Access to *N*-carbonyl derivatives of Iminosydnones by Carbonylimidazolium Activation

Margaux Riomet,^{1*} Karine Porte,¹ Léa Madegard,¹ Pierre Thuéry,² Davide Audisio,¹ Frédéric Taran^{1*}

 Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

E-mail: frederic.taran@cea.fr

E-mail: margaux.riomet@laposte.net

Table of contents

Ι.	Materials and equipment	3
II.	Synthetic Procedure and Analytical Data	4
Ge	General procedures4	
III.	Click & Release kinetics	31
IV.	Crystallography	34
V.	NMR Spectra	35

I.Materials and equipment

Reactants and solvents: All chemical products commercially available were purchased from Sigma-Aldrich, Acros and Fluka and used without further purification. Dichloromethane and chloroform were purchased stabilized with amylene.

Purifications: Flash chromatography were performed on silica gel (Merck Kieselgel 60, grading 40-63 μm) or using automate Combiflash[®] Rf Teledyne ISCO with pre-packed column RediSep[®] Rf (grading 35-70 μm). *Analysis:*

Reactions were monitored by TLC carried out on silica 0,25 mm (60 F254, Merck) using UV light as visualizing agent and basic aqueous permanganate as developing agent.

¹H NMR (400 MHz), ¹³C NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m).

Electrospray mass spectra were obtained using an ESI-Quadripole autopurify, Waters (pump: 2545, mass: ZQ2000) mass Spectrometer.

Infrared spectra (IR) were obtained on a Perkin Elmer system 2000 FT-IR spectrophotometer or a Perkin Elmer UATR TWO FTIR spectrophotometer and are reported as wavelength numbers (cm-1).

Melting points (Mp) were obtained on a BÜCHI Melting Point B-545 and are reported in °C.

Iminosydnone chlorhydrate salts **1a,b** were obtained as previously reported.¹

¹ Riomet, M.; Decuypere, E.; Porte, K.; Bernard, S.; Plougatel, L.; Kolodych, S.; Audisio, D.; Taran, F. Design and Synthesis of Iminosydnones for Fast Click and Release Reactions with Cycloalkynes. *Chem. Eur. J.*, **2018**, *34*, 8535–8541.

II.Synthetic Procedure and Analytical Data

General procedures

General procedure A for the addition of nucleophiles on iminosydnone-carbonyl-imidazoliums

To a solution of iminosydnone-carbonyl-imidazolium (0.20 mmol) in DCM (2 mL) were added the nucleophile (0.20 mmol) and triethylamine (0.20–0.40 mmol). The mixture was stirred at room temperature. Once the reaction has reached completion, the solvent was evaporated under reduced pressure.

General procedure B for the addition of nucleophiles on iminosydnone-carbonyl-imidazoliums

To a solution of iminosydnone-carbonyl-imidazolium (0.20 mmol) in chloroform (2 mL) were added the nucleophile (0.20 mmol) and triethylamine (0.20–0.40 mmol). The mixture was stirred at reflux using a heating block. Once the reaction has reached completion, the solvent was evaporated under reduced pressure.

C₁₂H₉N₅O₂ MW: 255 g.mol⁻¹ Yield: 78% White solid

To a solution of 1,1'-carbonyldiimidazole (357 mg, 2.20 mmol) in a mixture DMF/MeCN (3 mL/1 mL) was added **1a** (395 mg, 2.00 mmol). The solution was stirred at room temperature for 1 hour before being concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, DCM/MeOH, 98/2) to afford the desired product as a white solid (401 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.30 (s, 1H), 7.80 (m, 2H), 7.70 (m, 1H), 7.62 (m, 2H), 7.55 (s, 1H), 6.95 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 154.6, 137.5, 133.5, 133.5, 130.6 (2C), 129.6, 121.5 (2C), 117.2, 104.4. IR (cm⁻¹) 1660, 1567, 1466, 1291, 1206, 974, 846, 766.

LCMS (ESI) *m/z* [M+H]⁺ 256.

Mp. 167–169 °C.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₀N₅O₂ 256.0829; Found 256.0831.

(1H-imidazole-1-carbonyl)(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (2b)

C₁₂H₈IN₅O₂ MW: 381 g.mol⁻¹ Yield: 78% Beige solid

To a solution of 1,1'-carbonyldiimidazole (1.78 g, 11.0 mmol) in a mixture DMF/MeCN (15 mL/5 mL) was added **1b** (3.24 g, 10.0 mmol). The solution was stirred at room temperature for 2 hours before being concentrated under reduced pressure. The resulting solid was washed with water and Et_2O to afford the desired product as a beige solid (2.97 g, 78%).

¹H NMR (400 MHz, DMSO-d₆) δ 9.03 (s, 1H), 8.30 (s, 1H), 8.13(m, 2H), 7.91 (m, 2H), 7.65 (s, 1H), 7.01 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 174.3, 153.1, 139.0 (2C), 136.8, 133.2, 129.4, 124.3 (2C), 117.3, 106.5, 100.8. IR (cm⁻¹) 1671, 1570, 1374, 1296, 1008, 976. LCMS (ESI) m/z [M+H]⁺ 382. Mp. 221–223°C. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₂H₉IN₅O₂ 381.9795; Found 381.9792.

C₁₅H₁₃N₅O₄ MW: 327 g.mol⁻¹ Yield: 61% Beige solid

Compound **2b** (1.40 g, 3.67 mmol) was dissolved in a mixture of absolute EtOH (15 mL) and NEt₃ (15 mL). $PdCl_2(PPh_3)_2$ (258 mg, 0.367 mmol) was added and the reaction mixture was kept under a CO atmosphere for 5 hours and heated at 80 °C. CO was added to the reaction every 30 min. The solvent was evaporated and the crude mixture was charged on a plug of silica. Impurities were removed by first filtrating with DCM, and then the desired product was obtained by flushing the plug with EtOAc. After evaporation of this filtrate, the product was obtained as a beige solid (729 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.40 (s, 1H), 8.35 (m, 2H), 7.94 (m, 2H), 7.63 (m, 1H), 7.04 (s, 1H), 4.45 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.1, 164.3, 154.7, 137.6, 136.3, 135.3, 132.0 (2C), 129.8, 121.7 (2C), 117.3, 104.6, 62.2, 14.3.

IR (cm⁻¹) 1718, 1666, 1575, 1371, 1278, 846, 769.

LCMS (ESI) *m/z* [M+H]⁺ 328.

Mp. 159–161 °C.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₅H₁₄N₅O₄ 328.1040; Found 328.1039.

(1H-imidazole-1-carbonothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (3a)

C₁₂H₉N₅OS MW: 271 g.mol⁻¹ Yield: 81% Orange solid

To a solution of 1,1'-thiocarbonyldiimidazole (1.96 g, 11.0 mmol) in anhydrous DCM (10 mL) was added **1a** (1.98 g, 10.0 mmol). The solution was stirred at room temperature overnight before being concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂ DCM/MeOH, 98/2) to afford the desired product as an orange solid (2.97 g, 81%).

¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 8.63 (s, 1H), 7.93 (s, 1H), 7.88 (m, 2H), 7.78 (m, 1H), 7.71 (m, 2H), 6.98 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 182.5, 174.6, 137.0, 134.0, 133.5, 130.9 (2C), 129.9, 121.8 (2C), 118.4, 105.3. IR (cm⁻¹) 1577, 1461, 1376, 1265, 1222, 1023, 735, 657.

LCMS (ESI) *m/z* [M+H]⁺ 272.

Mp. 167–169 °C.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₂H₁₀N₅OS 272.0600; Found 272.0599.

C₁₂H₈IN₅OS MW: 397 g.mol⁻¹ Yield: 65% Dark yellow solid

To a solution of 1,1'-thiocarbonyldiimidazole (196 mg, 1.10 mmol) in a mixture DMF/MeCN (1.5 mL/0.5 mL) was added **1b** (324 mg, 1.00 mmol). The solution was stirred at room temperature for 1.5 days before being concentrated under reduced pressure. The resulting solid was washed with water and Et₂O to afford the desired product as a dark yellow solid (257 mg, 65%).

