 – 6.67 (m, 1H), 6.56 (d, J = 7.6 Hz, 1H), 5.41 – 5.38 (m, 1H), 3.90 (s, 3H), 2.89 – 2.81 (m, 1H), 2.67 – 2.60 (m, 1H), 2.37 (s, 3H), 2.32 – 2.23 (m, 1H), 2.15 – 2.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.2, 147.0, 138.4, 134.0, 130.7, 127.8, 126.5, 125.6, 122.2, 120.7, 119.7, 116.8, 111.9, 76.6, 55.7, 32.9, 18.9, 14.2. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₈H₁₉NNaO₂: 304.1308, found: 304.1309.

4-(3,5-dimethylphenyl)-4-(2-methoxyphenoxy)butanenitrile 3ga

40.2 mg, colorless liquid, yield: 68%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.98 (s, 2H), 6.93 – 6.87 (m, 3H), 6.75 – 6.69 (m, 2H), 5.09 – 5.06 (m, 1H), 3.89 (s, 3H), 2.79 – 2.71 (m, 1H), 2.59 – 2.51 (m, 1H), 2.37 – 2.32 (m, 1H), 2.29 (s, 6H), 2.18 – 2.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.3, 147.2, 140.3, 138.3, 129.8, 123.7,

122.3, 120.7, 119.7, 117.3, 111.9, 80.1, 55.8, 34.3, 21.3, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{19}H_{21}NNaO_2$: 318.1465, found: 318.1455.

4-(benzo[d][1,3]dioxol-5-yl)-4-(2-methoxyphenoxy)butanenitrile 3ha

47.9 mg, colorless liquid, yield: 77%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.94 – 6.86 (m, 3H), 6.81 – 6.69 (m, 4H), 5.95 (s, 2H), 5.10 – 5.07 (m, 1H), 3.88 (s, 3H), 2.79 – 2.71 (m, 1H), 2.59 – 2.51 (m, 1H), 2.38 – 2.29 (m, 1H), 2.16 – 2.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 148.1, 147.5, 146.8, 134.2, 122.6, 120.7, 119.8, 119.6, 117.9, 112.0, 108.3, 106.4, 101.1, 79.8,

55.7, 34.2, 14.0. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{18}H_{17}NNaO_4$: 334.1050, found: 334.1040.

4-(2-methoxyphenoxy)-4-(naphthalen-2-yl)butanenitrile 3ia

32.4 mg, colorless liquid, yield: 51%. $R_f = 0.4$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 – 7.79 (m, 4H), 7.54 – 7.45 (m, 3H), 6.92 – 6.87 (m, 2H), 6.73 – 6.64 (m, 2H), 5.34 – 5.31 (m, 1H), 3.91 (s, 3H), 2.87 – 2.79 (m, 1H), 2.63 – 2.55 (m, 1H), 2.49 – 2.40 (m, 1H), 2.27 – 2.19 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.4, 146.9, 137.7, 133.1, 128.7, 127.9, 127.7, 126.3, 126.2, 125.3, 123.6, 122.6, 120.6, 119.6, 117.7, 111.9,

 $80.2,\,55.7,\,34.1,\,14.0.\,HRMS\,(EI):\,m/z\;[M+Na]^{+}\,calcd\;for\;C_{21}H_{19}NNaO_{2}:\,340.1308,\;found:\;340.1304.$

4-(2-isopropoxyphenoxy)-4-(4-methoxyphenyl)butanenitrile 3bb

39.7 mg, colorless liquid, yield: 61%. R_f = 0.4 (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 (d, J = 9.3 Hz, 3H), 6.90 – 6.85 (m, 3H), 6.74 – 6.66 (m, 2H), 5.12 – 5.09 (m, 1H), 4.53 (p, J = 6.1 Hz, 1H), 3.79 (s, 3H), 2.76 – 2.67 (m, 1H), 2.59 – 2.51 (m, 1H), 2.39 – 2.30 (m, 1H), 2.19 – 2.10 (m, 1H), 1.38 (t, J = 5.8 Hz, 6H). ¹³C NMR (100 OMe MHz, CDCl₃) δ (ppm) 159.4, 148.9, 148.2, 132.3, 127.5, 122.6, 121.1, 119.7, 118.9, 116.3,

114.0, 79.9, 71.3, 55.2, 34.1, 22.3, 22.2, 13.8. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{20}H_{23}NNaO_3$: 348.1570, found: 348.1571.

