Supporting Information

Synthesis, characterization, DNA binding, anticancer and molecular docking studies of novel imidazolium-based ionic liquids with fluorinated phenylacetamide tethers

Nadjet Rezki^{†,‡,*} Fawzia Faleh Al-blewi, [†] Salsabeel A. Al-Sodies, [†] Asaad Khalid Alnuzha, [†] Mouslim Messali, [†] Imran Ali, ^{†,§} Mohamed Reda Aouad ^{†,‡,*}

[†]Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia

[‡]Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie and Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M^cnouar, Oran 31000, Algeria and [§]Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India

Contents

Characterization of imidazolium IL halides 4a-f	S3
Characterization of imidazolium ILs tethering fluorinated counter anion 5a-r	S3-S5
¹ H, ¹³ C, ¹⁹ F-NMR and MS Spectra of Compounds 4a-f	S6-S17
¹ H, ¹³ C, ¹⁹ F, ¹¹ B, ³¹ P-NMR and MS Spectra of Compounds 5a-r	S18-S59
DNA binding study of compound 4a-f and 5a-r	S60-S67
Docking model of compound 4b-f	S68-S59

Characterization of imidazolium IL halides 4a-f

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium iodide (4a). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 5.22 (s, 2H, NCH₂), 7.20 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.59-7.62 (m, 2H, Ar-H), 7.76 (d, *J* = 8.0 Hz, 2H, Ar-H), 9.12 (s, 1H, Ar-H), 10.59 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -118.56 to -118.48 (m, 1F, Ar-F). MS (ES) *m/z* = 361.0211 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1,2-dimethyl-1H-imidazol-3-ium iodide (**4b**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, C**H**₃), 2.59 (s, 3H, NC**H**₃), 5.20 (s, 2H, NC**H**₂), 7.19 (t, *J* = 8.0 Hz, 2H, Ar-**H**), 7.61-7.64 (m, 2H, Ar-**H**), 7.70 (d, *J* = 12.0 Hz, 2H, Ar-**H**), 10.77 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.71$ (CH₃); 35.40 (NCH₃); 50.54 (NCH₂); 116.33, 121.34, 123.00, 135.29, 146.36, 157.43, 159.95 (Ar-C); 163.75 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -118.55$ to -118.48 (m, 1F, Ar-F). MS (ES) *m*/*z* = 375.0170 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium chloride (4c). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, NCH₃), 4.64 (s, 2H, NCH₂), 7.18-7.32 (m, 4H, Ar-H), 7.85-7.93 (m, 2H, Ar-H), 9.32 (s, 1H, Ar-H), 10.60 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 36.34$ (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -124.75$ to -124.69 (m, 1F, Ar-F). MS (ES) *m/z* = 269.0834 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1,2-dimethyl-1H-imidazol-3-ium chloride (4d). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, CH₃), 2.58 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.20-7.32 (m, 4H, Ar-H), 7.70 (d, J = 12.0 Hz, 1H, Ar-H), 7.90 (s, 1H, Ar-H), 10.39 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.95$ (CH₃); 35.40 (NCH₃); 50.68 (NCH₂), 116.07, 116.26, 122.59, 122.82, 124.26, 125.01, 125.04, 125.69, 125.80, 126.35, 126.42, 146.32, 152.72, 155.16 (Ar-C); 164.59 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -124.75$ to -124.69 (m, 1F, Ar-F). MS (ES) *m/z* = 283.0790 [M⁺].

1-Methyl-3-(2-*oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium iodide (4e).* ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, NCH₃), 5.29 (s, 2H, NCH₂), 7.69-7.74 (m, 3H, Ar-H), 7.97-8.04 (m, 1H, Ar-H), 9.11 (s, 1H, Ar-H), 10.61 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 36.40$ (NCH₃); 51.56 (NCH₂); 106.43, 106.68, 106.90, 111.82, 112.06, 122.65, 123.58, 124.40, 138.34, 144.57, 147.00 (Ar-C); 164.99 (C=O).¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -141.54$ to -141.38, -139.10 to -138.98, -125.91 to -125.82 (3m, 3F, Ar-F). MS (ES) *m*/*z* = 396.9802 [M⁺].