¹H NMR (400 MHz, DMSO-d₆) δ 9.82 (s, 1H), 8.57 (s, 1H), 8.15 (m, 2H), 7.94 (s, 1H), 7.93 (m, 2H), 7.01 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 173.7, 139.0 (2C), 136.2, 133.1, 129.6, 124.7 (2C), 118.1, 107.7, 101.2.

One carbon is missing. **IR (cm⁻¹)** 1597, 1574, 1462, 1412, 1373, 1230, 979. **LCMS (ESI)** *m*/*z* [M+H]⁺ 398. **Mp**. 211–213 °C. **HRMS (ESI-TOF)** *m*/*z* [M+H]⁺ Calcd for C₁₂H₉IN₅OS 397.9567; Found 397.9567.

(3-methyl-1H-imidazol-3-ium-1-carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide iodide (4a)

 $C_{13}H_{12}IN_5O_2$ **MW**: 397 g.mol⁻¹ **Yield**: 98% Orange solid

To a solution of **2a** (1.98 g, 7.64 mmol) in anhydrous acetonitrile (20 mL) was added MeI (1.90 mL, 30.6 mmol). The mixture was stirred for 16 hours at room temperature before being concentrated under reduced pressure. The product was obtained as an orange solid (2.98 g, 98%) and was used without any purification.

¹**H NMR (400 MHz, DMSO-d**₆) δ 9,80 (s, 1H), 9.23 (s, 1H), 8.14 (m, 3H), 7.76–7.84 (m, 4H), 3.93 (s, 3H). The product is not stable enough in DMSO to afford a ¹³C NMR spectrum.

LCMS (ESI) m/z [M-Me-Im-I⁻]⁺ 188, fragmentation, [M+H]⁺ 220, reaction with MeOH used as solvent. **HRMS (ESI-TOF)** m/z [M-I⁻]⁺Calcd for C₁₃H₁₂N₅O₂ 270.0986; Found 270.0983.

Mp. 145 °C-decomp.

C₁₃H₁₁I₂N₅O₂ **MW**: 523 g.mol⁻¹ **Yield**: 98% Orange solid

To a solution of **2b** (1.52 g, 4.00 mmol) in anhydrous acetonitrile (15 mL) was added MeI (996 μ L, 16.0 mmol). The mixture was stirred for 16 hours at 40 °C before being concentrated under reduced pressure. The product was obtained as an orange solid (2.05 g, 98%) and was used without any purification.

¹H NMR (400 MHz, DMSO-d₆) δ 9,79 (s, 1H), 9.26 (s, 1H), 8.16 (m, 2H), 8.13 (m, 1H), 7.94 (m, 2H) 7.80 (m, 1H), 3.93 (s, 3H).

The product is not stable enough in DMSO to afford a ¹³C NMR spectrum. **LCMS (ESI)** m/z [M+H]⁺ 346, reaction with MeOH used as solvent.

Compound 4b has no HRMS data or elemental analysis due to the poor stability of the imidazolium sample. The sample was sent out for HRMS analysis but degraded during transportation.

EtO₂C²

To a solution of **2c** (562 mg, 1.72 mmol) in anhydrous acetonitrile (15 mL) was added MeI (430 μ L, 6.87 mmol). The mixture was stirred for 16 hours at 40 °C before being concentrated under reduced pressure. The product was obtained as an orange solid (736 mg, 91%) and was used without any purification.

¹H NMR (400 MHz, DMSO-d₆) δ 9,80 (s, 1H), 9.34 (s, 1H), 8.27–8.34 (m, 4H), 8.14 (m, 1H), 7.80 (m, 1H), 4.40 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H).

The product is not stable enough in DMSO to afford a $^{\rm 13}{\rm C}$ NMR spectrum.

LCMS (ESI) *m/z* [M-I⁻]⁺ 342.

HRMS (ESI-TOF) *m*/*z* [M-I⁻]⁺ Calcd for C₁₆H₁₆N₅O₄ 342.1197; Found 342.1201.

Mp. 165 °C-decomp.

C₁₃H₁₂IN₅OS MW: 413 g.mol⁻¹ Yield: 98% Orange solid

To a solution of **3a** (2.20 g, 8.10 mmol) in anhydrous acetonitrile (20 mL) was added MeI (2.00 mL, 32.4 mmol). The mixture was stirred for 16 hours at 40 °C before being concentrated under reduced pressure. The product was obtained as an orange solid (3.28 g, 98%) and was used without any purification.

¹H NMR (400 MHz, DMSO-d₆) δ 9.98 (s, 1H), 9.97 (s, 1H), 8.37 (s, 1H), 8.18 (m, 2H), 7.77–7.87 (m, 4H), 3.95 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.3, 173.0, 136.1, 133.7, 133.4, 130.4 (2C), 124.2, 123.1 (2C), 119.3, 109.2, 36.5. LCMS (ESI) *m*/*z* [M-Me-Im-I⁻]⁺ 204, fragmentation

HRMS (ESI-TOF) *m*/*z* [M-I⁻]⁺ Calcd for C₁₃H₁₂N₅OS 286.0757; Found 286.0756.

Mp. 184–186 °C.

(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)(3-methyl-1H-imidazol-3-ium-1-carbonothioyl)amide iodide (5b)

C₁₃H₁₁I₂N₅OS MW: 539 g.mol⁻¹ Yield: 94% Brown solid

To a solution of **3b** (257 mg, 0.65 mmol) in anhydrous acetonitrile (2 mL) was added MeI (161 μ L, 2.60 mmol). The mixture was stirred for 16 hours at 40 °C before being concentrated under reduced pressure. The product was obtained as a brown solid (331 mg, 94%) and was used without any purification.

¹H NMR (400 MHz, DMSO-d₆) δ 10.00 (s, 1H), 9.97 (s, 1H), 8.37 (m, 1H), 8.19 (m, 2H), 7.96 (m, 2H), 7.80 (m, 1H), 3.93 (s, 3H).

The product is not stable and soluble enough in DMSO to afford a ${}^{13}C$ NMR spectrum. LCMS (ESI) m/z [M-I⁻]⁺ 412.

HRMS (ESI-TOF) *m*/*z* [M-I⁻]⁺ Calcd for C₁₃H₁₁IN₅OS 411.9724; Found 411.9724. **Mp**. 208–209 °C.

C₁₃H₁₄N₄O₃ **MW**: 274 g.mol⁻¹ **Yield**: 95% Yellow solid

The product was obtained using general procedure **A** from **4a** (79 mg), morpholine (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, from 30/70 to 0/100) to afford the desired product as a yellow solid (52 mg, 95%).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.76 (m, 2H), 7.59–7.68 (m, 3H), 3.79 (m, 2H), 3.66 (m, 4H), 3.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 160.8, 134.2, 132.9, 130.5 (2C), 121.5 (2C), 102.0, 67.1 (2C), 45.5, 43.2. IR (cm⁻¹) 1612, 1415, 1254, 1204, 1110, 965, 766. LCMS (ESI) m/z [M+H]⁺ 275. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₅N₄O₃ 275.1139; Found 275.1137. Mp. 168–170 °C.

(butylcarbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (6b)

C₁₃H₁₆N₄O₂ **MW**: 260 g.mol⁻¹ **Yield**: 85% Yellow solid

The product was obtained using general procedure **A** from **4a** (79 mg), *n*-butylamine (20 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, from 50/50 to 30/70) to afford the desired product as a yellow solid (44 mg, 85%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.15 (s, 1H), 7.76 (m, 2H), 7.59–7.77 (m, 3H), 5.58 (br.s, 1H), 3.25 (m, 2H), 1.51 (m, 2H), 1.36 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.7, 161.6, 134.2, 132.8, 130.5 (2C), 121.6 (2C), 102.0, 40.3, 32.3, 20.2, 13.9. IR (cm⁻¹) 3252, 3063, 2927, 1625, 1555, 1299, 965, 737.

