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Supplementary Note 1: Phase contrast imaging using spiral phase masking function

In this work,  and  are the spatial coordinates at the metasurface (Fourier) and object (image) (𝑢,  𝑣) (𝑥,  𝑦)

planes, respectively.  and  are their polar coordinates that have the relation of (𝜌,𝜙) (𝑟,  𝜑)

 and . Based on the imaging process of a 4f system, the output light { 𝜌 = 𝑢2 + 𝑣2

𝜙 = arctan (𝑣/𝑢) { 𝑟 = 𝑥2 + 𝑦2

𝜑 = arctan (𝑦/𝑥)

field  of the object place and input light field  of the image plane can be associated by 𝐸𝑜𝑢𝑡(𝑥,𝑦) 𝐸𝑖𝑛(𝑥,𝑦)

the spatial filter , and have the following relation,𝑀(𝜌,𝜙)

              (S1)𝐸𝑜𝑢𝑡(𝑥,𝑦) = 𝐸𝑖𝑛(𝑥,𝑦)⨂𝐹{𝑀(𝜌,𝜙)} = 𝐸𝑖𝑛(𝑥,𝑦)⨂𝑚(𝑟, 𝜑)

Here, the symbol  represents convolution and  denotes the Fourier transform of the masking ⨂  𝐹{ ∙ }

function,  is the point-spread function (PSF) that determines the filtering effect of the system and 𝑚(𝑟, 𝜑)

can be written as [1],

            (S2)𝑚(𝑟,φ) =
1

𝑖𝜆𝑓∫2𝜋
0 ∫∞

0 𝑀(𝜌,𝜙)exp [ ―
𝑖𝑘
𝑓 𝑟𝜌cos (𝜙 ― 𝜑)]𝜌𝑑𝜌𝑑𝜙

where  is the light wave vector,  is the focal length of the lens. Considering a spiral phase mask 𝑘 = 2𝜋/𝜆 𝑓

filter of a circular aperture with radius R,

                             (S3)𝑀2(𝜌,𝜙) = 𝑒𝑥𝑝 (𝑖𝜙)

According to Eq. (S2), the PSF of the filter can finally be expressed as,

                     (S4)𝑚2(𝑟,φ) =  -
𝑘
𝑓exp (𝑖φ)∫𝑅

0𝐽1(
𝑘𝑟𝜌

𝑓 )𝜌𝑑𝜌

Combined with the recurrence relation of the Bessel function [2, 3], it can be deduced as follows,

                (S5)𝑚2(𝑟,φ) = ―
𝜋𝑅
2𝑟[𝐽1(𝜏)𝐻0(𝜏) ― 𝐽0(𝜏)𝐻1(𝜏)]exp (iφ)

where .  and  are Bessel functions of zero and first order, respectively.  and  are 𝜏 = 𝑘𝑅𝑟/𝑓 𝐽0 𝐽1 𝐻0 𝐻1

Struve functions of zero and first order, respectively. The PSF ( ) can be regarded as the formation of a 𝑚2

vortex that has a doughnut shaped intensity distribution and a spiral phase profile changing from 0 to  2𝜋

for one turn. Then the output field obtained at the object plane of 4f system is written as,

    (S6)𝐸𝑜𝑢𝑡(𝑥,𝑦) = 𝐸𝑖𝑛(𝑥,𝑦)⨂ 𝑚2(𝑟,φ) = ― 𝐸𝑖𝑛(𝑥,𝑦)⨂
𝜋𝑅
2𝑟[𝐽1(𝜏)𝐻0(𝜏) ― 𝐽0(𝜏)𝐻1(𝜏)]exp (iφ)

In the convolution process of Eq. (S6), the  with vortex element will be weighted to superimpose 𝑚2(𝑟,φ)

on each point of input light field , and then integrated over the whole area to determine the 𝐸𝑖𝑛(𝑥,𝑦)

amplitude of the corresponding point of output light field . Due to the phase difference of  in 𝐸𝑜𝑢𝑡(𝑥,𝑦) 𝜋

the opposite azimuth of the vortex element, integrating the uniform area of  will lead to destructive 𝐸𝑖𝑛

interference and a dark background. In contrast, arbitrarily unevenness in the region of integration including 
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amplitude gradient and phase gradient will remove the destructive interference and result in bright regions. 