4-(2-(allyloxy)phenoxy)-4-(4-methoxyphenyl)butanenitrile 3bc

32.3 mg, colorless liquid, yield: 50%. R_f = 0.4 (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.28 (d, J = 8.5 Hz, 2H), 6.88 – 6.85 (m, 4H), 6.74 – 6.68 (m, 2H), 6.15 – 6.06 (m, 1H), 5.46 – 5.30 (m, 2H), 5.14 – 5.11 (m, 1H), 4.60 (d, J = 5.4 Hz, 2H), 3.79 (s, 3H), 2.76 – 2.68 (m, 1H), 2.59 – 2.51 (m, 1H), 2.39 – 2.30 (m, 1H), 2.18 – 2.10 (m, 1H).
³C NMR (100 MHz, CDCl₃) δ (ppm) 159.4, 149.5, 147.3, 133.4, 132.2, 127.4, 122.5, 121.1,

119.7, 118.3, 117.7, 114.1, 79.8, 76.7, 69.7, 55.2, 34.1, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{20}H_{21}NNaO_3$: 346.1414, found: 346.1411.

4-(4-methoxyphenyl)-4-(2-(trifluoromethoxy)phenoxy)butanenitrile 3bd

30.2 mg, colorless liquid, yield: 43%. R_f = 0.4 (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 - 7.25 (m, 2H), 7.21 (d, J = 8.1Hz, 1H), 7.08 - 7.03 (m, 1H), 6.91 - 6.87 (m, 3H), 6.78 - 6.75 (m, 1H), 5.25 - 5.21 (m, 1H), 3.79 (s, 3H), 2.69 - 2.61 (m, 1H), 2.53 - 2.45 (m, 1H), 2.38 - 2.29 (m, 1H), 2.22 - 2.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.6, 149.7, 138.5, 131.0, 127.7, 127.1, 123.2, 121.3, 120.7 (q, J = 255.4)

Hz), 119.2, 116.0, 114.1, 78.4, 55.2, 34.1, 13.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.9. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₈H₁₆F₃NNaO₃: 374.0974, found: 374.0976.

4-(4-methoxyphenoxy)-4-(4-methoxyphenyl)butanenitrile 3be

19.0 mg, colorless liquid, yield: 32%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.25 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.77 – 6.71 (m, 4H), 5.09 – 5.06 (m, 1H), 3.78 (s, 3H), 3.71 (s, 3H), 2.65 – 2.57 (m, 1H), 2.50 – 2.42 (m, 1H), 2.30 – 2.21 (m, 1H), 2.17 – 2.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.4, 154.2, 151.6, 132.1, 127.2, 119.4, 117.2, 114.5, 114.2, 78.5, 55.6, 55.2, 34.1, 13.9. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₈H₁₉NNaO₃: 320.1257, found: 320.1271.

$\label{eq:constraint} 4-((6-methoxynaphthalen-1-yl)oxy)-4-(4-methoxyphenyl) but an enitrile \ 3bf$

13.9 mg, colorless liquid, yield: 20%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃, **3bg**) δ (ppm) 8.27 (d, J = 9.2 Hz, 1H), 7.37 – 7.35 (m, 2H), 7.26 (s, 1H), 7.18 – 7.14 (m, 2H), 7.09 (d, J = 2.5 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.51 (dd, J = 7.8, 0.9 Hz, 1H), 5.42 (dd, J = 8.1, 4.4 Hz, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 2.71 – 2.63 (m, 1H), 2.58 – 2.51 (m, 1H), 2.48 – 2.37 (m, 1H), 2.35 – 2.26 (m, 1H). ¹³C NMR (100 MHz,