LCMS (ESI) *m/z* [M+H]⁺ 261.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₇N₄O₂ 261.1346; Found 261.1343.

Mp. 107–109 °C.

C₁₁H₁₂N₄O₃ **MW**: 248 g.mol⁻¹ **Yield**: 78% Orange oil

The product was obtained using general procedure **A** from **4a** (79 mg), N,O-diméthylhydroxylamine.HCl (19 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as an orange oil (39 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.78 (m, 2H), 7.61–7.70 (m, 3H), 3.76 (s, 3H), 3.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 162.6, 134.1, 133.0, 130.6 (2C), 121.6 (2C), 102.4, 61.4, 35.5. IR (cm⁻¹) 1628, 1583, 1358, 958, 765. LCMS (ESI) m/z [M+H]⁺ 249. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₁H₁₃N₄O₃ 249.0982; Found 249.0982.

(S)-(2-(methoxycarbonyl)pyrrolidine-1-carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (6d)

C₁₅H₁₆N₄O₄ **MW**: 316 g.mol⁻¹ **Yield**: 88% Orange oil

The product was obtained using general procedure **A** from **4a** (79 mg), L-proline methyl ester.HCl (33 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as an orange oil (56 mg, 88%).

¹H NMR (400 MHz, CDCl₃) δ 8.16 {8.11} (s, 1H), 7.73 (m, 2H), 7.56–7.67 (m, 3H), 4.43 {4.60} (dd, J = 8.5, 3.8 Hz, 1H), 3.71 (s, 3H), 3.52–3.80 (m, 2H), 2.17–2.28 (m, 1H), 1.86–2.05 (m, 3H).

¹³**C NMR (100 MHz, CDCl₃)** δ 174.1 {174.6}, 173.1 {172.5}, 160.3 {160.3}, 134.1, 132.8 {132.8}, 130.4 (2C), 121.4 {121.5} (2C), 102.3 {102.1}, 58.9 {59.8}, 52.2 {52.1}, 47.5 {46.2}, 30.2 {30.8}, 24.7 {23.8}.

NMR spectra show the presence of 2 isomers (ratio 1.4/1 at room temperature), minor isomers signals are reported into brackets when they are distinguishable.

IR (cm⁻¹) 1740, 1623, 1395, 1199, 957.

LCMS (ESI) *m/z* [M+H]⁺ 317.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₇N₄O₄ 317.1244; Found 317.1243.

C₁₉H₂₂N₄O₂ **MW**: 338 g.mol⁻¹ **Yield**: 93% Yellow solid

The product was obtained using general procedure **A** from **4a** (79 mg), 2-adamantylamine.HCl (38 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, 50/50) to afford the desired product as a yellow solid (93%).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.74 (m, 2H), 7.58–7.67 (m, 3H), 5.87 (br.d, *J* =7.9 Hz, 1H), 3.91 (d, *J* = 8.1 Hz, 1H), 1.95 (m, 2H), 1.75–1.87 (m, 8H), 1.70 (m, 2H), 1.59 (m, 1H), 1.56 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 160.4, 134.1, 132.9, 130.5 (2C), 121.5 (2C), 102.0, 54.4, 37.7, 37.4 (2C), 32.4 (2C), 31.9 (2C), 27.3, 27.3.

IR (cm⁻¹) 2904, 1635, 1601, 1495, 1468, 1364.

LCMS (ESI) *m/z* [M+H]⁺ 339.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₂₃N₄O₂ 339.1816; Found 339.1814.

Mp. 70–72 °C.

(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)(phenylcarbamoyl)amide (6f)

C₁₅H₁₂N₄O₂ MW: 280 g.mol⁻¹ Yield: 87% Orange solid

The product was obtained using general procedure **A** from **4a** (79 mg), aniline (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as an orange solid (49 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.78 (m, 2H), 7.61–7.67 (m, 4H), 7.53 (m, 2H), 7.28 (m, 2H), 7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 159.5, 139.6, 134.1, 133.0, 130.5 (2C), 128.9 (2C), 122.7, 121.6 (2C), 118.8 (2C), 102.5.

IR (cm⁻¹) 1643, 1589, 1436, 1310, 962, 756, 680. LCMS (ESI) m/z [M+H]⁺ 281. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₅H₁₃N₄O₂ 281.1033; Found 281.1033. Mp. 119–121 °C.

(((nitrilotris(ethane-2,1-diyl))tris(azanediyl))tris(carbonyl))tris((3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide) (6g)

C₃₃H₃₃N₁₃O₆ MW: 707 g.mol⁻¹ Yield: 66% Yellow solid

The product was obtained using general procedure **B** from **4a** (314 mg), tris(2-aminoethyl)amine (30 μ L) and triethylamine (84 μ L). The crude product was diluted in DCM and washed with a saturated solution of NH₄Cl. The organic layers were combined, dried over MgSO₄ and evaporated. The resulted product purified was purified by column chromatography (SiO₂, DCM/MeOH, 95/5 then NEt₃/MeOH/DCM 1/2/97) to afford the desired product as a yellow solid (93 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 3H), 7.76 (m, 6H), 7.52–7.1 (m, 9H), 6.58 (br.s, 3H), 3.32 (m, 6H), 2.61 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8 (3C), 162.4 (3C), 134.4 (3C), 132.4 (3C), 130.1 (6C), 121.9 (6C), 102.8 (3C), 54.7 (3C), 38.6 (3C).

IR (cm⁻¹) 3266, 1629, 1594, 1470, 1281, 1215, 958, 764. LCMS (ESI) *m/z* [M+H]⁺ 709; [M+2H]²⁺ 355. HRMS (ESI-TOF) *m/z* [M+H]⁺ Calcd for C₃₃H₃₄N₁₃O₆ 708.2750; Found 708.2750. Mp. 179–181 °C.

(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)(((2S,3R,4R,5S,6R)-2,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-3yl)carbamoyl)amide (6h)

 $C_{23}H_{26}N_4O_{11}$ **MW**: 534 g.mol⁻¹ **Yield**: 60% Yellow solid

The product was obtained using general procedure **A** from **11a** (79 mg), 1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-beta-D-glucopyranose hydrochloride (77 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (64 mg, 60%).

¹**H NMR (400 MHz, CDCI₃)** δ 8.15 (s, 1H), 7.77 (m, 2H), 7.60–7.70 (m, 3H), 5.95 (d, *J* = 8.8 Hz, 1H), 5.92 (d, *J* = 9.1 Hz, 1H), 5.47 (dd, *J* = 10.3, 9.5 Hz, 1H), 5.09 (dd, *J* = 17.8, 8.2 Hz, 1H), 4.30 (dd, *J* = 12.4, 2.1 Hz, 1H), 3.97 (dd, *J* = 19.4, 9.1 Hz, 1H), 3.89 (ddd, *J* = 10.0, 4.5, 2.1 Hz, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 170.8, 170.5, 169.7, 169.5, 161.4, 134.1, 133.0, 130.5 (2C), 121.6 (2C), 102.5, 92.5, 72.6, 72.4, 68.6, 61.9, 54.5, 21.1, 20.9, 20.8, 20.8.

IR (cm⁻¹) 1744, 1630, 1507, 1366, 1224, 1041.

LCMS (ESI) *m/z* [M+H]⁺ 535.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₃H₂₇N₄O₁₁ 535.1671; Found 535.1669.

Mp. 196–198 °C.

C₂₁H₂₃BN₄O₄ MW: 406 g.mol⁻¹ Yield: 63% Yellow solid

The product was obtained using general procedure **B** from **4a** (79 mg), 4-aminophenyl boronic acid pinacol ester (44 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (51 mg, 63%).

¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.80 (m, 2H), 7.73 (m, 2H), 7.60–7.70 (m, 4H), 7.54 (m, 2H), 1.32 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 159.3, 142.5, 135.9 (2C), 134.0, 133.1, 130.6 (2C), 121.6 (2C), 117.5 (2C), 102.5, 83.6 (2C), 25.0 (4C). IR (cm⁻¹) 2976, 1603, 1578, 1497, 1470, 1355, 1311, 1271, 1237, 1142, 1088, 961. LCMS (ESI) m/z [M+H]⁺ 407. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₁H₂₄BN₄O₄ 407.1885; Found 407.1888. Mp. 190–192 °C.

(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)(morpholine-4-carbonyl)amide (6j)

C₁₃H₁₃IN₄O₃ **MW**: 400 g.mol⁻¹ **Yield**: 75% Dark yellow solid

The product was obtained using general procedure **A** from **4b** (105 mg), morpholine (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, from 50/50 to 10/90) to afford the desired product as a dark yellow solid (60 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.97 (m, 2H), 7.51 (m, 2H), 3.80 (m, 2H), 3.67 (m, 4H), 3.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 160.7, 139.7 (2C), 133.7, 122.8 (2C), 101.8, 99.3, 67.1 (2C), 45.6, 43.2. IR (cm⁻¹) 1626, 1567, 1275, 1110. LCMS (ESI) m/z [M+H]⁺ 401. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₄IN₄O₃ 401.0105; Found 401.0106. Mp. 210–212 °C.

C₁₃H₁₅IN₄O₂ **MW**: 386 g.mol⁻¹ **Yield**: 80% Yellow solid

The product was obtained using general procedure **A** from **4b** (105 mg), *n*-butylamine (20 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (62 mg, 80%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.15 (s, 1H), 7.95 (m, 2H), 7.51 (m, 2H), 5.68 (br.s, 1H), 3.23 (m, 2H), 1.49 (m, 2H), 1.33 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 161.7, 139.7 (2C), 133.7, 122.8 (2C), 101.7, 99.1, 40.3, 32.2, 20.2, 13.9. IR (cm⁻¹) 3277, 1629, 1279, 1216, 955. LCMS (ESI) m/z [M+H]⁺ 387. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₆IN₄O₂ 387.0313; Found 387.0309.

Mp. 124–126°C.

(3-(4-(ethoxycarbonyl)phenyl)-1,2,3-oxadiazol-3-ium-5-yl)(morpholine-4-carbonyl)amide (6l)

C₁₆H₁₈N₄O₅ **MW**: 346 g.mol⁻¹ **Yield**: 79% Yellow solid

EtO₂C

The product was obtained using general procedure **A** from **4c** (94 mg), morpholine (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, from 30/70 to 0/100) to afford the desired product as a yellow solid (55 mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ 8.29 (m, 2H), 8.21 (s, 1H), 7.86 (m, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.79 (m, 2H), 3.66 (m, 4H), 3.59 (m, 2H), 1.40 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 164.5, 160.7, 137.0, 134.6, 131.7 (2C), 121.5 (2C), 102.1, 67.1 (2C), 62.1, 45.5, 43.2, 14.3.

IR (cm⁻¹) 1724, 1629, 1423, 1276, 1258, 1106, 987, 767.

LCMS (ESI) *m/z* [M+H]⁺ 347.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₆H₁₉N₄O₅ 347.1350; Found 347.1351.

Mp. 192–194 °C.

 $C_{16}H_{20}N_4O_4$ MW: 332 g.mol⁻¹ **Yield**: 86% Yellow paste

EtO₂C

The product was obtained using general procedure **A** from **4c** (94 mg), *n*-butylamine (20 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, 50/50) to afford the desired product as a yellow paste (57 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (m, 2H), 8.24 (s, 1H), 7.86 (m, 2H), 5.71 (br.t, J = 5.7 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 3.24 (m, 2H), 1.50 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.36 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.6, 161.5, 137.0, 134.6, 131.7 (2C), 121.6 (2C), 102.1, 62.1, 40.3, 32.2, 20.2, 14.3, 13.9.

IR (cm⁻¹) 3279, 1719, 1633, 1533, 1274, 1107, 954, 770. LCMS (ESI) m/z [M+H]⁺ 333. **HRMS (ESI-TOF)** *m*/*z* [M+H]⁺ Calcd for C₁₆H₂₁N₄O₄ 333.1557; Found 333.1560.

(dibenzylcarbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (6n)

 $C_{23}H_{20}N_4O_2$ **MW**: 384 g.mol⁻¹ **Yield**: 66% Yellow paste

The product was obtained using general procedure A from 4a (79 mg), dibenzylamine (38 µL) and triethylamine (28 μL). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, 50/50) to afford the desired product as a yellow paste (51 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.72 (m, 2H), 7.54–7.58 (m, 3H), 7.16–7.25 (m, 10H), 4.74 (s, 2H), 4.50 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 162.4, 138.8, 138.6, 134.3, 132.8, 130.5 (2C), 128.6 (2C), 128.5(2C), 127.9 (2C), 127.8 (2C), 127.1, 127.0, 121.5 (2C), 102.3, 50.0, 48.1.

LCMS (ESI) m/z [M+H]⁺ 385.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₂₁N₄O₂ 385.1659; Found 385.1658.

The product was obtained using general procedure **A** from **4a** (79 mg), di-tert-butyl D-glutamate hydrochloride (61 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, 50/50) to afford the desired product as a yellow paste (76 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.73 (m, 2H), 7.58–7.65 (m, 3H), 5.76 (d, J = 8.5 Hz, 1H), 4.37 (td, J = 8.3 Hz, 5.1 Hz, 1H), 2.25–2.33 (m, 2H), 2,09 (m, 1H), 1.90 (m, 1H), 1.43 (s, 9H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.3, 171.6, 161.3, 134.1, 132.9, 130.5 (2C), 121.5 (2C), 102.1, 81.9, 80.4, 53.4, 31.7, 28.4, 28.1 (3C), 28.1 (3C).

LCMS (ESI) m/z [M+H]⁺ 447. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₂H₃₁N₄O₆ 447.2238; Found 447.2232.

(morpholine-4-carbonothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (7a)

C₁₃H₁₄N₄O₂S **MW**: 290 g.mol⁻¹ **Yield**: 79% Yellow solid

The product was obtained using general procedure **A** from **5a** (83 mg), morpholine (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (46 mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 7.79 (m, 2H), 7.60–7.70 (m, 3H), 4.25 (m, 2H), 4.10 (m, 2H), 3.72 (m, 2H), 3.66 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 184.5, 173.6, 134.1, 133.0, 130.5 (2C), 121.7 (2C), 102.4, 66.8, 66.8, 49.0, 47.0. IR (cm⁻¹) 1592, 1428, 1217, 1114, 963.

LCMS (ESI) *m/z* [M+H]⁺ 291.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₅N₄O₂S 291.0910; found 291.0909.

Mp. 209–211 °C.

(butylcarbamothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (7b)

C₁₃H₁₆N₄OS **MW**: 276 g.mol⁻¹ **Yield**: 69% Orange solid

The product was obtained using general procedure **A** from **5a** (79 mg), *n*-butylamine (20 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a orange solid (38 mg, 69%).

¹H NMR (400 MHz, CDCl₃) δ 9.22 {9.23} (s, 1H), 7.82 (m, 2H), 7.63–7.73 (m, 3H), 6.98 {6.74} (br.s, 1H), 3.65 {3.52} (m, 2H), 1.63 {1.54} (m, 2H), 1.39 (m, 2H), 0.94 {0.93} (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 187.2 {185.6}, 172.8 {174.4}, 134.1 {134.0}, 133.0 {133.1}, 130.5 {130.6} (2C), 121.8 (2C), 102.4 {103.0}, 44.8 {43.9}, 31.0 {31.5}, 20.3 {20.2}, 13.9 {13.9}.

NMR spectra show the presence of 2 isomers (ratio 1.7/1 at room temperature), minor isomer signals are reported into brackets when they are distinguishable.