1,2-Dimethyl-3-(2-oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium iodide (4f) ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.66-7.75 (m, 3H, Ar-H), 7.97-8.05 (m, 1H, Ar-H), 10.62 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.94$ (CH₃); 35.41 (NCH₃); 50.63 (NCH₂); 106.38, 106.61, 106.86, 111.98, 112.24, 122.60, 122.81, 146.38 (Ar-C); 164.99 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -141.63$ to -141.46, -139.01 to -138.90, -125.77 to -125.66 (3m, 3F, Ar-F). MS (ES) *m/z* = 411.0126 [M⁺].

Characterization of imidazolium ILs tethering fluorinated counter anion 5a-r

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium hexafluorophosphate (**5a**) ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 5.22 (s, 2H, NCH₂), 7.20 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.59-7.62 (m, 2H, Ar-H), 7.76 (d, *J* = 8.0 Hz, 2H, Ar-H), 9.12 (s, 1H, Ar-H), 10.59 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ³¹P NMR (162 MHz, DMSO-*d*₆) $\delta_{\rm P}$ = -157.40 to -131.05 (sept, 1P, **P**F₆). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -69.16 (d, 6F, **PF**₆); -118.42 to -118.35 (m, 1F, Ar-**F**). MS (ES) *m/z* = 379.0554 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium tetrafluoroborate (**5b**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 5.22 (s, 2H, NCH₂), 7.20 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.59-7.62 (m, 2H, Ar-H), 7.76 (d, *J* = 8.0 Hz, 2H, Ar-H), 9.12 (s, 1H, Ar-H), 10.59 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹¹B NMR (128 MHz, DMSO-*d*₆): $\delta_{\rm B}$ = -1.32 to -1.31 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -118.43 to - 118.35 (m, 1F, Ar-F); -148.19, -148.14 (2d, 4F, BF₄). MS (ES) *m*/*z* = 321.1298 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate (**5**c). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 5.22 (s, 2H, NCH₂), 7.20 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.59-7.62 (m, 2H, Ar-H), 7.76 (d, *J* = 8.0 Hz, 2H, Ar-H), 9.12 (s, 1H, Ar-H), 10.59 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -73.67 (s, 3F, CF₃); -118.43 to -118.35 (m, 1F, Ar-F). MS (ES) *m*/*z* = 347.0728 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1,2-dimethyl-1H-imidazol-3-ium hexafluorophosphate (**5d**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, C**H**₃), 2.59 (s, 3H, NC**H**₃), 5.20 (s, 2H, NC**H**₂), 7.19 (t, *J* = 8.0 Hz, 2H, Ar-**H**), 7.61-7.64 (m, 2H, Ar-**H**), 7.70 (d, *J* = 12.0 Hz, 2H, Ar-**H**), 10.77 (s, 1H, N**H**CO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.71$ (CH₃); 35.40 (NCH₃); 50.54 (NCH₂); 116.33, 121.34, 123.00, 135.29, 146.36, 157.43, 159.95 (Ar-C); 163.75 (C=O). ³¹P NMR (162 MHz, DMSO-*d*₆) $\delta_{\rm P} = -157.40$ to -131.05 (sept, 1P, **P**F₆). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -69.18$ (d, 6F, **PF**₆); -118.40 to -118.33 (m, 1F, Ar-**F**). MS (ES) *m/z* = 393.0878 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1,2-dimethyl-1H-imidazol-3-ium tetrafluoroborate (5e). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.16 (s, 2H, NCH₂), 7.19 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.58-7.66 (m, 4H, Ar-H), 10.58 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 9.71 (CH₃); 35.40 (NCH₃); 50.54 (NCH₂); 116.33, 121.34, 123.00, 135.29, 146.36, 157.43, 159.95 (Ar-C); 163.75 (C=O). ¹¹B NMR (128 MHz, DMSO-*d*₆): $\delta_{\rm B}$ = -1.32 to -1.31 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -118.40 to -118.33 (m, 1F, Ar-F); -148.19, -148.14 (2d, 4F, BF₄). MS (ES) *m*/*z* = 335.1487 [M⁺].