On the other hand, assuming incident field , the spiral phase filtering properties 𝐸𝑖𝑛(𝑥,𝑦) = |𝐸𝑖𝑛|exp (𝑖𝜓𝑖𝑛)

also can be quantified by Taylor expanding and solving Eq. (S6) [4],𝐸𝑖𝑛 

                (S7)𝐸𝑜𝑢𝑡 ∝ exp (𝑖𝜓𝑖𝑛)𝐺𝐴exp (𝑖𝛿𝐴) + 𝑖𝐸𝑖𝑛𝐺𝑃𝑒𝑥𝑝(𝑖𝛿𝑃)

where  and  (  and ) are the magnitudes (phase) of the gradients of the input field amplitude and 𝐺𝐴 𝐺𝑃 𝛿𝐴 𝛿𝑃

the input filed phase, respectively:

                        (S8)𝑮𝑨 = ∇|𝐸𝑖𝑛| = 𝐺𝐴𝑒𝑥𝑝(𝑖𝛿𝐴)𝒆𝑨

                         (S9)𝑮𝑷 = ∇|𝜓𝑖𝑛| = 𝐺𝑃𝑒𝑥𝑝(𝑖𝛿𝑃)𝒆𝑷

The output field of Eq. (S7) consists of two terms that describe the effects of amplitude and phase variations 

of the input field in spiral phase filtering. The two terms are proportional to the absolute values of the 

gradients  and  respectively, which results in strong isotropic enhancement of amplitude and phase 𝑮𝑨 𝑮𝑷

edge. In additional, combining with the analytical result of eq. (S7), it shows that the spiral phase filtering 

operation is equivalent to the two-dimensional spatial differentiation of incident light field in principle. The 

corresponding spatial spectral transfer function can be calculated by the relation of 𝐻(𝑘𝑥,𝑘𝑦) = 𝐸𝑜𝑢𝑡(𝑢,𝑣)/

 and shown in Fig. S1.𝐸𝑖𝑛(𝑢,𝑣)

Figure S1. The calculated spatial spectral transfer function of the spiral phase filtering operation.
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Supplementary Note 2: Derivation of the Jones matrix  and its eigenvalues and eigenvectors. 𝑱

Assuming light incident upon the planar optical metasurface filter is in two orthogonal spin states |𝐿⟩ =
1
2

 and , where  and  denote left- and right-circular polarization (LCP and RCP) in the [1
𝑖 ] |𝑅⟩ =

1
2[ 1

-𝑖] |𝐿⟩ |𝑅⟩

linear polarization basis. In order to independently implement two different masking function (𝑀1

 and , with  being a constant) for the incident plane wave (𝜌,𝜙) = 𝑒𝑥𝑝 (𝑖𝑐0) 𝑀2(𝜌,𝜙) = 𝑒𝑥𝑝 (𝑖𝜙) 𝑐0

propagating along the z-direction respectively in LCP and RCP states, the optical metasurface should be 

described by a Jones matrix J that simultaneously satisfies,

=                             (S10)𝐽(𝜌,𝜙)|𝐿⟩ 𝑀1(𝜌,𝜙)|𝑅⟩

and

=                             (S11)𝐽(𝜌,𝜙)|𝑅⟩ 𝑀2(𝜌,𝜙)|𝐿⟩

Upon matrix inversion of Eq. (S10) and (S11) we obtain the form as

                      (S12)𝐽(𝜌,𝜙) = [ 𝑀1 𝑀2
―𝑖𝑀1 𝑖𝑀2][1 1

𝑖 ―𝑖]
―1

Then, we can show that the desired matrix  is   𝐽

                   (S13)𝐽(𝜌,𝜙) =
1
2[ (𝑀1 + 𝑀2) ―𝑖(𝑀1 ― 𝑀2)

―𝑖(𝑀1 ― 𝑀2) ―(𝑀1 + 𝑀2) ]
The unitary of this matrix guarantees that it can be decomposed into the following form , where 𝐽 = 𝛾∆𝛾 ―1

 is a real unitary matrix whose columns are the eigenvectors of , and  is a diagonal matrix whose 𝛾 𝐽 ∆

elements are the eigenvalues of . By solving the characteristic equation of the Jones matrix , we can find 𝐽 𝐽

its eigenvalues as,

                         (S14)𝜉1 = 𝑒𝑖[
1
2(𝑐0 + 𝜙)] 𝜉2 = 𝑒𝑖[

1
2(𝑐0 + 𝜙) ― 𝜋]

and eigenvectors as

                   (S15)|𝜆1⟩ = [cos
1
4(𝑐0 ― 𝜙)

𝑠𝑖𝑛
1
4(𝑐0 ― 𝜙)] |𝜆2⟩ = [ ―sin

1
4(𝑐0 ― 𝜙)

𝑐𝑜𝑠
1
4(𝑐0 ― 𝜙) ]

