Highly Enantioselective [3+2] Annulation of 3-Butynoates

with β-Trifluoromethyl Enones Promoted by an

Amine-Phosphine Binary Catalytic System

Huanzhen $\mathrm{Ni},{ }^{+}$Yee Lin Wong, ${ }^{+}$Mingyue Wu, ${ }^{+}$Zhaobin Han, ${ }^{\perp}$ Kuiling Ding, ${ }^{* \perp}$

and Yixin Lu ${ }^{*,+, \ddagger, \xi}$

${ }^{\dagger}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.
${ }^{\perp}$ State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)
Email: kding@mail.sioc.ac.cn

* Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin Univer-sity, Binhai New City, Fuzhou, Fujian, 359297, PR China.
${ }^{\S}$ National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, PR China, 215123
Email: chmlyx@nus.edu.sg

Supporting Information

A. General information S2
B. Representative Procedures S2
C. Preliminary further investigation S5
D. Analytical Data and HPLC Chromatograms of Substrates and Products S6
E. X-Ray Crystallographic Analysis and Determination of the Absolute S36 Configurations of the Products
F. Reference S37
G. NMR Analysis of the Isomerization Process of 3-Butynoate 1a S39
H. NMR Spectra of the Substrates and Products S43

A. General Information

Unless otherwise specified, all reactions were carried out under a nitrogen atmosphere in anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were used without further purification unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature in CDCl_{3} on a Bruker $\mathrm{AMX500}(500 \mathrm{MHz})$ or $\mathrm{AMX} 400(400 \mathrm{MHz})$ spectrometer. Chemical shifts were reported in parts per million (ppm). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Optical rotations were measured using a Jasco DIP-1000 polarimeter. Enantiomeric excesses were determined by HPLC analysis on a chiral stationary phase.

Catalyst $\mathbf{3}$ and $\mathbf{4}$ were synthesized by following our previously reported procedures. ${ }^{1} \beta$-Perfluoroalkyl enones $\mathbf{2}$ were synthesized according to literature reported procedures. ${ }^{2}$ Enones $\mathbf{7}$ were synthesized according to previous reported procedures. ${ }^{3}$ 3-Butynoate 1 was synthesized according to the method established by the Fu group. ${ }^{4}$

B. Representative Procedures

1. Preparation of enone $\mathbf{2}$

Enone 2 was synthesized according to literature reported procedures. ${ }^{2}$ To a solution of LDA (2.6 mmol) in THF (5 mL) was added dropwise 2-bromo-3,3,3-trifluoropropene ($0.13 \mathrm{~mL}, 1.3 \mathrm{mmol}$) at - 78 ${ }^{\circ}$ C. After stirring for 5 min , a THF solution (1 mL) of respective aldehyde (1 mmol) was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. Subsequent extraction with ethyl acetate, drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
and concentration in vacuo afforded the crude product, which was then dissolved in 5 mL THF. To this solution was added triethylamine ($0.56 \mathrm{~mL}, 4 \mathrm{mmol}$), and the mixture was refluxed for 8 h . Subsequently, 5 mL of 1 M HCl was added to the mixture, and the crude product was extracted by ethyl acetate for three times, dried, and concentrated in vacuo. The crude product was then purified by column chromatography using 20\% EtOAc/Hexane to afford enone 2.

2. Preparation of 3-butynoate 1

3-Butynoate 1 was synthesized according to literature reported procedures. ${ }^{4}$ To a solution of alkyne (1 mmol) and $\mathrm{Cul}(15 \mathrm{mg})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ were added ethyl diazoacetate (1 mmol). The resulting mixture was stirred at room temperature for 12 h , and the solvent was removed in vacuo. The crude product was then purified by column chromatography using 5-10\% EtOAc/Hexane to afford 3butynoate 1.
3. [3+2] Annulation of 3-Butynoates with β-Trifluoromethyl Enones Promoted by $\mathrm{Et}_{3} \mathrm{~N}$ and NUSIOC-

Phos

To a dried round bottle flask with a magnetic stirring bar under N_{2} at room temperature was added 3-butynoate $1(0.12 \mathrm{mmol})$ in toluene (1 mL), followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{mmol})$, and the mixture was stirred for 12 h . Catalyst NUSIOC-Phos ($0.01 \mathrm{mmol}, 4 \mathrm{mg}$) and enone 2 were then introduced, and the reaction mixture was stirred for another 12 h . The solvent was then removed under reduced pressure and crude ${ }^{1} \mathrm{H}$ NMR analysis of the residue was performed to identify the
diastereomeric ratio of the product. The crude product was subsequently purified by column chromatography (10\%-20\% EtOAc/Hexane) on silica gel to afford annulation adduct 4.
4. $[3+2]$ Annulation of 3-Butynoate 1a with Enones 5 Promoted by $\mathrm{Et}_{3} \mathrm{~N}$ and Bifunctional Chiral Phosphine 3i

To a dried round bottle flask with a magnetic stirring bar under N_{2} at room temperature was added 3-butynoate 1a (0.12 mmol) in toluene (1 mL), followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{mmol})$, and the mixture was stirred for 12 h . Catalyst $\mathbf{3 i}(0.02 \mathrm{mmol}, 19 \mathrm{mg})$ and enone 5 were then introduced, and the reaction mixture was stirred for another 12 h . The solvent was then removed under reduced pressure and crude ${ }^{1} \mathrm{H}$ NMR analysis of the residue was performed to identify the diastereomeric ratio of the product. The crude product was subsequently purified by column chromatography (10\%-20\% EtOAc/Hexane) on silica gel to afford annulation adduct 6.