3-(2-((4-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate (5f) ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.16 (s, 2H, NCH₂), 7.19 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.58-7.66 (m, 4H, Ar-H), 10.58 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 9.71 (CH₃); 35.40 (NCH₃); 50.54 (NCH₂); 116.33, 121.34, 123.00, 135.29, 146.36, 157.43, 159.95 (Ar-C); 163.75 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -73.56 (s, 3F, CF₃); -118.38 to -118.31 (m, 1F, Ar-F). MS (ES) *m/z* = 361.1456 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium hexafluorophosphate (**5g**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 4.64 (s, 2H, NCH₂), 3.83 (s, 1H, Ar-H), 7.18-7.32 (m, 4H, Ar-H), 7.85-7.93 (m, 2H, Ar-H), 9.32 (s, 1H, Ar-H), 10.60 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ³¹P NMR (162 MHz, DMSO-*d*₆) $\delta_{\rm F}$ = -157.39 to -131.04 (sept, 1P, PF₆). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -69.18 (d, 6F, PF₆); -124.74 to -124.68 (m, 1F, Ar-F). MS (ES) *m/z* = 379.0634 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium tetrafluoroborate (**5h**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 4.64 (s, 2H, NCH₂), 7.18-7.32 (m, 4H, Ar-H), 7.85-7.93 (m, 2H, Ar-H), 9.32 (s, 1H, Ar-H), 10.60 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹¹B NMR (128 MHz, DMSO-*d*₆): $\delta_{\rm B}$ = -1.30 to -1.29 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -124.69 to -124.63 (m, 1F, Ar-F); -148.23, -148.18 (2d, 4F, BF₄). MS (ES) *m*/*z* = 321.1301 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate (**5i**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, NCH₃), 4.64 (s, 2H, NCH₂), 7.18-7.32 (m, 4H, Ar-H), 7.85-7.93 (m, 2H, Ar-H), 9.32 (s, 1H, Ar-H), 10.60 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 36.34 (NCH₃); 51.54 (NCH₂); 115.99, 121.36, 123.26, 124.55, 135.64, 138.14, 157.73, 159.95 (Ar-C); 164.38 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -73.52 (s, 3F, CF₃); -124.69 to -124.63 (m, 1F, Ar-F). MS (ES) *m/z* = 347.0874 [M⁺].

3-(2-((2-*Fluorophenyl*)*amino*)-2-*oxoethyl*)-1,2-*dimethyl*-1*H*-*imidazol*-3-*ium hexafluorophosphate* (*5j*). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, CH₃), 2.58 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.20-7.32 (m, 3H, Ar-H), 7.70 (d, *J* = 12.0 Hz, 1H, Ar-H), 7.90 (s, 1H, Ar-H), 10.39 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.95$ (CH₃); 35.40 (NCH₃); 50.68 (NCH₂), 116.07, 116.26, 122.59, 122.82, 124.26, 125.01, 125.04, 125.69, 125.80, 126.35, 126.42, 146.32, 152.72, 155.16 (Ar-C); 164.59 (C=O). ³¹P NMR (162 MHz, DMSO-*d*₆) $\delta_{\rm P} = -157.43$ to -131.07 (sept, 1P, **P**F₆). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -69.16$ (d, 6F, PF₆); -124.32 to -124.25 (m, 1F, Ar-F). MS (ES) *m*/*z* = 393.0823 [M⁺].

3-(2-((2-*Fluorophenyl*)*amino*)-2-*oxoethyl*)-1,2-*dimethyl*-1*H*-*imidazol*-3-*ium* tetrafluoroborate (**5***k*). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, C**H**₃), 2.58 (s, 3H, NC**H**₃), 5.25 (s, 2H, NC**H**₂), 7.20-7.32 (m, 3H, Ar-**H**), 7.70 (d, *J* = 12.0 Hz, 1H, Ar-**H**), 7.90 (s, 1H, Ar-**H**), 10.39 (s, 1H, N**H**CO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 9.95$ (CH₃); 35.40 (NCH₃); 50.68 (NCH₂), 116.07, 116.26, 122.59, 122.82, 124.26, 125.01, 125.04, 125.69, 125.80, 126.35, 126.42, 146.32, 152.72, 155.16 (Ar-C); 164.59 (C=O). ¹¹B NMR (128 MHz, DMSO-*d*₆): $\delta_{\rm B} = -1.30$ to -1.29 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -124.33$ to -124.20 (m, 1F, Ar-**F**); -148.19, -148.14 (2d, 4F, BF₄). MS (ES) *m*/*z* = 335.1071 [M⁺].