Thus, the Jones matrix can be decomposed into the following form,

𝐽(𝜌,𝜙) = 𝛾∆𝛾 ―1 = [cos
1
4(𝑐0 ― 𝜙) ―sin

1
4(𝑐0 ― 𝜙)

𝑠𝑖𝑛
1
4(𝑐0 ― 𝜙) 𝑐𝑜𝑠

1
4(𝑐0 ― 𝜙) ][𝑒𝑖[

1
2(𝑐0 + 𝜙)] 0

0 𝑒𝑖[
1
2(𝑐0 + 𝜙) ― 𝜋]]

 [ cos
1
4(𝑐0 ― 𝜙) sin

1
4(𝑐0 ― 𝜙)

―𝑠𝑖𝑛
1
4(𝑐0 ― 𝜙) 𝑐𝑜𝑠

1
4(𝑐0 ― 𝜙)]

(S16)                                                                                      
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Since Jones matrix  works in the linear polarization basis and  can be regarded as a rotation matrix for 𝐽 𝛾

the matrix , In contrast to a normal linear birefringent wave-plate rotated through some angle , the values ∆ 𝜃

of phase shifts  and  along the two symmetry axes and  all depend on the spatial coordinate, and 𝜑𝑥 𝜑𝑦 𝜃

can be written as the analytical expression,

                                (S17)𝜑𝑥 =
1
2(𝑐0 +𝜙)

                             (S18)𝜑𝑦 =
1
2(𝑐0 +𝜙) ― 𝜋

                                 (S19)𝜃 =
1
4(𝑐0 ― 𝜙)

The phase difference  between  and  requires the element structure of the metasurface to act as a 𝜋 𝜑𝑥 𝜑𝑦

half wave plate (HWP). Based on the Eq. (S17) - (S19), the dependence of phase shifts ( , ) and the 𝜑𝑥 𝜑𝑦

rotation angle  of the HWPs on the spatial coordinates in the metasurface device are calculated and shown 𝜃

in Fig. S1.

Figure S2. Calculated phase shifts  and  along the two symmetry axes of HWPs and the 𝝋𝒙 𝝋𝒚

rotational angle  as a function of the spatial coordinate with C0 = 0.𝜽
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Figure S3. Refractive index of atomic layer deposition (ALD) TiO2. The real and imaginary part of the 
refractive index (n) of 64 nm thick ALD TiO2 is measured using spectroscopic ellipsometry.
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Figure S4. Simulated normalized intensity transmission coefficients and phase shifts as a function of 

rectangular nanopillar dimensions at the wavelength of 530 nm. Intensity transmission coefficients 

(|tx|2and|ty|2) and the phase (Px and Py) of x and y-polarized optical waves for the periodic array of TiO2 

rectangular nanopillars with . Each point in the spectra map corresponds to a nanopillar with a specific 𝜃 = 0

(Dx, Dy) combination.
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Supplementary Note 3: Effect of the segment number of spiral phase on imaging

The perfect masking function  presented in eq. (S3) has a continuous and smooth phase. In 𝑀2(𝜌,𝜙)

fact, the one imparted on the metasurface filter is discretized and can be written as,

                        (S20)𝑀2(𝜌,𝜙) = 𝑒𝑥𝑝 (𝑖fix(
𝑛𝜙
2𝜋)

2𝜋
𝑠 )

where ,  is the polar coordinate, s denotes the segment number of masking function  imparted on  (𝜌 𝜙) 𝑀2

the metasurface filter. fix(X) can round the elements of X to the nearest integers towards zero. In Fig. S5, 

we calculate the phase contrast imaging using the spiral phase function with segment number of 1, 4, 8, 16, 

respectively. They show that the imaging results gradually approach the perfect spiral phase contrast imaging 

with the increase of the segment number. On the other hand, in order to quantify the effect of segment 

number (s) in spiral phase on imaging quality and obtain the proper degree of discretization of HWPs in the 

full range [0, 2π], the mean square error (MSE) function has been adopted as,

                      (S21)𝑀𝑆𝐸(𝑠) =
∑𝐴

𝑎 = 1
∑𝐵

𝑏 = 1|𝐼(𝑎 ,𝑏) ― 𝐼𝑠(𝑎 ,𝑏 )|2

𝐴 × 𝐵

where  and  represent the imaging results by adopting a perfect and the s-segment spiral 𝐼(𝑎,𝑏) 𝐼𝑠(𝑎,𝑏)

phase filter, respectively.  and  are the sampling number of the image in plane dimension. The MSE  𝐴 𝐵

curve between the imaging results obtained using a perfect spiral phase and the spiral phase with different 