IR (cm⁻¹) 3229, 1605, 1594, 1468, 1358, 953, 763.

LCMS (ESI) *m/z* [M+H]⁺ 277.

HRMS (ESI-TOF) *m/z* [M+H]⁺ Calcd for C₁₃H₁₇N₄OS 277.1118; Found 277.1115.

Mp. 121–123 °C.

(methoxy(methyl)carbamothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (7c)

7c

 $\begin{array}{c} C_{11}H_{12}N_4O_2S\\ \textbf{MW}: 264 \text{ g.mol}^{-1}\\ \textbf{Yield}: 66\%\\ \text{Yellow solid} \end{array}$

The product was obtained using general procedure **B** from **5a** (82 mg), N,O-dimethylhydroxylamine.HCl (19 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (35 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.81 (m, 2H), 7.62–7.72 (m, 3H), 3.84 (s, 3H), 3.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 173.8, 134.1, 133.1, 130.6 (2C), 121.8 (2C), 102.5, 60.7, 38.1. IR (cm⁻¹) 1603, 1590, 1359, 131, 955. LCMS (ESI) m/z [M+H]⁺ 265. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₁H₁₃N₄O₂S 265.0754; Found 265.0754. Mp. 117–120 °C. (S)-(2-(methoxycarbonyl)pyrrolidine-1-carbonothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (7d)

C₁₅H₁₆N₄O₃S MW: 332 g.mol⁻¹ Yield: 81% Orange oil

The product was obtained using general procedure **B** from **5a** (82 mg), L-proline methyl ester.HCl (33 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as an orange oil (54 mg, 81%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.14 {9.15} (s, 1H), 7.76 (m, 2H), 7.59–7.69 (m, 3H), 4.79 {4.96} (dd, *J* = 8.5, 3.8 Hz, 1H), 3.83–4.01 (m, 2H), 3.71 (s, 3H), 2.24–2.31 (m, 1H), 1.92–2.11 (m, 3H).

¹³**C NMR (100 MHz, CDCl₃)** δ 183.5 {182.9}, 172.9 {173.2}, 172.3 {173.1}, 134.1, 133.0 {133.0}, 130.5 {130.5} (2C), 121.7 {121.7} (2C), 102.3 {102.5}, 61.6 {63.7}, 52.2, 51.7 {49.9}, 30.6 {30.0}, 23.7 {24.3}.

NMR spectra show the presence of 2 isomers (ratio 1.1/1 at room temperature), minor isomer signals are reported into brackets when they are distinguishable.

IR (cm⁻¹) 1738, 1603, 1590, 1403, 1359, 1337, 1201, 957, 764. **HRMS (ESI-TOF)** *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₇N₄O₃S 333.1016; Found 333.1017.

LCMS (ESI) *m/z* [M+H]⁺ 333.

(butoxycarbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (8a)

C₁₃H₁₅N₃O₃ MW: 261 g.mol⁻¹ Yield: 73% Beige solid

The product was obtained using general procedure **B** from **4a** (79 mg), *n*-butanol (18 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a beige solid (38 mg, 73%).

¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.77 (m, 2H), 7.63–7.69 (m, 3H), 4.08 (t, *J* = 6.7 Hz, 2H), 1.63 (m, 2H), 1.39 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 161.9, 133.9, 133.2, 130.7 (2C), 121.6 (2C), 102.8, 65.5, 31.1, 19.3, 13.9. IR (cm⁻¹) 1645, 1547, 1469, 1356, 1194, 1130, 981, 870, 718. LCMS (ESI) *m/z* [M+H]⁺ 262.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₆N₃O₃ 262.1186; Found 262.1184.

Mp. 83–85 °C.

(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)((p-tolyloxy)carbonyl)amide (8b)

C₁₆H₁₃N₃O₃ MW: 295 g.mol⁻¹ Yield: 65% Beige solid

The product was obtained using general procedure **B** from **4a** (79 mg), cresol (22 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a beige solid (39 mg, 65%).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.77 (m, 2H), 7.67 (m, 1H), 7.65 (m, 2H), 7.14 (m, 2H), 7.05 (m, 2H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9, 160.8, 149.9, 134.8, 133.9, 133.4, 130.8 (2C), 129.8 (2C), 121.7 (4C), 103.5, 21.0.
IR (cm⁻¹) 1671, 1577, 1507, 1365, 1277, 1181, 967, 764.
LCMS (ESI) *m/z* [M+H]⁺ 296.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₄N₃O₃ 296.1030; Found 296.1031. **Mp**. 144–146 °C.

(3-(4-(ethoxycarbonyl)phenyl)-1,2,3-oxadiazol-3-ium-5-yl)((p-tolyloxy)carbonyl)amide (8c)

C₁₉H₁₇N₃O₅ MW: 367 g.mol⁻¹ Yield: 60% Pale yellow solid

EtO₂C²

The product was obtained using general procedure **B** from **4c** (94 mg), cresol (22 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a pale yellow solid (44 mg, 60%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (d, *J* = 8.7 Hz, 2H), 8.23 (s, 1H), 7.88 (d, *J* = 8.7 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.5, 160.8, 149.9, 136.6, 135.1, 134.9, 132.0 (2C), 129.9 (2C), 121.8 (2C), 121.6 (2C), 103.7, 62.3, 21.1, 14.5.

IR (cm⁻¹) 1717, 1664, 1578, 1276, 1190, 1108, 971, 770.

LCMS (ESI) *m/z* [M+H]⁺ 368.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₈N₃O₅ 368.1241; Found 368.1244.

Mp. 151–153 °C.

(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)((p-tolyloxy)carbonyl)amide (8d)

C₁₆H₁₂IN₃O₃ MW: 421 g.mol⁻¹ Yield: 63% Beige solid

The product was obtained using general procedure **B** from **4b** (105 mg), cresol (22 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, from 80/20 to 60/40) to afford the desired product as a beige solid (53 mg, 63%).

¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.98 (m, 2H), 7.50 (m, 2H), 7.12 (m, 2H), 7.03 (m, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 160.8, 149.9, 140.0 (2C), 134.9, 133.4, 129.9 (2C), 122.9 (2C), 121.6 (2C), 103.3, 100.0, 21.1. IR (cm⁻¹) 1664, 1576, 1507, 1283, 1190, 972.

LCMS (ESI) *m*/*z* [M+H]⁺ 422. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₃IN₃O₃ 421.9996; Found 421.9996. Mp. 200–202 °C.

((((8R,9S,13S,14S,17S)-17-acetoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (8e)

C₂₉H₃₁N₃O₅ MW: 501 g.mol⁻¹ Yield: 62% Beige solid

8e

The product was obtained using general procedure **B** from **4a** (79 mg), β -estradiol-17-acetate (63 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a beige solid (62%).

¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.75 (m, 2H), 7.69 (m, 1H), 7.62 (m, 2H), 7.22 (d, *J* = 8.7 Hz, 1H), 6.92 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.87 (d, *J* = 2.4 Hz, 1H), 4.65 (t, *J* = 8.6 Hz, 1H), 2.82 (m, 2H), 2.18 (m, 2H), 2.03 (s, 3H), 1.85 (m, 2H), 1.23–1.55 (m, 7H), 0.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.8, 171.3, 160.9, 149.9, 137.9, 137.2, 133.9, 133.4, 130.7 (2C), 126.3, 121.9, 121.6 (2C), 119.1, 103.5, 82.8, 49.9, 44.1, 43.0, 38.4, 37.0, 29.7, 27.7, 27.2, 26.2, 23.4, 21.4, 12.2.

IR (cm⁻¹) 2928, 1731, 1674, 1589, 1227, 1192, 989, 970.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₉H₃₁N₃O₅ 502.2336; Found 502.2338. **Mp**. 97–99 °C.