5. $[3+2]$ Annulation of 3-Butynoate 1a with Enones 7 Promoted by $\mathrm{Et}_{3} \mathrm{~N}$ and Bifunctional Chiral

 Phosphine 3j

To a dried round bottle flask with a magnetic stirring bar under N_{2} at room temperature was added 3-butynoate 1a (0.12 mmol) in toluene (1 mL), followed by the addition of $E t_{3} \mathrm{~N}(0.15 \mathrm{mmol})$, and the mixture was stirred for 12 h . Catalyst $\mathbf{3 j}(0.02 \mathrm{mmol}, 16 \mathrm{mg})$ and enone 7 were then introduced, and the reaction mixture was stirred for another 12 h . The solvent was then removed under reduced pressure and crude ${ }^{1} \mathrm{H}$ NMR analysis of the residue was performed to identify the diastereomeric
ratio of the product. The crude product was subsequently purified by column chromatography (10\%-20\% EtOAc/Hexane) on silica gel to afford annulation adduct 8.

C. Preliminary further investigation

1. Catalyst screening ${ }^{\text {a }}$

entry	phosphine	dr^{b}	yield (\%) ${ }^{c}$	ee $(\%)^{d}$
$\mathbf{1}$	$3 \mathbf{i}$	$>99: 1$	$\mathbf{9 2}$	$\mathbf{9 2}$
$\mathbf{2}$	$3 \mathbf{k}$	$9: 1$	88	93
3	$3 \mathbf{l}$	$19: 1$	95	89

${ }^{a}$ Reactions were performed by treating 1a $(0.12 \mathrm{mmol})$ in toluene (1 mL) with $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{mmol})$ and stirred for 12 h at room temperature, followed by the addition of $5(0.10 \mathrm{mmol})$ and the catalyst (20 mol\%). ${ }^{b}$ Determined by crude ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c}$ Isolated yield of the major diastereomer. ${ }^{d}$ Determined by HPLC analysis on a chiral stationary phase.

2. Examining another annulation ${ }^{\text {a }}$

3j

| entry | phosphine | $7 / 7^{\prime}$ | $8 / 8^{\prime}$ | dr b |
| :---: | :---: | :---: | :---: | :---: |\quad yield $(\%)^{c} \quad$ ee $(\%)^{d}$

$\mathbf{1}$	$\mathbf{3 j}$	$\mathbf{7}^{\prime}$	$\mathbf{8}^{\prime}$	$7: 1$	85	93
2	$\mathbf{3 k}$	$\mathbf{7}^{\prime}$	$\mathbf{8}^{\prime}$	$\mathbf{1 0 : 1}$	78	-37
3	$\mathbf{3 1}$	$\mathbf{7}^{\prime}$	$\mathbf{8}^{\prime}$	$3: 1$	70	88
4	$\mathbf{3 m}$	$\mathbf{7}^{\prime}$	$\mathbf{8}^{\prime}$	$4: 1$	77	89
5	$\mathbf{3 n}$	$\mathbf{7}$	$\mathbf{8}^{\prime}$	$5: 1$	80	$9 \mathbf{1}$
6	$\mathbf{3 0}$	$\mathbf{7}$	$\mathbf{8}^{\prime}$	$4: 1$	76	93
$\mathbf{7}$	$\mathbf{3 j}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 3 : 1}$	$\mathbf{8 8}$	$\mathbf{9 4}$

${ }^{a}$ Reactions were performed by treating 1a (0.12 mmol) in toluene (1 mL) with $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{mmol})$ and stirred for 12 h at room temperature, followed by the addition of 7 or $7^{\prime}(0.10 \mathrm{mmol})$ and the catalyst ($5 \mathrm{~mol} \%$). ${ }^{b}$ Determined by crude ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{9}$ Isolated yield of the major diastereomer. ${ }^{d}$ Determined by HPLC analysis on a chiral stationary phase.

D. Analytical Data and HPLC Chromatograms of Substrates and Products

Ethyl 4-(3-chlorophenyl)but-3-ynoate 1c

Prepared according to Representative Procedure B-2. Flash column chromatography (eluent: 5\%-10\% EtoAc/Hexane) to afford 1c as colorless oil ($150 \mathrm{mg}, 68 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{t}, \mathrm{J}=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{dt}, J=7.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.0,134.1,131.7,129.9$, 129.5, 128.5, 124.7, 82.6, 82.2, 61.8, 26.7, 14.1; ; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=$ 245.0340 , found $=245.0345$.

Ethyl 4-(4-fluorophenyl)but-3-ynoate 1d

Prepared according to Representative Procedure B-2. Flash column chromatography (eluent: 5\%-10\% EtoAc/Hexane) to afford 1d as colorless oil (134 mg, 65\%); ${ }^{1} \mathrm{H} N \mathrm{NRR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.34$ (m, $2 H), 6.98(t, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.17,133.67,133.59,115.58,115.36,82.41,61.68,26.67,14.12 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=229.0635$, found $=229.0630$.

