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Fig. S1. TEM image (left) and size distribution (right) for 1. The solid line represents the fit with a 
Gaussian function.
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Fig. S2. Left: TGA analysis obtained with a 5°C.min−1 heating rate for 1, AA and 1@AA; Right: TGA 
curve obtained with a 5°C.min−1 heating rate demonstrating the decomposition of 1@AA.
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Fig. S3.  Left: TGA analysis obtained with a 5°C.min−1 heating rate for 1, RhB and 1@RhB; Right: 
TGA curve obtained with a 5°C.min−1 heating rate demonstrating the decomposition of 1@RhB.
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Fig. S4. IR spectra of 1.
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Fig. S5. Comparison between IR spectra of AA, 1 and 1@AA (left) and between RhB, 1 and 1@RhB 
(right).
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Fig. S6. PXRD patterns of 1 (black), 1@AA (blue), 1@RhB (red).
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Fig. S7. TEM image of 1@RhB.
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Fig. S8. Size distribution for 1@AA (left) and for 1@RhB (right). The solid line represents the fit 
with a Gaussian function.
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Fig. S9. Pore size distribution of 1 obtained from Monte Carlo simulations illustrating the presence of 

two types of pores corresponding to the tetrahedral fcc sites and the larger pores formed by the 
cyanometallate vacancies.
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Fig. S10. Left: Room temperature normalized emission spectra for AA and 1@AA re-dispersed in 
ethanol (500 µg.mL−1) and excited at 360 nm. Right: Room temperature normalized emission spectra 
for RhB and 1@RhB re-dispersed in water (500 µg.mL−1) and excited at 520 nm.
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Fig. S11. Left: Room temperature normalized excitation spectra for AA and 1@AA re-dispersed in 
ethanol (500 µg.mL−1) monitored at 500 nm. Right: Room temperature emission spectra for 1@AA re-

dispersed in ethanol excited at different wavelengths.
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Fig. S12. Left: Room temperature normalized excitation spectra for RhB and 1@RhB re-dispersed in 
water (500 µg.mL−1) monitored at 580 nm. Right: Room temperature emission spectra for 1@RhB re-

dispersed in water excited at different wavelengths.
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Fig. S13. Room temperature emission (left) and excitation (right) spectra excited at 360 and monitored 
around 500 nm, respectively, for powdered AA and 1@AA.
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Fig. S14. Left: Room temperature emission spectra for powdered RhB and 1@RhB excited at 467 nm 
and 520 nm, respectively; Right: Room temperature excitation spectra for powdered RhB and 1@RhB 

monitored around 690 nm and 580 nm, respectively.

 Fig. S15. Pictures of 1, 1@AA and 1@RhB showing the colloidal stability in aqueous suspensions.
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Fig. S16. Room temperature emission (left) and excitation (right) spectra excited at 360 and monitored 
around 500 nm, respectively, for 1@AA re-dispersed in Dulbecco’s Modified Eagle’s Medium 

(DMEM) without and in the presence of 10% fetal bovine serum (BS) with antibiotic (0.05 mg.mL1 
gentamicin). The Dash-dot magenta lines represent the emission and excitation spectra for DMEM 

with BS.
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Fig. S17. Room temperature emission (left) and excitation (right) spectra excited at 360 and monitored 
around 500 nm, respectively, for 1@RhB re-dispersed in Dulbecco’s Modified Eagle’s Medium 

(DMEM) without and in the presence of 10% fetal bovine serum (BS with antibiotic (0.05 mg.mL1 
gentamicin). The Dash-dot magenta lines represent the emission and excitation spectra for DMEM 

with BS.
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Fig. S18. Emission spectra obtained before and after an exposure of 16 H at the corresponding 
excitation wavelength for 1@AA (left) and 1@RhB (right).
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Fig. S19. Emission spectra obtained before and after an exposure of 16 H at the corresponding 
excitation wavelength for AA (left) and RhB (right).
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Fig. S20. Electronic spectra of dialysis medium (water) after release’s experiments for 1@AA (top) 
and 1@RhB (bottom). 
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Fig. S21. Cell viability (%) of MDA-MB-231 cells treated with increasing concentrations of 
nanoparticles (1, 1@AA and 1@RhB) after three days of incubation. Data are presented as (mean  

SEM), n = 3.
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Fig. S22. MDA-MB-231 were incubated for 20 h with AA and RhB at a concentration of 100 
µg.mL−1. One photon fluorescence imaging was performed on living cells with similar parameters that 

1@AA and 1@RhB imaging, respectively.



13

Nuclei Compounds Merged

1 
(a

)
1 

(b
)

20 µm

20 µm

20 µm

20 µm 20 µm

20 µm

Fig. S23. MDA-MB-231 were incubated for 20 h with 1 at a concentration of 100 µg.mL−1. One 
photon fluorescence imaging was performed on living cells with similar parameters that 1@AA (a) 

and 1@RhB (b) imaging, respectively. 
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Fig. S24. TEM imaging of MDA-MB-231 cancer cells (A, control) and exposed with 1@AA (B), 
1@RhB (C) for 20 h at a concentration of 100 µg.mL−1. The nanoparticles are localized by arrows in 

the cells.
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Fig. S25. Internalization of 1@RhB by living MDA-MB-231 cells by flow. Cells were treated or not 
with 100 μg.mL−1 of 1@RhB for 1, 3, 6 and 24 h. Non-fixed cells were incubated with propidium 
iodide (1 μg.mL−1) to remove dead cells and 1@RhB fluorescence was analyzed. Data represent 

means ± SEM of two experiments.

Table S1. Crystallographic parameters for 1, 1@AA and 1@RhB
Sample Lattice parameter (Å) Crystallite size (nm)

1 10.07 55
1@AA 10.08 55

1@RhB 10.06 54

Table S2. Values of the zeta potential for 1, 1@AA and 1@RhB
Sample Zeta potential (mV)

1 27 ± 5
1@AA 25 ± 5

1@RhB 15 ± 5