((butylthio)carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (9a)

 $\begin{array}{c} C_{13}H_{15}N_{3}O_{2}S\\ \textbf{MW}:\ 277\ g.mol^{-1}\\ \textbf{Yield}:\ 32\%\\ \textbf{Yellow\ paste} \end{array}$

The product was obtained using general procedure **B** from **4a** (79 mg), *n*-butanethiol (21 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow paste (18 mg, 32%).

¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.80 (m, 2H), 7.72 (m, 1H), 7.66 (m, 2H), 2.88 (t, *J* = 7.4 Hz, 2H), 1.64 (m, 2H), 1.43 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.1, 171.6, 133.4 (2C), 130.8 (2C), 121.7 (2C), 104.1, 32.5, 30.6, 22.3, 13.9. IR (cm⁻¹) 1621, 1556, 1359, 1242, 1148, 964, 848, 760. LCMS (ESI) m/z [M+H]⁺ 278. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₆N₃O₂S 278.0958; Found 278.0959.

((benzylthio)carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (9b)

 $C_{16}H_{13}N_3O_2S$ **MW**: 311 g.mol⁻¹ **Yield**: 51% Yellow paste

The product was obtained using general procedure **B** from **4a** (79 mg), benzyl mercaptan (24 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow paste (32 mg, 51%).

¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.77 (m, 2H), 7.70 (m, 1H), 7.64 (m, 2H), 7.37 (m, 2H), 7.27 (m, 2H), 7.19 (m, 1H), 4.12 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 177.1, 171.6, 138.7, 133.3, 130.6 (2C), 128.8 (2C), 128.4 (2C), 126.9, 121.5 (2C), 104.1, 35.2.

LCMS (ESI) *m/z* [M+H]⁺ 312.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₄N₃O₂S 312.0801; Found 312.0806.

(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)((p-tolylthio)carbonyl)amide (9c)

N⁻ N⁻ 9c

C₁₆H₁₃N₃O₂S MW: 311 g.mol⁻¹ Yield: 53% Yellow solid

The product was obtained using general procedure **B** from **4a** (79 mg), *p*-thiocresol (21 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (33 mg, 53%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.20 (s, 1H), 7.72 (m, 3H), 7.62 (m, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 2.34 (s, 3H).

The product was not stable enough to afford a ¹³C NMR spectrum.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₄N₃O₂S 312.0801; Found 312.0806.

C₁₉H₁₇N₃O₄S MW: 383 g.mol⁻¹ Yield: 47% Yellow solid

The product was obtained using general procedure **B** from **4c** (94 mg), benzyl mercaptan (24 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc, 50/50) to afford the desired product as a yellow solid (36 mg, 47%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.30 (d, J = 8.z Hz, 2H), 8.30 (s, 1H), 7.87 (d, J = 8.7 Hz, 2H), 7.35 (m, 2H), 7.26 (m, 2H), 7.19 (m, 1H), 4.43 (q, J = 7.2 Hz, 2H), 4.12 (s, 2H), 1.42 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.4, 171.7, 164.5, 138.8, 136.6, 135.2, 132.0 (2C), 129.0 (2C), 128.6 (2C), 127.1, 121.8 (2C), 104.4, 62.3, 35.4, 14.5.

IR (cm⁻¹) 1719, 1560, 1276, 1150, 845, 768. LCMS (ESI) *m/z* [M+H]⁺ 384.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₈N₃O₄S 384.1013; Found 384.1016.

Mp. 129–131 °C.

10

((benzylthio)carbonothioyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (10)

The product was obtained using general procedure **B** from **5a** (82 mg), benzyl mercaptan (24 μ L) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a brown paste (36 mg, 56%).

¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.82 (m, 2H), 7.65–7.74 (m, 3H), 7.39 (m, 2H), 7.27 (m, 2H), 7.22 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 209.8, 171.5, 137.6, 133.9, 133.8, 130.9 (2C), 129.4 (2C), 128.6 (2C), 127.1, 122.0 (2C), 104.7, 40.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₃N₃OS₂ 328.0573; Found 328.0577.

(E)-(((benzylideneamino)oxy)carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (11)

C₁₆H₁₂N₄O₃ MW: 308 g.mol⁻¹ Yield: 66% White solid

The product was obtained using general procedure **B** from **4a** (79 mg), benzaldehyde oxime (24 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a white solid (41 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.27 (s, 1H), 7.81 (m, 2H), 7.61−7.72 (m, 5H), 7.34−7.42 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 160.2, 154.3, 133.8, 133.4, 131.2, 131.0, 130.7 (2C), 128.8 (2C), 128.3 (2C), 121.7 (2C), 103.5.

LCMS (ESI) *m*/z [M+H]⁺ 309.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₃N₄O₃ 309.0982; Found 309.0984.

(2-benzyl-2-(tert-butoxycarbonyl)hydrazine-1-carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (12)

The product was obtained using general procedure **B** from **4a** (79 mg), tert-butyl 1-benzylhydrazine-1-carboxylate² (22 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a yellow solid (53 mg, 65%).

¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.76 (m, 2H), 7.66 (m, 3H), 7.35 (s, 1H), 7.26–7.29 (m, 4H), 7.23 (br.s, 1H), 4.70 (s, 2H), 1.47 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 155.7, 155.3, 137.4, 133.9, 133.0, 130.5 (2C), 128.4 (4C), 127.3, 121.5 (2C), 102.7, 80.9, 54.6, 28.3 (3C).

LCMS (ESI) *m/z* [M+H]⁺ 410.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₁H₂₄N₅O₄ 410.1823; Found 410.1821.

² tert-butyl 1-benzylhydrazine-1-carboxylate was synthesized according to a reported procedure J. Kim, H. Song, S. B. Park, *Eur. J. Org. Chem.* **2010**, 3815–3822

(4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazine-1-carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (13)

C₂₆H₂₃FN₆O₅ **MW**: 518 g.mol⁻¹ **Yield**: 68% Yellow solid

The product was obtained using general procedure **A** from **4a** (79 mg), ciprofloxacine (66 mg) and triethylamine (28 μ L). After completion, methanol was added to the reaction. Water was then added and the mixture was filtered to afford the desired product as a yellow solid (71 mg, 68%).

¹**H NMR (400 MHz, CDCl₃)** δ 11.71 (br.s, 1H), 8.84 (s, 1H), 8.83 (s, 1H), 7.91–8.00 (m, 3H), 7.85 (m, 1H), 7.76 (m, 2H), 7.47 (d, *J* = 7.0 Hz, 1H), 3.92 (m, 4H), 3.65 (tt, *J* = 7.1, 4.1 Hz, 1H), 3.46 (m, 4H), 1.45 (m, 2H), 1.19 (m, 2H).

¹³**C NMR (100 MHz, CDCl₃)** δ 176.3, 169.6, 167.6, 160.0 (q, *J* = 40 Hz), 155.3, 152.8, 150.4, 148.3, 146.0 (q, *J* = 10 Hz), 139.6, 135.3, 132.6, 131.5 (2C), 122.2 (2C), 115.3 (q, *J* = 285 Hz), 112.5 (q, *J* = 22 Hz), 107.0, 105.7, 49.3 (2C), 44.3 (2C), 36.4, 8.4.

LCMS (ESI) *m/z* [M+H]⁺ 519.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₆H₂₄FN₆O₅ 519.1787; Found 519.1791.

The product was obtained using general procedure **A** from **4a** (79 mg), 2-aminobenzylamine (27 mg) and triethylamine (31 μ L). After completion, methanol was added to the reaction. Water was then added and the mixture was filtered to afford the desired product as a yellow solid (42 mg, 68%).

¹**H NMR (400 MHz, DMSO-d**₆) δ 8.39 (s, 1H), 8.03 (m, 2H),7.66–7.76 (m, 3H), 7.43 (br.t, *J* = 6.4 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 6.93 (dd, *J* = 7.9, 7.2 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.47 (dd, *J* = 7.9, 7.2 Hz, 1H), 5.18 (br.s, 2H), 4.11 (d, *J* = 6.4 Hz, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 172.0, 161.2, 146.3, 133.9, 132.6, 130.2 (2C), 129.4, 127.6, 123.4, 122.2 (2C), 115.5, 114.4, 102.4, 40.5.