 $CDCl_{3}, \textbf{3bg}) \delta \text{ (ppm)} \delta 159.9, 158.1, 153.0, 135.9, 133.0, 127.7, 126.9, 124.9, 123.4, 120.9, 119.4 117.8, 114.3, 105.8, 105.2, 75.2, 55.3, 55.2, 31.8, 13.9. HRMS (EI): m/z [M + Na]^{+} calcd for C_{22}H_{21}NNaO_{3}: 370.1414, found: 370.1409.$

4-(2-methoxy-4-methylphenoxy)-4-(4-methoxyphenyl)butanenitrile 3bg

40.4 mg, colorless liquid, yield: 65%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 (d, J = 8.6Hz, 2H), 6.86 (d, J = 8.6Hz, 2H), 6.68 (d, J = 1.8 Hz, 1H), 6.56 – 6.48 (m, 2H), 5.07 – 5.04 (m, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 2.79 – 2.71 (m, 1H), 2.58 – 2.50 (m, 1H), 2.39 – 2.29 (m, 1H), 2.24 (s, 3H), 2.13 – 2.06 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.3, 150.2, 144.5, 132.4, 132.3, 127.4, 120.7, 119.7, 118.1,

114.0, 112.9, 79.9, 55.7, 55.2, 34.1, 21.1, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{19}H_{21}NNaO_3$: 334.1414, found: 334.1416.

4-(2,4-dimethylphenoxy)-4-(4-methoxyphenyl)butanenitrile 3bh

16.0 mg, colorless liquid, yield: 27%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.26 – 7.23 (m, 2H), 6.93 (d, J = 2.2 Hz, 1H), 6.88 – 6.85 (m, 2H), 6.77 – 6.75 (m, 1H), 6.50 (d, J = 8.3 Hz, 1H), 5.19 – 5.16 (m, 1H), 3.78 (s, 3H), 2.63 – 2.55 (m, 1H), 2.51 – 2.43 (m, 1H), 2.33 – 2.25 (m, 4H), 2.22 – 2.14 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.3, 153.2, 132.1, 131.6, 130.0, 127.0, 126.8, 126.7, 119.4, 114.2, 112.8,

76.7, 55.2, 34.2, 20.4, 16.4, 13.8. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{19}H_{21}NNaO_2$: 318.1465, found: 318.1458.

4-(2-iodophenoxy)-4-(4-methoxyphenyl)butanenitrile 3bi

57.4 mg, colorless liquid, yield: 73%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.74 (d, J = 7.8 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 6.65 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 8.2 Hz, 1H), 5.29 – 5.25 (m, 1H), 3.78 (s, 3H), 2.81 – 2.73 (m, 1H), 2.60 – 2.53 (m, 1H), 2.38 – 2.29 (m, 1H), 2.25 – 2.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.5, 155.6, 139.4, 131.0, 129.3, 127.0,

122.9, 119.3, 114.3, 113.8, 87.0, 78.3, 55.2, 34.3, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{17}H_{16}INNaO_2$: 416.0118, found: 416.0118.

4-(5-fluoro-2-iodophenoxy)-4-(4-methoxyphenyl)butanenitrile 3bj

42.8 mg, colorless liquid, yield: 52%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃, **3bj**) δ (ppm) 7.48 – 7.45 (m, 1H), 7.27 – 7.23 (m, 2H), 6.93 – 6.80 (m, 3H), 6.53 – 6.49 (m, 1H), 5.21 – 5.18 (m, 1H), 3.80 (s, 1H), 2.80 – 2.72 (m, 1H), 2.59 – 2.51 (m, 1H), 2.48 – 2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, **3bj**) δ (ppm) 159.6, 158.0, 155.6, 152.3, 130.7, 130.1, 119.2, 115.6, 114.4, 114.0, 86.5, 79.1, 55.3,

34.1, 13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{17}H_{15}FINNaO_2$: 434.0024, found: 434.0030.