Ethyl 4-(2-fluorophenyl)but-3-ynoate 1 e

Prepared according to Representative Procedure B-2. Flash column chromatography (eluent: 5\%-10\% EtoAc/Hexane) to afford $\mathbf{1 e}$ as colorless oil ($144 \mathrm{mg}, 70 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8 7.29-7.19 (m , 2H), 7.13 (ddd, J = 9.3 Hz, 2.4 Hz, 1.2 Hz, 1H), 7.05-6.97 (m, 1H), $4.23(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H})$, $1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,129.8,129.7,127.7,127.6,118.7,118.5$, 115.7, 115.5, 82.4, 61.8, 26.7, 14.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=229.0635$, found $=229.0627$.

Ethyl 4-(4-bromophenyl)but-3-ynoate 1 f

Prepared according to Representative Procedure B-2. Flash column chromatography (eluent: 5\%-10\% EtoAc/Hexane) to afford $\mathbf{1 f}$ as colorless oil ($160 \mathrm{mg}, 60 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.38$ (m , 1H), $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,133.2,131.5,122.4,122.0,82.6,61.7,26.8,14.1$; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=288.9835$, found $=288.9831$.

Ethyl 4-(4-ethylphenyl)but-3-ynoate 1g

Prepared according to Representative Procedure B-2. Flash column chromatography (eluent: 5\%-10\% EtoAc/Hexane) to afford $\mathbf{1 g}$ as colorless oil ($108 \mathrm{mg}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.32$ (m , 1H), 7.14-7.07 (m, 2H), 4.21(q, J=7.0 Hz, 2H), 3.48(s, 2H), 2.62(q, J=7.6 Hz, 2H), 1.29(t, J = 7.1 Hz, 3H), $1.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,144.5,131.7,127.8,120.2,83.6,80.4$, 61.6, 28.8, 26.8, 15.3, 14.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=239.1043$, found $=$ 239.1044.

Ethyl (3R,4S,5R)-4-benzoyl-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4a

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4a as colorless oil (33.8 mg, 87\%); $[\alpha]^{25}{ }_{\mathrm{D}}=-28.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=6.4,3.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.21(\mathrm{~m}, 3 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 198.2,163.3,147.5,140.2,135.3,133.9,131.9,129.2,129.0,128.7,128.1$, 127.9, $126.3(q, J=279.9 \mathrm{~Hz}), 61.1,55.5,54.1,51.4(q, J=28.9 \mathrm{~Hz}), 14.1$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=411.1179$, found $=411.1187$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}$ (minor) $=7.552$ $\min , \mathrm{t}_{\mathrm{R}}$ (major) $=8.476 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

<Peak Table>

Racemic 4a

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

Enantiomeric enriched 4a

Ethyl (3R,4S,5R)-4-(4-chlorobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4b

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford $\mathbf{4 b}$ as colorless oil ($37.6 \mathrm{mg}, 89 \%$); $[\alpha]^{25} \mathrm{D}=-71.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.62-4.49(\mathrm{~m}$, $1 \mathrm{H}), 4.39-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.87(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.0,163.2,147.3,140.6,140.0,133.6,131.9,130.5,129.1,129.0,128.1,128.0$, 126.2 ($q, J=279.7 \mathrm{~Hz}$), 61.2, $55.5,54.3,51.4(q, J=29.5 \mathrm{~Hz}$), 14.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=445.0789$, found $=445.0795$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}$ (minor) $=7.381$ $\min , \mathrm{t}_{\mathrm{R}}$ (major) $=8.225 \mathrm{~min}$ (Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}\right)$.

<Peak Table>

Detecto Peak\#	or A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	7.065	28241786	2539396	49.926		M	
2	7.811	28325629	2329923	50.074		M	
Total		56567416	4869319	100.000			

Racemic 4b

<Peak Table>

Detector A 254nm						
Peak\# Ret. Time Area Height Conc.	Unit	Mark	Name			
1	7.381	9838	914	0.669		
2	8.225	1461655	111629	99.331		
Total		1471493	112543	100.000		

Enantioenriched 4b

Ethyl (3R , 4S,5R)-4-(3-chlorobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4c

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford $\mathbf{4 c}$ as colorless oil ($38.1 \mathrm{mg}, 90 \%$); $[\alpha]^{25} \mathrm{D}=-39.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H})$, $4.64-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.8,163.2,147.2,139.9,136.8,135.1,133.8,131.9,129.9,129.3$,
$129.2,128.1,128.0,127.2,126.2(q, J=279.7 \mathrm{~Hz}), 125.1,122.9,61.2,55.4,54.6,51.2(q, J=29.3 \mathrm{~Hz})$, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-67.51; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=$ 445.0789 , found $=445.0785$; The ee value was $99 \%, t_{R}($ minor $)=6.955 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.230 \mathrm{~min}$ (Chiralpak IC, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

<Peak Table>

Detect Peak\#	or A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	6.916	3161064	310350	50.040			
2	8.217	3155968	264011	49.960		M	
Total		6317032	574361	100.000			

Racemic 4c
mV

<Peak Table>

Detecto	or A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.955	3244	308	0.627		M	
2	8.230	514148	37049	99.373			
Total		517392	37357	100.000			

Enantioenriched 4c

Ethyl (3R,4S,5R)-4-(2-chlorobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4d