IR (cm⁻¹) 3266, 1632, 1552, 1285, 967, 761.

LCMS (ESI) *m/z* [M+H]⁺ 310.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₆N₅O₂ 310.1299; Found 310.1296.

Mp. 187–189 °C.

((((8R,9S,13S,14S,17S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (15)

The product was obtained using general procedure **B** from **4a** (79 mg), β -estradiol (60 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, Heptane/EtOAc) to afford the desired product as a beige solid (38 mg, 53%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 (s, 1H), 7.77 (m, 2H), 7.70 (m, 1H), 7.64 (m, 2H), 7.25 (d, *J* = 8.7 Hz, 1H), 6.94 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.88 (d, *J* = 2.5 Hz, 1H), 3.7 (t, *J* = 8.4 Hz, 1H), 2.84 (m, 2H), 2.30 (m, 1H), 2.19 (m, 1H), 2.09 (m, 1H), 1.92 (m, 1H), 1.85 (m, 1H), 1.64–1.72 (m, 1H), 1.13–1.51 (m, 8H), 0.74 (s, 3H).

¹³**C NMR (100 MHz, CDCl₃)** δ 175.9, 161.0, 149.9, 138.1, 137.4, 133.9, 133.5, 130.8 (2C), 126.3, 121.9, 121.7 (2C), 119.1, 103.5, 82.1, 50.2, 44.4, 43.4, 38.7, 36.9, 30.7, 29.8, 27.3, 26.4, 23.3, 11.2.

IR (cm⁻¹) 3387, 2924, 1670, 1586, 1493, 1290, 1224, 1192, 973.

LCMS (ESI) *m/z* [M+H]⁺ 460.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₇H₃₀N₃O₄ 460.2231; Found 460.2227. **Mp**. 179–181 °C.

((2-(5-hydroxy-1H-indol-3-yl)ethyl)carbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (16)

The product was obtained using general procedure **A** from **4a** (79 mg), serotonin.HCl (40 mg) and triethylamine (56 μ L). The crude product was purified by column chromatography (SiO₂, DCM/MeOH, from 100/0 to 95/5) and then (C18-greffed silica, H₂O/MeCN + TFA 1‰, from 95/5 to 0/100, gradient 2% MeCN/min) to afford the desired product as a red solid (36 mg, 53%).

¹**H NMR (400 MHz, DMSO-d**₆) δ 10.54 (s, 1H), 9.10 (s, 1H), 8.11 (m, 2H), 7.81 (m, 1H), 7.75 (m, 2H), 7.67 (br.s 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 7.07 (d, *J* = 1.9 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 6.6 (dd, *J* = 8.6, 2.4 Hz, 1H), 3.41 (m, 2H), 2.82 (br.t, *J* = 6.6 Hz, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 167.9, 154.0, 150.2, 133.5, 133.1, 130.8, 130.4 (2C), 127.9, 123.2, 122.6 (2C), 111.7, 111.3, 110.5, 105.8, 102.2, 40.5, 25.5.

LCMS (ESI) *m/z* [M+H]⁺ 364.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₈N₅O₃ 364.1404; Found 364.1401. **Mp**. 189–191 °C.

(5H-dibenzo[b,f]azepine-5-carbonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (6p)

The product was obtained using general procedure **B** from **4a** (79 mg), iminostilbene (39 mg) and triethylamine (28 μ L). The crude product was purified by column chromatography (SiO₂, cyclohexane/EtOAc, 60/40) to afford the desired product as a yellow solid (44 mg, 58%).

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.63-7.59 (m, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.53-7.50 (m, 2H), 7.42 (m, 2H), 7.36-7.33 (m, 2H), 7.28 (m, 2H), 6.92 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 161.2, 141.9, 141.4, 134.7, 134.1, 132.9, 130.6, 130.5 (3C), 129.8 (2C), 129.3, 129.1, 129.0 (2C), 128.9, 127.0, 126.8, 121.4 (2C), 102.8. IR (cm⁻¹): 1630, 1578, 1489, 1325, 1303, 1194, 966, 762, 730. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₃H₁₆N₄O₂ 381.1346; Found 381.1345. Mp. 158-159 °C

C₉H₁₀N₂ MW: 146 g.mol⁻¹ Yield: 99% Yellow oil

To a suspension of phenylmethanamine (1.20 g, 11.2 mmol) and N,N-Diisopropylethylamine (1.77 g, 13.8 mmol) in MeCN (10 mL) was added 2-bromoacetonitrile (1 g, 7.5 mmol) at room temperature and the reaction mixture was stirred at room temperature for 16 hours. LCMS showed that the material was converted to the product completely. The organic solvent were removed under reduced pressure and the residue was taken up in ethyl acetate, then organic layer were washed with water and brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure. Purification of the crude mixture by flash column chromatography using (9/1) to (7/3) of heptane/ethyl acetate gave the desired product as a yellow oil (1.09 g, 99%).

¹**H NMR (400 MHz, CDCl3)** δ 7.35 (d, *J* = 4.5 Hz, 4H), 7.33 – 7.27 (m, 1H), 3.94 (s, 2H), 3.57 (s, 2H), 1.63 (s, 1H). The spectral data (¹H-NMR) was consistent with reported one: *Haihua Yu, Li Xiao, Xicheng Yang, Liming Shao; Chem. Commun.*, **2017**,*53*, 9745-9748

(1H-imidazole-1-carbonyl)(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (S2)

C₁₂H₈IN₅O₂ MW: 212 g.mol⁻¹ Yield: 67% White solid

To a solution of 2-(benzylamino)acetonitrile **S1** (0.5 g, 3.42 mmol) in THF (1.5 mL), tert-butyl nitrite (1.21 mL, 10.26 mmol) was added. The solution was stirred at room temperature for 2 hours. Then, a solution of HCl (4M) in dioxane was added (2.4 mL) and the reaction mixture was stirred overnight at room temperature under argon. Et₂O was added and the precipitate was collected by filtration, washed with Et₂O, washed with Et₂O to afford the product as a white powder (486 mg, 67%).

¹H NMR (400 MHz, DMSO-d₆) δ 9.67 (s, 2H), 8.10 (s, 1H), 7.56 (d, J = 9.6 Hz, 2H), 7.47 (s, 3H), 5.89 (s, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 169.2, 131.3, 129.7, 129.4 (2C), 129.1 (2C), 103.0, 56.4. IR (cm⁻¹) 1671, 1570, 1374, 1296, 1008, 976. LCMS (ESI) *m/z* [M+H]⁺ 176.5. HRMS (ESI-TOF) *m/z* [M-Cl⁻]⁺ Calcd for C₁₂H₈IN₅O₂ 176.0819; Found 176.0818. Mp. 127-129 °C. IR (cm⁻¹) 2946, 1669, 1667, 1467, 1172, 912, 693.

C₁₃H₁₁N₅O₂ **MW**: 269 g.mol⁻¹ **Yield**: 67% White solid

To a solution of 1,1'-carbonyldiimidazole (368 mg, 2.27 mmol) in a mixture DMF/MeCN (4 mL/1.5 mL) was added **S2** (400 mg, 2.00 mmol). The solution was stirred at room temperature for 4 hour before being concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, DCM/MeOH, 98/2) to afford the desired product as a white solid (454 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 8.33 (t, J = 1.0 Hz, 1H), 7.82 (s, 1H), 7.57 (t, J = 1.4 Hz, 1H), 7.55 – 7.46 (m, 3H), 7.46 – 7.39 (m, 2H), 7.01 (dd, J = 1.5, 1.0 Hz, 1H), 5.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 154.7, 137.5, 130.9, 130.0 (2C), 129.8, 129.1 (2C), 129.0, 117.2, 105.6, 57.7. IR (cm⁻¹) 1660, 1557, 1366, 1288, 1193, 1051, 746, 699. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₂N₅O₂ 270.0988; Found 270.0986. Mp. 140-142 °C.