4-(5-bromo-2-iodophenoxy)-4-(4-methoxyphenyl)butanenitrile 3bk

66.1 mg, colorless liquid, yield: 70%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.85 (d, J = 2.3 Hz, 1H), 7.26 – 7.19 (m, 3H), 6.90 – 6.86 (m, 2H), 6.45 (d, J = 8.8 Hz, 1H), 5.24 – 5.21 (m, 1H), 3.79 (s, 3H), 2.79 – 2.71 (m, 1H), 2.58 – 2.51 (m, 1H), 2.39 – 2.30 (m, 1H), 2.25 – 2.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.6, 155.0, 141.1, 132.0, 130.4, 127.1, 119.1, 114.9, 114.4, 114.0, 87.8, 78.8, 55.3, 34.1,

13.9. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{17}H_{15}BrINNaO_2$: 493.9223, found: 493.9218.

4-(2-bromo-5-methoxyphenoxy)-4-(4-methoxyphenyl)butanenitrile 3bl

22.6 mg, colorless liquid, yield: 30%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃, **3bl**) δ (ppm) 7.28 – 7.24 (m, 3H), 7.08 – 7.07 (m, 1H), 6.90 – 6.86 (m, 2H), 6.63 – 6.57 (m, 2H), 5.15 – 5.12 (m, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.78 – 2.70 (m, 1H), 2.58 – 2.51 (m, 1H), 2.49 – 2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, **3bl**) δ (ppm) 159.5, 154.4, 147.9, 134.9, 130.1, 127.7, 127.3, 119.4, 118.6, 116.7, 114.2, 79.4,

 $55.8,\,55.3,\,34.0,\,13.8.\,HRMS\,(EI):\,m/z\;[M+Na]^{+}\,calcd\;for\;C_{18}H_{18}BrNNaO_{3}:\,398.0362,\;found:\;398.0349.$

4-((1H-benzo[d][1,2,3]triazol-1-yl)oxy)-4-(4-methoxyphenyl)butanenitrile 3bm

30.8 mg, colorless liquid, yield: 50%. $R_f = 0.2$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ 7.90 (d, J = 7.6 Hz, 1H), 7.32 – 7.20 (m, 2H), 7.19 (d, J = 8.7 Hz, 2H), 7.04 – 7.02 (m, 1H), 6.79 (d, J = 8.7 Hz, 2H), 5.59 – 5.56 (m, 1H), 3.74 (s, 3H), 2.86 – 2.67 (m, 3H), 2.42 – 2.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.9, 143.1, 129.2, 128.1, 127.8, 127.3, 124.3, 119.9, 118.6, 114.3, 108.7, 90.3, 55.3, 29.9, 14.4. HRMS (EI): m/z

 $[M + Na]^+$ calcd for $C_{17}H_{16}N_4NaO_2$: 331.1165, found: 331.1176.

4-(4-methoxyphenyl)-4-(((R)-2,5,6,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-7-yl)oxy)butanenitrile 3bn

48.3 mg, colorless liquid, yield: 40%. d.r. = 1 : 1. $R_f = 0.5$ (petroleum ether/ethylacetate 5:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.23 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.65 – 4.61 (m, 1H), 3.81 (s, 3H), 2.54 – 2.41 (m, 3H), 2.38 – 2.20 (m, 2H), 2.16 – 2.08 (m, 1H), 2.04 (s, 3H), 2.02

(d, J = 3.1 Hz, 3H), 1.96 (d, J = 4.0 Hz, 3H), 1.82 – 1.72 (m, 2H), 1.56 – 1.47 (m, 3H), 1.45 – 1.34 (m, 4H), 1.29 – 1.19 (m, 11H), 1.16 – 1.00 (m, 6H), 0.87 – 0.83 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.7, 147.7, 146.8, 131.0, 128.8, 127.9, 126.0, 122.9, 119.2, 117.6, 113.8, 82.5, 74.8, 55.3, 39.9, 39.4, 37.5, 37.4, 37.4, 37.3, 32.8, 32.7, 31.4,