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 d as colorless oil ($31.7 \mathrm{mg}, 75 \%$); $[\alpha]^{25} \mathrm{D}=-70.5$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, \mathrm{J}=6.6 \mathrm{~Hz}, 2.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.6,163.2,147.2,140.3,137.8,132.2,131.9,131.4,130.7,129.1,128.8$, 127.6, 127.5, 126.9, 126.2 ($q, J=279.7 \mathrm{~Hz}$), 122.0, $61.2,58.4,53.5,49.9(q, J=29.3 H z), 14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) δ-68.01; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=445.0789$, found $=445.0784$; The ee value $\operatorname{was} 91 \%, t_{R}($ major $)=6.161 \mathrm{~min}, t_{R}($ minor $)=7.719 \mathrm{~min}$ (Chiralpak $\mathrm{IE}, \lambda=254 \mathrm{~nm}, 10 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.177	3173713	308104	49.740			
2	7.727	3206929	269473	50.260			
Total		6380642	577577	100.000			

Racemic 4d
mV

<Peak Table>
$\left.\begin{array}{|r|r|r|r|c|c|c|}\hline \text { Detector A 254nm } \\ \hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. } & \text { Unit } & \text { Mark }\end{array}\right]$ Name

Enantioenriched 4d

Ethyl (3R,4S,5R)-4-(4-bromobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4e

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 e as colorless oil ($37.4 \mathrm{mg}, 80 \%$); $[\alpha]^{25} \mathrm{~d}=-65.5\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.51(\mathrm{~m}$, $1 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.2,163.2,147.3,140.0,133.9,132.0,131.9,130.6,129.4,129.1,128.1,128.0$, 126.2 ($q, J=279.7 \mathrm{~Hz}$), 61.2, $55.5,54.2,51.4(q, J=29.2 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 67.49 ; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=489.0284$, found $=489.0286$; The ee value was $98 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=7.220 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.013 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} / \mathrm{hexane}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Racemic 4e

Ethyl ($3 R, 4 S, 5 R$)-4-(4-fluorobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate $\mathbf{4 f}$

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 f as colorless oil (92\%, 37.4 mg); $[\alpha]^{25} \mathrm{D}=-56.2\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=5.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.01-3.91 (m, 1H), $1.33(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.6,167.3,164.2(\mathrm{~d}, \mathrm{~J}=$ $248.3 \mathrm{~Hz}), 147.3,140.1,131.9(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=3 \mathrm{~Hz}), 129.1,128.0,126.3(\mathrm{q}, J=279.5 \mathrm{~Hz})$, $115.8(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 61.1,55.6,54.2,51.5(\mathrm{q} . J=29.0 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.52$, -103.63; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=429.1084$, found $=429.1088$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}$ (minor) $=7.388 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=8.416 \mathrm{~min}$ (Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% \mathrm{i}$ $\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

<Peak Table>

Detecto Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.328	6171797	567251	50.102		M	
2	8.316	6146660	511396	49.898		M	
Total		12318457	1078647	100.000			

Racemic $\mathbf{4 f}$
mV

<Peak Table>

Detector A 254 nm						
Peak\# Ret. Time Area Height Conc. Unit	Mark	Name				
1	7.388	4880	405	0.677		
2	8.416	715756	52761	99.323		S
Total		720636	53166	100.000		

Enantioenriched 4f

Ethyl (3R,4S,5R)-4-(4-cyanobenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate $4 \mathbf{g}$

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 g as colorless oil ($90 \%, 37.2 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=-62.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 4.62-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 197.0, 163.1, 147.0, 139.7, 138.3, 132.4, 129.4, 129.3, 128.3,
127.9, 126.1 ($q, J=279.7 \mathrm{~Hz}), 61.2,55.3,54.8,51.4(q, J=29.4 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -67.51; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=436.1131$, found $=436.1128$; The ee value was $95 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=11.518 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=12.479 \mathrm{~min}($ Chiralpak $\mathrm{IE}, \lambda=254 \mathrm{~nm}, 40 \% \mathrm{i}-$ $\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	12.509	25866535	1534069	49.991		M
2	13.227	25875574	1441451	50.009		M
Total		51742109	2975520	100.000		

Racemic 4g

mV

<Peak Table>

Detecto Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.518	448982	22981	2.500		M	Name
2	12.479	17511087	876673	97.500			
Total		17960069	899654	100.000			

Enantioenriched $\mathbf{4 g}$

Ethyl (3R,4S,5R)-4-(4-methylbenzoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4h

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 h as colorless oil ($91 \%, 36.6 \mathrm{mg}$); $[\alpha]^{25} \mathrm{~d}=-61.3\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 197.8, 163.4, 147.6, 144.9, 140.3, 132.7, 132.0, 129.4, 129.3, 129.0, $128.1,127.8,126.4(q, J=279.9 \mathrm{~Hz}), 61.1,55.6,53.9,51.5(q, J=28.6 \mathrm{~Hz}), 21.7,14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-67.47.; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=425.1335$, found $=$ 425.1347; The ee value was $99 \%, t_{R}($ major $)=6.655 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.377 \mathrm{~min}$ (Chiralpak $\mathrm{IE}, \lambda=254$ $\mathrm{nm}, 10 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

<Peak Table>

Detect Peak\#	$\text { or A } 254 \mathrm{~nm}$ Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.680	10091693	973339	49.981			
2	8.385	10099385	801342	50.019			
Total		20191077	1774681	100.000			