3-(2-((2-Fluorophenyl)amino)-2-oxoethyl)-1,2-dimethyl-1H-imidazol-3-ium trifluoroacetate (51). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.58 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.20-7.32 (m, 3H, Ar-H), 7.70 (d, *J* = 12.0 Hz, 1H, Ar-H), 7.90 (s, 1H, Ar-H), 10.39 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 9.95 (CH₃); 35.40 (NCH₃); 50.68 (NCH₂), 116.07, 116.26, 122.59, 122.82, 124.26, 125.01, 125.04, 125.69, 125.80, 126.35, 126.42, 146.32, 152.72, 155.16 (Ar-C); 164.59 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -73.52 (s, 3F, CF₃); -124.32 to -124.26 (m, 1F, Ar-F). MS (ES) *m/z* = 361.0920 [M⁺].

1-Methyl-3-(2-*oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium hexafluoro-phosphate* (**5***m*). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, NCH₃), 5.29 (s, 2H, NCH₂), 7.69-7.74 (m, 3H, Ar-H), 7.97-8.04 (m, 1H, Ar-H), 9.11 (s, 1H, Ar-H), 10.61 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 36.40$ (NCH₃); 51.56 (NCH₂); 106.43, 106.68, 106.90, 111.82, 112.06, 122.65, 123.58, 124.40, 138.34, 144.57, 147.00 (Ar-C); 164.99 (C=O). ³¹P NMR (162 MHz, DMSO-*d*₆) $\delta_{\rm P} = -157.40$ to -131.05 (sept, 1P, **P**_{F₆}). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -69.18$ (d, 6F, **PF**₆); -141.50 to -141.41, -139.01 to -138.89, -125.88 to -125.79 (3m, 3F, Ar-F). MS (ES) *m*/*z* = 415.0500 [M⁺].

1-Methyl-3-(2-*oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium tetrafluoroborate* (**5***n*). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, NCH₃), 5.29 (s, 2H, NCH₂), 7.69-7.74 (m, 3H, Ar-H), 7.97-8.04 (m, 1H, Ar-H), 9.11 (s, 1H, Ar-H), 10.61 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 36.40$ (NCH₃); 51.56 (NCH₂); 106.43, 106.68, 106.90, 111.82, 112.06, 122.65, 123.58, 124.40, 138.34, 144.57, 147.00 (Ar-C); 164.99 (C=O). ¹¹B NMR (128 MHz, DMSO-*d*₆): $\delta_{\rm B} = -1.31$ to -130 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -141.54$ to -141.38, -139.00 to -138.88, -125.86 to -125.77 (3m, 3F, Ar-F); -148.21, -148.15 (2d, 4F, BF₄). MS (ES) *m*/*z* = 357.0729 [M⁺].

1-Methyl-3-(2-*oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium trifluoroacetate* (**50**). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H} = 2.51$ (s, 3H, NCH₃), 5.29 (s, 2H, NCH₂), 7.69-7.74 (m, 3H, Ar-H), 7.97-8.04 (m, 1H, Ar-H), 9.11 (s, 1H, Ar-H), 10.61 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C} = 36.40$ (NCH₃); 51.56 (NCH₂); 106.43, 106.68, 106.90, 111.82, 112.06, 122.65, 123.58, 124.40, 138.34, 144.57, 147.00 (Ar-C); 164.99 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F} = -73.57$ (s, 3F, CF₃); -141.54 to -141.38, -139.01 to -138.89, -125.85 to -125.76 (3m, 3F, Ar-F). MS (ES) *m/z* = 383.0520 [M⁺].

1,2-Dimethyl-3-(2-oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium hexafluorophosphate (**5p**). ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.66-7.75 (m, 3H, Ar-H), 7.97-8.05 (m, 1H, Ar-H), 10.62 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-d₆): $\delta_{\rm C}$ = 9.94 (CH₃); 35.41 (NCH₃); 50.63 (NCH₂); 106.38, 106.61, 106.86, 111.98, 112.24, 122.60, 122.81, 146.38 (Ar-C); 164.99 (C=O). ³¹P NMR (162 MHz, DMSO-d₆) $\delta_{\rm P}$ = -157.40 to -131.05 (sept, 1P, **P**F₆). ¹⁹F NMR (377 MHz, DMSO-d₆): $\delta_{\rm F}$ = -69.18 (d, 6F, PF₆); -141.60 to -141.50, -138.93 to -138.81, -125.75 to -125.66 (3m, 3F, Ar-F). MS (ES) *m/z* = 429.0535 [M⁺].