30.9, 28.0, 24.8, 24.4, 23.8, 23.8, 22.7, 22.6, 21.0, 21.0, 20.7, 19.7, 19.6, 13.9, 13.9, 13.0, 11.9. HRMS (EI): m/z [M + Na]⁺ calcd for C₄₀H₆₁NNaO₃: 626.4544, found: 626.4522.

methyl(2S)-2-((tert-butoxycarbonyl)amino)-3-(4-(4-(3-cyano-1-(4-methoxyphenyl)propoxy)-3,5 -diiodophenoxy)-3,5-diiodophenyl)propanoate 3bo

129.8 mg, white solid, yield: 61%. d.r. = 1 : 1. $R_f = 0.2$ (petroleum ether/ethylacetate 2:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.62 (s, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.09 (s, 2H), 6.80 (d, J = 8.7 Hz, 2H), 5.59 (t, J = 6.4 Hz, 1H), 5.12 (d, J = 8.1 Hz, 1H), 4.54 (d, J = 7.4 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.12 – 3.07 (m, 1H), 2.96 – 2.91 (m, 1H), 2.73 – 2.55 (m, 1H), 2.46 – 2.37 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.6, 160.1, 152.2, 151.4, 141.1, 137.9, 130.1, 128.3, 126.7, 119.3, 113.6, 91.5,

90.4, 82.3, 80.4, 55.2, 54.2, 52.5, 37.0, 31.1, 28.3, 14.3. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{32}H_{32}I_4N_2NaO_7$: 1086.8280, found: 1086.8276.

4-methoxy-4-(4-methoxyphenyl)butanenitrile 3bp

15 mg, colorless oil, yield: 70%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.21 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 4.20 (dd, J = 8.7, 4.8 Hz, 1H), 3.82 (s, 3H), 3.21 (s, 3H), 2.56 – 2.47 (m, 1H), 2.39 – 2.32 (m, 1H), 2.10 – 2.01 (m, 1H), 1.96 – 1.88 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.5, 132.2, 127.7, 118.3, 114.1, 81.0, 56.6, 55.3, 33.5, 13.9. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₂H₁₅NNaO₂:

228.0995, found: 228.0990.

4-(4-methoxyphenyl)-4-(2,2,2-trifluoroethoxy)butanenitrile 3bq

13.7 mg, colorless oil, yield: 50%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.23 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 4.48 (dd, J = 9.1, 4.5 Hz, 1H), 3.82 (s, 3H), 3.74 – 3.56 (m, 2H), 2.59 – 2.51 (m, 1H), 2.46 – 2.39 (m, 1H), 2.20 – 2.11 (m, 1H), 2.02 – 1.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.1, 130.4, 127.9,

123.9 (q, J = 276.9 Hz), 119.1, 114.4, 80.9, 65.7 (q, J = 34.2 Hz), 55.3, 33.5, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -74.0. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₃H₁₄F₃NNaO₃: 296.0869, found: 296.0873.

4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-4-(4-methoxyphenyl)butanenitrile 3br

10 mg, colorless oil, yield: 30%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.26 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 4.74 (dd, J = 9.1, 4.6 Hz, 1H), 3.98 (p, J = 5.9 Hz, 1H), 3.84 (s, 3H), 2.58 – 2.41 (m, 2H), 2.37 – 2.28 (m, 1H), 2.07 – 1.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.8, 129.1, 127.9, 123.8 – 119.2 (m), 118.7, 114.6, 82.5, 72.2 (dt, J = 64.5, 32.4 Hz), 55.4, 33.0, 14.0. ¹⁹F NMR (376 MHz, CDCl₃)

δ (ppm) -72.4 (q, J = 9.3 Hz), -73.6 (q, J = 9.3 Hz). HRMS (EI): m/z [M + Na]⁺ calcd for C₁₄H₁₃F₆NNaO₂: 364.0743, found: 364.0744.