Racemic 4h

<Peak Table>

\left.| Detector A 254nm | | | | | | | |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark | |$\right]$ Name

Enantioenriched 4h

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford $\mathbf{4 i}$ as colorless oil ($91 \%, 38 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=-72.5$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.70-7.65 (m, 2H), 7.36-7.29 (m, 3H), 7.13-7.08 (m, 2H), 6.85-6.79 (m, 3H), 4.61-4.48 (m, $1 \mathrm{H}), 4.38-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ; 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.0, 164.2, 163.4, 147.6, 140.4, 132.0, 131.6, 129.0, 128.2, 128.1, 127.8, 126.4 ($q, J=279.9 \mathrm{~Hz}$), $113.8,61.1,55.7,55.5,53.7,51.6(q, J=29.1 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.49 ; \mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}=441.1284$, found $=441.1289$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=14.633 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=15.327 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \%$ i-PrOH $/$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

Racemic 4i

<Peak Table>
$\left.\begin{array}{|r|r|r|r|c|c|c|}\hline \text { DetectorA } 254 \mathrm{~nm} \\ \hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. } & \text { Unit } & \text { Mark }\end{array}\right]$ Name

Enantioenriched 4i

carboxylate 4j

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 j as colorless oil $(72 \%, 32.3 \mathrm{mg}) ;[\alpha]^{25} \mathrm{D}=-52.4\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.37-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.5,163.3,154.0,149.0,147.6,140.5,131.8,129.1,128.2,128.1,127.9$, $126.4(q, J=279.8 \mathrm{~Hz}), 124.0,111.1,110.1,61.1,56.1,55.8,55.6,53.7,51.5(q, J=29.1 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) δ-67.45; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}=471.1390$, found $=471.1403$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=15.774 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.211 \mathrm{~min}($ Chiralpak $\mathrm{IE}, \lambda=$ $254 \mathrm{~nm}, 10 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.643	8597338	331807	50.107			
2	17.815	8560515	262535	49.893		V	
Total		17157853	594342	100.000			

Racemic 4j

<Peak Table>

Detecto	A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.774	2043576	86049	99.595			
2	18.211	8315	338	0.405		M	
Total		2051891	86386	100.000			

Enantioenriched 4j

Ethyl (3R,4S,5R)-4-(2-naphthoyl)-3-phenyl-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4k

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford $\mathbf{4 k}$ as colorless oil ($95 \%, 41.6 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=29.4$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.64(\mathrm{~m}, 1 \mathrm{H})$, 4.43-4.23 (m, 3H), 4.05-3.97 (m, 1H), $1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6$,
$163.4,147.3,140.4,135.9,132.3,132.1,132.1,131.8,129.7,129.1,129.0,128.6,128.3,128.0,127.7$, 126.9, $126.4(\mathrm{q}, J=279.7 \mathrm{~Hz}), 124.4,61.1,55.7,54.6,51.2(\mathrm{q}, J=29.1 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F} \mathrm{NMR}(376 \mathrm{MHz}$, CDCl_{3}) δ-67.43; $\mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=461.1335$, found $=461.1342 ;$ The ee value was $97 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=10.466 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.643($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% \mathrm{i}$ $\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Racemic 4k

<Peak Table>

Detector A 254 nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.466	140455	7768	0.796			
2	11.643	17497104	841421	99.204			
Total		17637559	849188	100.000			

Enantioenriched 4k

Ethyl (3R,4S,5R)-3-phenyl-4-(thiophene-2-carbonyl)-5-(trifluoromethyl)cyclopent-1-ene-1carboxylate 41

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 I as colorless oil ($93 \%, 36.6 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=-80\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, \mathrm{J}=4.9 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=3.9 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=4.9 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.20(\mathrm{~m}, 2 \mathrm{H})$, $4.12-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.0$, $163.2,147.6,142.8,140.3,135.7,133.6,131.9,129.0,128.3,128.0,127.9,126.2(q, J=279.8 \mathrm{~Hz})$, 122.0, 61.1, 55.7, 55.6, $51.7(q, J=29.2 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.60$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=417.0743$, found $=417.0746$; The ee value was $98 \%, \mathrm{t}_{\mathrm{R}}$ (minor) $=10.884 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=12.141$ (Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$).

Racemic 4I

<Peak Table>

Detector A 254 nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.884	9657	477	0.869			
2	12.141	1101889	62668	99.131			
Total		1111546	63145	100.000			

Enantioenriched 41

Ethyl (3R,4S,5R)-4-benzoyl-3-(4-chlorophenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4m

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 m as colorless oil ($78 \%, 33.0 \mathrm{mg}$); $[\alpha]^{25}{ }_{\mathrm{D}}=-91.2\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02-3.96 (m, 1H), $1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,163.1,146.8,138.7$, $135.1,134.0,133.8,132.4,129.4,129.2,129.1,128.8,126.2(q, J=279.7 \mathrm{~Hz}), 61.2,54.7,53.9,51.3(q$, $J=29.4 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta-67.55$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{CIF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+$ $\mathrm{Na}]^{+}=445.0789$, found $=445.0791$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=7.497 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=8.511$ \min (Chiralpak IC, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

<Peak Table>

Detecto Peak\#	or A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	7.537	7029566	634128	49.954			
2	8.545	7042476	554725	50.046		M	
Total		14072042	1188854	100.000			