1,2-Dimethyl-3-(2-oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium tetrafluoroborate (5q). ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.66-7.75 (m, 3H, Ar-H), 7.97-8.05 (m, 1H, Ar-H), 10.62 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-d₆): $\delta_{\rm C}$ = 9.94 (CH₃); 35.41 (NCH₃); 50.63 (NCH₂); 106.38, 106.61, 106.86, 111.98, 112.24, 122.60, 122.81, 146.38 (Ar-C); 164.99 (C=O). ¹¹B NMR (128 MHz, DMSO-d₆): $\delta_{\rm B}$ = -1.32 to -1.31 (m, 1B, **B**F₄). ¹⁹F NMR (377 MHz, DMSO-d₆): $\delta_{\rm F}$ = -141.60 to -141.47, -138.92 to -138.80, -125.73 to -125.64 (3m, 3F, Ar-F); -148.23, -148.17 (2d, 4F, BF₄). MS (ES) *m/z* = 429.0546 [M⁺].

1,2-Dimethyl-3-(2-oxo-2-((2,4,5-trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium trifluoroacetate (*5r*). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ = 2.51 (s, 3H, CH₃), 2.57 (s, 3H, NCH₃), 5.25 (s, 2H, NCH₂), 7.66-7.75 (m, 3H, Ar-H), 7.97-8.05 (m, 1H, Ar-H), 10.62 (s, 1H, NHCO). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm C}$ = 9.94 (CH₃); 35.41 (NCH₃); 50.63 (NCH₂); 106.38, 106.61, 106.86, 111.98, 112.24, 122.60, 122.81, 146.38 (Ar-C); 164.99 (C=O). ¹⁹F NMR (377 MHz, DMSO-*d*₆): $\delta_{\rm F}$ = -73.57 (s, 3F, CF₃), -141.60 to -141.51, -138.93 to -138.82, -125.69 to -125.61 (3m, 3F, Ar-F). MS (ES) *m/z* = 397.0845 [M⁺].

¹H, ¹³C, ¹⁹F-NMR and MS Spectra of Compounds 4a-f

Figure S1: ¹H NMR of compound 4a

Figure S2: ¹³C NMR of compound 4a

Figure S3: ¹⁹F NMR of compound 4a

Figure S4: HRMS (ESI) of compound 4a

Figure S5: ¹H NMR of compound 4b

Figure S6: ¹³C NMR of compound 4b

Figure S7: ¹⁹F NMR of compound 4b

Figure S8: HRMS (ESI) of compound 4b

Figure S10: ¹³C NMR compound 4c

Figure S11: ¹⁹F NMR compound 4c

Figure S12: HRMS (ESI) of compound 4c

Figure S13: ¹H NMR compound 4d

Figure S14: ¹³C NMR compound 4d

Figure S15: ¹⁹F NMR compound 4d

Figure S16: HRMS (ESI) of compound 4d

Figure S17: ¹H NMR of compound 4e

Figure S18: ¹³C NMR of compound 4e

Figure S19: ¹⁹F NMR of compound 4e

Figure S20: HRMS (ESI) of compound 4e

Figure S21: ¹H NMR of compound 4f

Figure S22: ¹³C NMR of compound 4f

Figure S23: ¹⁹F NMR of compound 4f

Figure S24: HRMS (ESI) of compound 4f

¹H, ¹³C, ¹⁹F, ¹¹B, ³¹P-NMR and MS Spectra of Compounds 5a-r

Figure S25: ¹H NMR of compound 5a

Figure S27: ³¹P NMR of compound 5a

Figure S28:¹⁹F NMR of compound 5a

Figure S29: HRMS (ESI) of compound 5a

Figure S30: ¹H NMR of compound 5b

Figure S31: ¹³C NMR of compound 5b

Figure S32: ¹¹B NMR of compound 5b.