(3-benzyl-1,2,3-oxadiazol-3-ium-5-yl)(3-methyl-1H-imidazol-3-ium-1-carbonyl)amide iodide (S4)

 $\begin{array}{c} C_{14}H_{14}IN_5O_2\\ \textbf{MW: } 411 \text{ g.mol}^{-1}\\ \text{Orange oil} \end{array}$

To a solution of **S3** (67 mg, 0.248 mmol) in anhydrous acetonitrile (0.6 mL) was added MeI (61.73 μ L, 0.99 mmol). The mixture was stirred for 16 hours at 30 °C before being concentrated under reduced pressure. The product was obtained as an orange oil and was used without any purification as it is not stable enough to undergo purification. The crude was utilized directly in the subsequent step.

The product is not stable enough in DMSO to afford 1H and ${}^{13}C$ NMR spectra. LCMS (ESI) m/z [M+H]⁺ 285.

C₁₄H₁₈N₄O₂ MW: 274 g.mol⁻¹ Yield: 42% Yellow solid

To a solution of crude **S4** (75 mg, 263.81 μ mol) in CHCl₃ (2.65 mL, stabilized on amylene) were added *n*-butylamine (26 μ L, 263.81 μ mol) and trimethylamine (71.3 μ L, 527.61 μ mol). The reaction mixture was left stirring under argon at 30 °C for 16 h. The crude product was purified by column chromatography (SiO₂, Hept/AcOEt, 6/4 to 2/8) to afford the desired product as a yellow solid (30.4 mg, 42%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.44 (d, *J* = 3.3 Hz, 3H), 7.38 (d, *J* = 9.6 Hz, 2H), 5.38 (s, 2H), 5.29 (bs, 1H), 3.19 (dd, *J* = 13.1, 6.9 Hz, 2H), 1.45 (dd, *J* = 14.7, 7.6 Hz, 2H), 1.36 – 1.30 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 161.7, 130.3, 130.0, 129.6 (2C), 129.0 (2C), 103.1, 56.8, 40.1, 32.1, 20.1, 13.8. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₂N₅O₂ 275.1502; Found 275.1506.

(3-benzyl-1,2,3-oxadiazol-3-ium-5-yl)(morpholine-4-carbonyl)amide (6q)

To a solution of **S4**(155 mg, 377 μ mol) in CHCl₃ (4 mL, stabilized on amylene) were added morpholine (33 μ L, 377 μ mol) and trimethylamine (105 μ L, 754 μ mol). The reaction mixture was left stirring under argon at 30 °C for 16 h. The crude product was purified by column chromatography (SiO₂, Hept/AcOEt, 5/5 to 100% AcOEt) to afford the desired product as a yellow paste (38 mg, 35%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.47 – 7.39 (m, 3H), 7.37 (dd, *J* = 7.6, 2.0 Hz, 2H), 5.40 (s, 2H), 3.76 (s, 2H), 3.65 – 3.60 (m, 4H), 3.55 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 160.7, 130.4, 129.9, 129.7 (2C), 129.0 (2C), 103.2, 66.9 (2C), 56.9, 45.4, 42.9. IR (cm⁻¹) 2851, 1619, 1407, 1252, 1112, 989, 706. LCMS (ESI) m/z [M+H]⁺ 290.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₄H₁₆N₄O₃ 289.1298; Found 289.1295.

III. Click & Release kinetics

The compound **6p** (3.7 mg, 0.097 mmol, 1 eq.) was solubilised in d₆-DMSO (0.4 mL) and Tri-methoxybenzene was added as an internal standard (0.5 mg, 0.0032 mmol, 0.33 eq.). The NMR of this solution was referenced as the SM measurement. Then BCN (2.2 mg, 0.034 mmol, 1.5 eq.) was added and the reaction was followed by NMR measurement. The experiment shown complete conversion of the starting material after 6h.The final products were obtained with 96% (carbamazepine) NMR yield.

Figure S1: NMR analysis of the drug release in d₆-DMSO. zoom on the aromatic area T1: 5 min, T2: 60 min, T3: 170 min, T4: 360 min

Figure S2 : NMR analysis of the drug release in d_6 -DMSO. T1 : 5 minutes after DBCO addition, T2 : 1h, T3 : 2h50 and T4 : 6h.

269.5

500.0

100

50-

169.1

de

1000.0

Chemical Formula: C₁₇H₂₀N₂O

Exact Mass: 268,16

Molecular Weight: 268,36

1500.0

Sample 52 Vial 2:A,4 ID KP-4-105-click File KP-4-105-click Date 28-Mar-2019 Time 19:50:04 Description

7.3e+007

— m/z

- - -

IV. Crystallography

The crystals were obtained by vapour diffusion of a DCM/Et₂O system.

Crystallography. The data for compound **11** were collected at 100(2) K on a Nonius Kappa-CCD area detector diffractometer³ using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The crystal was introduced into a glass capillary with a protective coating of Paratone-N oil (Hampton Research). The unit cell parameters were determined from ten frames, then refined on all data. The data (combinations of φ - and ω -scans with a minimum redundancy of 4 for 90% of the reflections) were processed with HKL2000,⁴ with no correction for absorption effects. The structure was solved by intrinsic phasing with SHELXT⁵ and refined by full-matrix least-squares on F^2 with SHELXL-2014.⁶ All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were introduced at calculated positions and were treated as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom.

Crystal data for compound 11. $C_{16}H_{12}N_4O_3$, M = 308.30, monoclinic, space group $P2_1/c$, a = 9.8228(8), b = 17.1390(13), c = 8.9017(5) Å, $\beta = 103.987(5)$, V = 1454.19(18) Å³, Z = 4, $D_c = 1.408$ g cm⁻³, $\mu = 0.101$ mm⁻¹, F(000) = 640. Refinement of 208 parameters on 2738 independent reflections out of 46295 measured reflections ($R_{int} = 0.069$) led to $R_1 = 0.037$, $wR_2 = 0.095$, S = 1.060, $\Delta \rho_{max} = 0.18$, $\Delta \rho_{min} = -0.18$ e Å⁻³.

View of compound **11**. Hydrogen atoms are omitted, except for those bound to nitrogen atoms. Displacement ellipsoids are drawn at the 50% probability level.

⁵ Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr., Sect. A* **2015**, *71*, 3–8.

³ Hooft, R. W. W. COLLECT, Nonius BV: Delft, The Netherlands, 1998.

⁴ Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. *Methods Enzymol.* **1997**, *276*, 307–326.

⁶ Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C 2015, 71, 3–8.

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, DMSO-d₆)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, DMSO-d₆)

¹H NMR spectrum (400 MHz, DMSO-d₆)

¹H NMR spectrum (400 MHz, DMSO-d₆)

¹³C NMR spectrum (100 MHz, DMSO-d₆)

0

¹H NMR spectrum (400 MHz, DMSO-d₆)

S45

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, CDCl₃)

S49

¹³C NMR spectrum (100 MHz, CDCl₃)

 ^{13}C NMR spectrum (100 MHz, CDCl_3)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, CDCl₃)

 ^{13}C NMR spectrum (100 MHz, CDCl_3)

S66

 $^{^{13}\}text{C}$ NMR spectrum (100 MHz, CDCl_3)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹H NMR spectrum (400 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, CDCl₃)

¹³C NMR spectrum (100 MHz, DMSO-d₆)

¹³C NMR spectrum (100 MHz, CDCl₃)

S81

NMR spectrum of **S2** (100 MHz, DMSO-d₆)

 ^{13}C NMR spectrum of S3 (100 MHz, CDCl_3)

 ^{13}C NMR spectrum of 6p (100 MHz, CDCl_3)

¹³C NMR spectrum of **6q** (100 MHz, CDCl₃)