Racemic 4m

<Peak Table>

Detecto	A A 254nm Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.497	7596	617	0.446		M	
2	8.511	1696175	135247	99.554			
Total		1703771	135864	100.000			

Enantioenriched 4m

Ethyl (3R,4S,5R)-4-benzoyl-3-(3-chlorophenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate $4 \mathbf{n}$

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 n as colorless oil ($73 \%, 30.9 \mathrm{mg}$); $[\alpha]^{25} \mathrm{~d}=-61.7$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.22 (m, 2H), $7.04(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, \mathrm{J}=7.2 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.48(\mathrm{~m}$, $1 \mathrm{H}), 4.37-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}\right) \delta 197.8$, 163.1, 146.5, 142.2, 135.1, 134.9, 134.1, 132.6, 130.2, 129.1, 128.8, 128.2, 128.1, 126.2 ($q, J=279.8$
$\mathrm{Hz}), 126.2,61.2,54.8,53.8,51.3(\mathrm{q}, \mathrm{J}=29.3 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.53$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=445.0789$, found $=445.0785$; The ee value was $98 \%, \mathrm{t}_{\mathrm{R}}$ $($ minor $)=7.104 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.214 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min})$.

Racemic 4n

| |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Detector A 254 nm
 Peak\# Ret. Time Area Height Conc.
 Unit Mark Name
 1 7.104 20283 1674 1.255
 M
 2 8.214 1595629 131927 98.745

 Total 1615912 133601 100.000
 |

Enantioenriched 4n

Ethyl (3R,4S,5R)-4-benzoyl-3-(4-fluorophenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 40

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 40 as colorless oil ($81 \%, 32.9 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=-51.7\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-6.98$ $(\mathrm{m}, 4 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H})$, $1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,163.2,162.3(\mathrm{~d}, \mathrm{~J}=247.1 \mathrm{~Hz}), 147.0,136.0$ (d, J = 3.3 Hz), 135.2, 134.0, 132.2, $129.7(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 129.1,128.7,126.3(\mathrm{q}, J=279.9 \mathrm{~Hz}), 115.9(\mathrm{~d}$, $J=21.5 \mathrm{~Hz}), 61.2,54.7,54.1,51.3(\mathrm{q}, \mathrm{J}=29.2 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.56,-114.10 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NaO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}=429.1084\right.$, found $=429.1087$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=7.594 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.640 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mv

Racemic 40
mV

Detecto Peak\#	or A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	7.594	3535	246	0.570		M	
2	8.640	616308	44502	99.430			
Total		619843	44747	100.000			

Enantioenriched 40

Ethyl (3R,4S,5R)-4-benzoyl-3-(2-fluorophenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate $\mathbf{4 p}$

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 p as colorless oil ($70 \%, 28.4 \mathrm{mg}$); $[\alpha]^{25} \mathrm{~d}=-57.8$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{td}, \mathrm{J}=8.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}$, 1H), 7.00 (tdd, $J=8.4 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (ddd, J=5.2 Hz, 4.4 Hz, 2.3 $\mathrm{Hz}, 2 \mathrm{H}), 4.60-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.9,163.1,163.0(\mathrm{~d}, \mathrm{~J}=247.5 \mathrm{~Hz}), 146.6,142.7(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 135.1,134.0$, $132.5,130.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.1,128.8,126.2(\mathrm{q}, J=279.7 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=$ $22.0 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 61.2,54.9,53.8,51.4(\mathrm{q}, J=29.3 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-67.53, -111.79; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=429.1084$, found $=429.1083$; The ee value was $99 \%, t_{R}($ minor $)=10.006 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.153 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 2 \%$ $i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Racemic 4p

Ethyl (3R,4S,5R)-4-benzoyl-3-(4-bromophenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4q

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 q as colorless oil ($71 \%, 33.2 \mathrm{mg}$); $[\alpha]^{25} \mathrm{~d}=-99.1$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H})$, $1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.9,163.1,146.7,139.2,135.1,132.5,132.1$, 129.7, 129.1, 128.8, $126.2(q, J=279.8 \mathrm{~Hz}), 121.9,61.2,54.7,53.8,51.3(q, J=29.1 \mathrm{~Hz}), 14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) δ-67.55; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=489.0284$, found $=489.0293$; The ee value was $98 \%, t_{R}($ minor $)=7.304 \mathrm{~min}, t_{R}($ major $)=8.510 \mathrm{~min}$ (Chiralpak $I C, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

mV
<Peak Table>

Detect Peak\#	or A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	7.487	4406739	390724	49.802			
2	8.455	4441848	350047	50.198		M	
Total		8848587	740771	100.000			

Racemic 4q

<Peak Table>
$\left.\begin{array}{|r|r|r|r|c|c|c|}\hline \text { DetectorA 254nm } \\ \hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. } & \text { Unit } & \text { Mark }\end{array}\right]$ Name

Enantioenriched 4q

Ethyl (3R,4S,5R)-4-benzoyl-3-(4-ethylphenyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4r