step numbers is calculated and shown in Fig. S6. The MSE has been reduced to a negligible value with the 

segment number s≥16. After a comprehensive analysis of imaging quality and design difficulty, s = 16 is 

selected as the segment number of masking function.
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Figure S5. Calculated phase contrast imaging using the spiral phase filter with different segment 

number. a-d, show the phase distribution of the spiral phase filter with the segment number of 1, 4, 8, 16, 

respectively. e, The phase distribution of a perfect spiral filter. f-j, The corresponding imaging results. The 

imaging results gradually approach the perfect spiral phase contrast imaging with the increase of the segment 

number.
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Figure S6. Calculated mean square error function (MSE) curve between the imaging results obtained 

using a perfect spiral phase and the spiral phase with different step numbers. The curve can be used to 

quantify the effect of steps number (s) in spiral phase on imaging quality and determine the degree of 

discretization of HWPs in the full range [0, 2π].
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Figure S7. The dimension distribution and phase shifts of the chosen TiO2 rectangular nanopillars at 

the wavelength of 530 nm. Green and blue spheres mark the phase shifts (  and ,) of the chosen 16-𝑃𝑥 𝑃𝑦

level nanopillars. Each level corresponds to a specific TiO2 nanopillar HWP. The structural parameters of 

the nanopillars are optimized so that the transmission coefficients and polarization conversion efficiencies 

are high enough across the full visible region.
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Figure S8. Wavelength dependence of the intensity transmission coefficients (|tx|2 and |ty|2) and the 

phase difference (⊿P = Px - Py) of x and y-polarized optical waves for periodic arrays of selected 

nanopillars. The spectra are shown for eight nanopillars with different (Dx, Dy) combination: #1 (120 nm, 

335 nm), #2 (125 nm, 350 nm), #3 (200 nm, 100 nm), #4 (210 nm, 105 nm), #5 (225 nm, 110 nm), #6 (240 

nm, 115 nm), #7 (270 nm, 115 nm), #8 (290 nm, 120 nm). The transmission and phase spectra for the 

remaining eight nanopillars can be obtained by swapping x and y in the spectra graphs.
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Figure S9. Calculated polarization conversion efficiency for the selected eight rectangular nanopillars in 

the entire visible range. The structural parameters of the nanopillars are optimized so that the transmission 

coefficients and polarization conversion efficiencies for the incident light are high enough across the full 

visible region. The remaining eight rectangular nanopillars have the same polarization conversion efficiency as 

the ones given in the spectra.
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Figure S10. The normalized magnetic energy density distribution of the nanopillars periodic arrays 

for LCP plane wave illumination at the wavelength of 480 nm, 530 nm, 580 nm, and 630 nm, 

respectively. Top views (left: x-y plane) and side views (middle: x-z plane and right: y-z plane). The results 

show that the normalized magnetic energy density is mainly confined inside the TiO2 nanopillar. The 

coupling effect between neighboring nanopillars is very weak.
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Figure S11. Measured intensity distributions of output states for LCP and RCP incident light 

illumination at the wavelength of 480 nm, 530 nm, 580 nm, and 630 nm. a-d, show a Gaussian 

distribution for LCP incident light and e-h, show the donut intensity distribution for RCP incident light, 

which demonstrate that the spin-dependent metasurface spatial filter is able to implement two independent 

masking functions in the entire visible frequency. 



16

Figure S12. The measured conversion efficiency of the metasurface device for LCP and RCP incident 

light illumination at the wavelength of 480 nm, 530 nm, 580 nm, and 630 nm, respectively. The high 

conversion efficiency is mainly due to low-loss material selection of TiO2 and parameters optimization of 

HWPs-nanopillars.
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Figure S13. Investigation of the system resolution for two imaging modes in the visible region. a-d, the 

bright-field imaging mode at the wavelength of 480 nm, 530 nm, 580 nm, and 630 nm, respectively, the 

smallest line pair that can be resolved in the resolution test chart is elements 6 of group 7 (228 lp/mm), which 

corresponds a resolution of 2.19 µm along the x and y direction. e-f, for phase contrast imaging mode, the 

smallest line pair that can be resolved in the resolution test chart is elements 3 of group 7 (161 lp/mm), which 

corresponds to a resolution of 3.11 µm. Scale bar: 50 µm.
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Figure S14. The bright-field and edge-enhanced phase contrast images of the undyed onion epidermal 

cells illuminated by a white light beam. Images are captured with a 20 × objective lens. a, Traditional 

bright-field images for LCP plane wave illumination. b, Edge-enhanced phase contrast images for RCP plane 

wave illumination. Scale bar: 100 μm. 
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