4-(1-(2-methoxyphenoxy)ethyl)-1,1'-biphenyl 5aa

30 mg, colorless oil, yield: 50%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.58 – 7.54 (m, 4H), 7.48 – 7.40 (m, 4H), 7.33 (q, J = 7.6 Hz, 1H), 6.90 – 6.85 (m, 2H), 6.83 – 6.73 (m, 2H), 5.35 (q, J = 6.5 Hz, 1H), 3.90 (s, 3H), 1.72 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.2, 147.5, 142.3, 140.9, 140.3, 128.7, 127.3, 127.2, 127.0, 126.1, 121.5, 120.7, 116.4, 112.2, 77.1, 56.0, 24.2. HRMS (EI): m/z [M + Na]⁺ calcd for C₂₁H₂₀NNaO₂: 327.1356,

found: 327.1357.

1-methoxy-2-(1-(4-(trifluoromethyl)phenyl)ethoxy)benzene 5ba

30 mg, colorless oil, yield: 34%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 6.90 (d, J = 3.9 Hz, 2H), 6.77 – 6.69 (m, 2H), 5.36 (q, J = 6.5 Hz, 1H), 3.89 (s, 3H), 1.68 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.2, 147.3, 147.0, 127.9, 126.0, 125.5 (q, J = 3.8 Hz), 123.4 (q, J = 138.9 Hz), 121.9, 120.7, 116.5, 112.2, 76.8, 56.0, 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -62.5. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₆H₁₅F₃NaO₂: 319.0916, found: 319.0894.

1-methoxy-2-(1-(3-methoxyphenyl)ethoxy)benzene 5ca

38 mg, colorless oil, yield: 59%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37 – 7.30 (m, 4H), 7.09 (t, J = 7.3 Hz, 1H), 7.00 – 6.94 (m, 4H), 6.89 – 6.88 (m, 2H), 6.78 – 6.77 (m, 2H), 5.30 (q, J = 6.4 Hz, 1H), 3.88 (s, 3H), 1.67 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 157.1, 156.5, 150.3, 147.4, 138.0, 129.7, 127.2, 123.2, 121.6, 120.7, 118.9, 118.7, 116.7, 112.1, 76.9, 56.0, 24.1. HRMS (EI): m/z [M + Na]⁺ calcd for C₂₁H₂₀NaO₃: 343.1305, found: 343.1316.

2-(1-(2-methoxyphenoxy)ethyl)thiophene 5da

23 mg, colorless oil, yield: 50%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.22 (d, J = 5.0 Hz, 1H), 6.97 (d, J = 3.3 Hz, 1H), 6.94 – 6.87 (m, 4H), 6.80 (t, J = 7.5 Hz, 1H), 5.55 (q, J = 6.4 Hz, 1H), 3.87 (s, 3H), 1.76 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.0, 147.0, 146.5, 126.4, 124.7, 124.4, 122.6, 120.7, 118.5, 112.4, 73.9, 56.0, 23.7. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₃H₁₄SNaO₂: 257.0607, found: 257.0605.

2-(1-(2-methoxyphenoxy)ethyl)naphthalene 5ea

34.5 mg, colorless oil, yield: 62%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.83 – 7.79 (m, 4H), 7.56 – 7.54 (m, 1H), 7.47 – 7.41 (m, 2H), 6.89 – 6.82 (m, 2H), 6.79 – 6.76 (m, 1H), 6.71 – 6.67 (m, 1H), 5.46 (q, *J* = 6.5 Hz, 1H), 3.91 (s, 3H), 1.76 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.2, 147.5, 140.7, 133.3, 132.9, 128.4, 127.9, 127.7, 126.0, 125.7, 124.4, 123.8, 121.5, 120.7, 116.5, 112.1, 77.5, 56.0, 24.4. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₉H₁₈NaO₂: 301.1199, found: 301.1215.