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 r as a white solid ($89 \%, 37.0 \mathrm{mg}$); $[\alpha]^{25} \mathrm{D}=-74.2\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.20(\mathrm{~m}, 3 \mathrm{H})$, $3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}) $\delta 198.3,163.4,147.7,144.0,137.4,135.3,133.8,131.7,129.2,128.6,128.4,128.0$, $126.3(\mathrm{q}, J=279.8 \mathrm{~Hz}), 61.1,55.2,54.2,51.3(\mathrm{q}, J=28.9 \mathrm{~Hz}), 28.5,15.6,14.1 ;{ }^{19} \mathrm{~F} N M R(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-67.46 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=439.1492$, found $=439.1502 ;$ The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}($ minor $)=7.153 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=8.081 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% \mathrm{i}$ $\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

<Peak Table>

Detecto Peak\#	$\begin{aligned} & \text { or A } 254 \mathrm{~nm} \\ & \hline \text { Ret. Time } \\ & \hline \end{aligned}$	Area	Height	Conc.	Unit	Mark	Name
1	6.963	1967492	188649	50.166			
2	7.826	1954505	167863	49.834		M	
Total		3921997	356512	100.000			

Racemic 4r

<Peak Table>

| Detector A 254nm |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Peak\# Ret. Time Area Height Conc.
 Unit Mark Name
 1 7.153 16156 1631 0.361
 8.081 4453186 325680 99.639
 M
 Total 4469343 327311 100.000
 |

Enantioenriched 4r

Ethyl (3R,4S,5R)-4-benzoyl-3-(p-tolyl)-5-(trifluoromethyl)cyclopent-1-ene-1-carboxylate 4s

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4s as a white solid ($88 \%, 35.4 \mathrm{mg}$); $[\alpha]^{25}{ }_{\mathrm{D}}=-66.6\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.19(\mathrm{~m}, 3 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H})$, $1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,163.3,147.7,137.6,137.2,135.3,133.8$, 131.7, 129.6, 129.2, 128.6, 128.0, 126.3 ($q, J=279.8 \mathrm{~Hz}$), 61.1, $55.2,54.1,51.3$ ($q, J=29.0 \mathrm{~Hz}$), 21.1, 14.1; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) δ-67.48; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}=$ 425.1335 , found $=425.1344$; The ee value was $99 \%, t_{R}($ minor $)=7.807 \mathrm{~min}, t_{R}($ major $)=8.686 \mathrm{~min}$ (Chiralpak IC, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

<Peak Table>

Racemic 4s

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.807	24950	2455	0.461			
2	8.686	5383923	395209	99.539			
Total		5408873	397663	100.000			

Enantioenriched 4s

Prepared according to Representative Procedure B-3. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 4 t as colorless oil ($82 \%, 34.3 \mathrm{mg}$); $[\alpha]^{25}{ }_{\mathrm{D}}=-113.5$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.2,163.4$, $159.2,147.7,135.3,133.8,132.2,131.6,129.2,128.7,126.4(q, J=279.7 \mathrm{~Hz}), 114.3,61.1,55.3,54.9$, 54.3, $51.1\left(\mathrm{q}, \mathrm{J}=29.0 \mathrm{~Hz}\right.$), 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.52$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}=441.1284$, found $=441.1296$; The ee value was $99 \%, \mathrm{t}_{\mathrm{R}}$ (minor) $=10.413$ $\min , \mathrm{t}_{\mathrm{R}}($ major $)=11.465 \mathrm{~min}($ Chiralpak $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Racemic 4t

<Peak Table>

Detecto	or A 254nm						
		Area	Height		Unit	Mark	Name
1	10.413	9477	592	0.557		M	
2	11.465	1693094	93130	99.443			
Total		1702572	93721	100.000			

Enantioenriched 4t

Ethyl 4-benzoyl-3,5-diphenylcyclopent-1-ene-1-carboxylate 6

Prepared according to Representative Procedure B-4. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 6 as colourless oil ($88 \%, 34.8 \mathrm{mg}$); $[\alpha]_{D}^{25}=+5.2$ (c $0.5, \mathrm{CHCl}_{3}$); The ${ }^{1} \mathrm{H}$ NMR was in agreement with literature reported values. ${ }^{5}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.31-6.96(\mathrm{~m}, 12 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dt}, \mathrm{J}=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12-3.97(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; The ee value was $92 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=14.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=11.4 \mathrm{~min}$ (Chiralcel IF, $\lambda=254 \mathrm{~nm}, 20 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.804	1440411	91815	50.300	55.501
2	14.772	1423213	73614	49.700	44.499
Totail		2863623	165429	100.000	100.000

Racemic 6

Enantioenriched 6

2-Ethyl 1-isopropyl 5-(4-methylbenzoyl)-4-phenylcyclopent-2-ene-1,2-dicarboxylate 8

Prepared according to Representative Procedure B-5. Flash column chromatography (eluent: 10\%-20\% EtoAc/Hexane) to afford 8 as colorless oil ($88 \%, 37.0 \mathrm{mg}$); $[\alpha]_{D}^{25}=+9.2\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99 (sep, J= 6.5, 6.0 Hz, 1H), 4.39-4.37 (m, 1H), 4.24-4.19 (m, 4H), 2.37 (s, 3H), 1.28 (t, J=7.0 Hz, 3H), $1.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,172.8,163.7,145.6$, 144.5, 141.4, 134.3, 133.3, 129.3, 129.1, 128.8, 128.0, 127.4, 68.7, 60.7, 58.1, 54.8, 53.4, 29.7, 21.6, 21.6, 21.5, 14.1; $\mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}=443.1835$, found $=443.1829$; The ee value was $93 \%, t_{R}$ (major) $=29.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=22.9 \mathrm{~min}$ (Chiralcel $I C, \lambda=254 \mathrm{~nm}, 10 \% \mathrm{i}$ PrOH/hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Detector A. Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	23.019	1647484	33833	49.830	55.781
2	29.402	1658725	26820	50.170	44.219
Total		3306208	60653	100.000	100.000