Figure S33: ¹⁹F NMR of compound 5b

Figure S34: HRMS (ESI) of compound 5b

Figure S35: ¹H NMR of compound 5c

Figure S36: ¹³C NMR of compound 5c

Figure S37: ¹⁹F NMR of compound **5**c

Figure S39: ¹H NMR of compound 5d

Figure S41: ³¹P NMR of compound 5d

Figure S42: ¹⁹F NMR of compound 5d

Figure S43: HRMS (ESI) of compound 5d

Figure S44: ¹H NMR of compound 5e

Figure S45: ¹³C NMR of compound 5e

Figure S46: ¹¹B NMR of compound 5e

Figure S47: ¹⁹F NMR of compound 5e

Figure S48: HRMS (ESI) of compound 5e

Figure S49: ¹H NMR of compound 5f

Figure S50: ¹³C NMR of compound 5f

Figure S51: ¹⁹F NMR of compound 5f

Figure S52: HRMS (ESI) of compound 5f

Figure S53: ¹H NMR compound 5g

Figure S54: ¹³C NMR compound 5g

Figure S55: ³¹P NMR compound 5g

Figure S56:¹⁹F NMR of compound 5g

Figure S57: HRMS (ESI) of compound 5g

Figure S58: ¹H NMR compound 5h

Figure S59: ¹³C NMR compound 5h

Figure S60: ¹¹B NMR compound 5h

Figure S61: ¹⁹F NMR of compound 5h

Figure S62: HRMS (ESI) of compound 5h

Figure S64:¹³C NMR compound 5i

Figure S65: ¹⁹F NMR of compound 5i

Figure S66: HRMS (ESI) of compound 5i

Figure S67: ¹H NMR compound 5j

Figure S68: ¹³C NMR compound 5j

Figure S69: ³¹P NMR compound 5j

Figure S70: ¹⁹F NMR of compound 5j

Figure S72: ¹H NMR compound 5k

Figure S73: ¹³C NMR compound 5k

Figure S74: ¹¹B NMR compound 5k

Figure S75: ¹⁹F NMR of compound 5k

Figure S76: HRMS (ESI) of compound 5k

Figure S77: ¹H NMR compound 5l

Figure S78: ¹³C NMR compound 5l

Figure S79: ¹⁹F NMR of compound 5l

Figure S80: HRMS (ESI) of compound 51

Figure S81: ¹H NMR of compound 5m

Figure S82: ¹³C NMR of compound 5m

Figure S83:³¹P NMR of compound 5m

Figure S85: HRMS (ESI) of compound 5m

Figure S86: ¹H NMR of compound 5n

Figure S87: ¹³C NMR of compound 5n

Figure S88: ¹¹BNMR of compound 5n

Figure S89: ¹⁹F NMR of compound 5n

Figure S90: HRMS (ESI) of compound 5n

Figure S91: ¹H NMR of compound 50

Figure S92: ¹³C NMR of compound 50

Figure S93: ¹⁹F NMR of compound 50

Figure S94: HRMS (ESI) of compound 50

Figure S95: ¹H NMR of compound 5p

Figure S96: ¹³C NMR of compound 5p

Figure S97: ³¹P NMR of compound 5p

Figure S98: ¹⁹F NMR of compound 5p

Figure S99: HRMS (ESI) of compound 5p

Figure S100: ¹H NMR of compound 5q

Figure S101: ¹³C NMR of compound 5q

Figure S102: ¹¹B NMR of compound 5q

Figure S103: ¹⁹F NMR of compound 5q

Figure S104: HRMS (ESI) of compound 5q

Figure S105: ¹H NMR of compound 5r

Figure S106: ¹³C NMR of compound 5r

Figure S107: ¹⁹F NMR of compound 5r

Figure S108: HRMS (ESI) of compound 5r

Figure S109: DNA binding study of compound 4b

Figure S110: DNA binding study of compound 4c

Figure S111: DNA binding study of compound 4d

Figure S112: DNA binding study of compound 4e

Figure S113: DNA binding study of compound 4f

Figure S114: DNA binding study of compound 5a

Figure S115: DNA binding study of compound 5b

Figure S116: DNA binding study of compound 5c

Figure S117: DNA binding study of compound 5d

Figure S118: DNA binding study of compound 5e

Figure S119: DNA binding study of compound 5f

Figure S120: DNA binding study of compound 5g

Figure S121: DNA binding study of compound 5h

Figure S122: DNA binding study of compound 5i

Figure S123: DNA binding study of compound 5j

Figure S124: DNA binding study of compound 5k

Figure S125: DNA binding study of compound 51

Figure S126: DNA binding study of compound 5m

Figure S127: DNA binding study of compound 5n

Figure S128: DNA binding study of compound 50

Figure S129: DNA binding study of compound 5p

Figure S130: DNA binding study of compound 5q

Figure S131: DNA binding study of compound 5q

Docking Model of Compound 4b-f

Figure S132: Docking model of compound 4b with DNA

Figure S133: Docking model of compound 4c with DNA

Figure S134: Docking model of compound 4d with DNA

Figure S135: Docking model of compound 4e with DNA

Figure S136: Docking model of compound 4f with DNA