4-(1-(2-methoxyphenoxy)propyl)-1,1'-biphenyl 5fa

12.7 mg, colorless oil, yield: 20%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.56 (t, J = 8.3 Hz, 4H), 7.45 – 7.40 (m, 4H), 7.32 (t, J = 7.4 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.77 – 6.71 (m, 2H), 5.06 (t, J = 6.6 Hz, 1H), 3.90 (s, 3H), 2.18 – 2.09 (m, 1H), 2.00 – 1.89 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.1, 148.0, 141.1, 140.8, 140.2, 128.7, 127.2, 127.1, 127.0, 126.6, 121.2, 120.7, 116.1, 112.3, 82.8, 56.1, 31.4, 10.3. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₉H₁₈NaO₂: 301.1199, found: 301.1215.

4. Examination of Other Nucleophiles

4.1 General Procedure for Synthesis of 7

To a stirred solution of CuCl (3.96 mg, 20 mol%) in CH_2Cl_2 (4.0 mL) under nitrogen was added **6** (0.8 mmol) and ^{*i*}Pr₂NEt (51.6 mg, 2.0 equiv). And **1a** (69.4 mg, 0.2 mmol) were added subsequently. After that, the solution was stirred at a distance of ~5 cm from a 7 W blue LEDs (450-460 nm) at room temperature about 5 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 20:1~10:1) directly to give the desired product **7** as a colorless oil.

In the case of **6c**, 2.0 equiv of **6c** was used.

4.2 Spectral Data of Products

4-azido-4-(p-tolyl)butanenitrile 7aa

29 mg, colorless oil, yield: 72%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.28 – 7.19 (m, 4H), 4.60 – 4.57 (m, 1H), 2.55 – 2.42 (m, 1H), 2.39 – 2.31 (m, 4H), 2.14 – 1.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.9, 134.6, 129.8, 126.7, 118.7, 764.1, 31.9, 21.1, 14.3. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₁H₁₂N₄Na: 223.0954, found:

223.0941.

4-thiocyanato-4-(p-tolyl)butanenitrile 7ab

28 mg, colorless oil, yield: 65%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.26 – 7.18 (m, 4H), 4.46 – 4.42 (m, 1H), 2.64 – 2.53 (m, 1H), 2.51 – 2.45 (m, 2H), 2.37 – 2.28 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 140.0, 132.7, 130.3, 127.2, 117.7, 110.5, 50.9, 31.2, 21.2, 15.5. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₂H₁₂N₂NaS: 239.0613,

found: 239.0612.

4-((4-bromophenyl)thio)-4-(p-tolyl)butanenitrile 7ac

28 mg, colorless oil, yield: 40%. $R_f = 0.4$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.36 – 7.34 (m, 2H), 7.16 – 7.07 (m, 4H), 4.20 – 4.16 (m, 1H), 2.48 – 2.35 (m, 1H), 2.33 (s, 3H), 2.30 – 2.12 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 137.9, 136.2, 134.3, 132.7, 132.0, 129.6, 127.5, 122.0, 118.8, 51.8, 31.5, 21.1, 15.5. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₇H₁₆BrNNaS: 368.0079, found: 368.0085.

5. Preparative Utility of the Methodology-Gram-Scale Continuous Flow

Reaction

To a stirred solution of CuCl (99 mg, 20 mol%) in CH₂Cl₂ (50 mL) under nitrogen was added **2a** (1.24 g, 10.0 mmol) and ^{*i*}Pr₂NEt (1.29 g, 2.0 equiv). And **1a** (1.7 g, 5.0 mmol) were added subsequently. After that, the solution was stirred at a distance of ~5 cm from a 7 W blue LEDs (450-460 nm) at room temperature about 2.6 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 20:1~10:1) directly to give the desired product **3aa** (956 mg) in 65% yield as a colorless oil.