Racemic 8

Detector AChl 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	22.957	92374	2140	3.378	4.671
2	29.320	2642121	43673	96.622	95.329
Total		2734495	45812	100.000	100.000

Enantioenriched 8

E. X-Ray Crystallographic Analysis and Determination of the Absolute Configurations of the

Products

X-Ray Crystallographic Analysis of 4s

Figure $\mathbf{S 1 .} \mathrm{X}$ ray structure of $\mathbf{4 s}$

Table 1. Crystal data and structure refinement for I677.
Identification code I677
Empirical formula
C23 H21 F3 O3
Formula weight
402.40

Temperature
100(2) K
Wavelength
1.54178 A

Crystal system	Orthorhombic
Space group	P2, 2121
Unit cell dimensions	$a=9.5725(10) \AA$ A $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=14.2327(14) \AA$ A $\quad \beta=90^{\circ}$.
Volume	1972.4(3) \AA^{3}
Z	4
Density (calculated)	$1.355 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.910 \mathrm{~mm}^{-1}$
F(000)	840
Crystal size	$0.351 \times 0.345 \times 0.172 \mathrm{~mm}^{3}$
Theta range for data collection	4.356 to 80.049°.
Index ranges	$-12<=\mathrm{h}<=10,-18<=\mathrm{k}<=18,-18<=\mathrm{l}<=17$
Reflections collected	30482
Independent reflections	$4253[\mathrm{R}(\mathrm{int})=0.0341]$
Completeness to theta $=67.679^{\circ}$	100.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7543 and 0.6697
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4253 / 0 / 264
Goodness-of-fit on F^{2}	1.090
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0331, \mathrm{wR} 2=0.0936$
R indices (all data)	$\mathrm{R} 1=0.0346, \mathrm{wR} 2=0.0997$
Absolute structure parameter	0.094(19)
Extinction coefficient	n/a
Largest diff. peak and hole	0.560 and -0.477 e.\AA^{-3}

F. References

[1] a) Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726; b) Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Angew. Chem. Int. Ed. 2012, 51, 767; c) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Chem. Sci. 2012, 3, 1231; d) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem. Int. Ed. 2011, 50, 7837; e) Zhong, F.; Luo, J.; Chen, G.-Y.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2012, 134, 10222; f) Zhong, F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew. Chem. Int. Ed. 2013, 52, 943; g) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137, 54.
[2] a) Yamazaki, T.; Kawasaki-Takasuka, T.; Furuta, A.; Sakamoto, S. Tetrahedron, 2009, 65, 5945. b) Zhou, W.; Wang, H.; Tao, M.; Zhu, C.-Z.; Lin, T.-Y.; Zhang, J. Chem. Sci. 2017, 8, 4660.
[3] Xu, C.; Bai, X.; Xu, J.; Ren, J.; Xing, Y.; Li, Z.; Wang, J.; Shi, J.; Yu, L.; Wang, Y. RSC Adv. 2017, 7, 4763.
[4] a) Suárez,A.; Fu, G. C. Angew. Chem. Int. Ed. 2004, 43, 3580. b) Liao, L.; Zhang. H.; Zhao. X. ACS Catal. 2018, 8, 6745.
[5] Sampath, M.; Loh, T.-P. Chem. Sci., 2010, 1, 739.

G. NMR Analysis of the Isomerization Process of 3-Butynoate 1a

H. NMR Spectra of the Substrates and Products

\&
$\stackrel{3}{8}$
1

\#
3
i

\circ
$\ddot{8}$
$\stackrel{1}{\mid}$

$\stackrel{m}{\dot{\infty}} \quad \stackrel{\square}{n}$

$\mathrm{CO}_{2} \mathrm{Et}$

10	0	10	-20	-30	0	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f}_{1}(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

$\mathrm{CO}_{2} \mathrm{Et}$

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

1		1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	,	,	1	1	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
				Mrinjinis				 											$\stackrel{\stackrel{\rightharpoonup}{m}}{\sim}$			

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

\qquad

1			1	1	1	1	1	1	1	1	1	+	1		1	1		1	1	1	1	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

[^0]
\qquad

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
	$\overrightarrow{\mathrm{m}}$	~	¢ ${ }^{\text {a }}$	\pm	18	 							$\stackrel{0}{0}$					$\stackrel{\stackrel{\rightharpoonup}{m}}{\sim}$				

[^1]

風角品

\qquad
 NNo尺

1		1							1					1	1			1				1
210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10

1	1	T	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	T	1	1	,
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

						,	1	1	1	1	1	1	,		1	1	1		,	1	1	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

								1					,	,								1
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{aligned} & -100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
																			$\stackrel{m}{m}$			

1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20

[^0]: 210
 $\begin{array}{llll}160 & 150 & 140\end{array}$
 $\begin{array}{lll}120 & 110 & \underset{\mathrm{f} 1}{ }(\mathrm{ppm}) \\ & \end{array}$

[^1]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}$