6. Derivatization of Product 3aa

6.1 General Procedure for Synthesis of 8 and 9

BCl₃ (0.3 mL, 0.3 mmol, 1M) or BBr₃ (28 μ L, 0.3 mmol) was added dropwise to a solution of compound **3aa** (56.3 mg, 0.2 mmol) in CH₂Cl₂ (8.0 mL) under nitrogen at -20 °C. The reaction mixture was stirred at -20 °C until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 20:1~10:1) directly to give the desired product **8** or **9** as a colorless oil.

6.2 Spectral Data of Products of 8 and 9

4-chloro-4-(p-tolyl)butanenitrile 8

20 mg, colorless oil, yield: 52%. $R_f = 0.5$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.27 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 4.97 – 4.94 (m, 1H), 2.61 – 2.53 (m, 1H), 2.51 – 2.47 (m, 1H), 2.45 – 2.39 (m, 1H), 2.38 – 2.28 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.9, 136.7, 129.6, 126.7, 118.5, 61.1, 35.3, 21.1, 15.2. HRMS (EI): m/z [M +

Na]⁺ calcd for $C_{11}H_{12}CINNa$: 216.0550, found: 216.0547.

4-bromo-4-(p-tolyl)butanenitrile 9

38 mg, colorless oil, yield: 80%. $R_f = 0.5$ (petroleum ether/ethylacetate 10:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.29 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 5.06 – 4.95 (m, 1H), 2.60 – 2.44 (m, 4H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 139.1, 137.2, 129.7, 127.0, 118.3, 52.3, 35.3, 21.2, 16.4. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₁H₁₂BrNNa: 260.0045,

found: 260.0032.

7. Mechanism Study and Possible Mechanisms

a) UV-Vis absorption spectra data

Figure S1. UV-Vis absorption Spectra of reaction component and their mixtures

UV-Vis Spectra: the reagents of model reaction and comparison of the mixture of CuCl with other components in CH_2Cl_2 (1/10 of the concentration as in the reaction conditions), respectively. As showed in the **Figure S1**, for the mixture of CuCl+**1a**+**2a**+base, the visible light absorption range is from 350-550 nm. Base = ${}^{i}Pr_2NEt$

c) Alternative pathway of the reaction between Cu(II) complex and 1a-A

d) The Proposed mechanism for C(sp³)-O cross-coupling of benzylic alcohol-derived esters

References:

[1] a) W. Ai, Y. Liu, Q. Wang, Z. Lu, Q. Liu, Org. Lett. 2018, 20, 409-412; b) B. Zhao, C. Chen, J. Lv, Z. Li, Y. Yuan, Z. Shi, Org. Chem. Front. 2018, 5, 2719-2722; c) B. Zhao, H. Tan, C. Chen, N. Jiao, Z. Shi, Chin. J. Chem. 2018, 36, 995–999.

8. The Spectra of Products

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3aa

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectra of product 3ba

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ca

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3da

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ea

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3fa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ha

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ia

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bb

$^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectra of product 3bc

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 Hz, CDCl₃) spectra of product 3bd

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3be

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bf

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bg

$^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectra of product 3bh

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bi

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bj

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bk

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bl

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3bm

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and HPLC spectra of product 3bn

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and HPLC spectra of product 3bo

Peak	RetTime	Type	Width	A	ea	Hei	ght	Area
+	[min]		[min]	mAU	*5	[mAU].	۰.
1	8,081	BB	0.3355	7463.	36914	340.	73386	49.2636
2	12.247	BB	0. 5801	7686.	49561	203.	77031	50.7364
Total	5:		1.5149	9e4	544.5	0417		

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 Hz, CDCl₃) spectra of product 3bq

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 Hz, CDCl₃) spectra of product 3br

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5aa

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 Hz, CDCl₃) spectra of product 5ba

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ca

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectra of product 5da

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ea

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5fa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 7aa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 7ab

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectra of product 7ac

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 8

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 9