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Experimental section 

Material synthesis 

Preparation of cobalt-based metal-organic frameworks (Co-MOFs) 

nanowall arrays on carbon cloth (CC). An aqueous solution contains C4H6N2 (60 

mL, 0.4 M) was quickly poured into the aqueous solution of Co(NO3)2∙6H2O (60 mL, 

50 mM), after which a piece of acid-treated CC substrate (2.0 × 6.0 cm2) was 

immersed into the mixture solution. After reaction for 4 h at 25 °C, the sample was 

taken out, cleaned with deionized water and dried overnight. 

Preparation of heterogeneous WS2/CoS2 arrays on CC. A piece of 

Co-MOFs/CC (2.0 × 1.5 cm2) was immersed into an ethanol/water solution (4:1 in 

volume, 100 mL) containing Na2WO4 (0.2 g) at 85 °C. After the purple colour of the 

Co-MOFs disappeared (~15 min), the sample was taken out, washed with ethanol 

repeatedly, and dried at 60 °C. Then the as-prepared sample was placed in the center 

of a horizontal-tube furnace. 1.0 g of sulfur powders was placed at the upstream 

position 15 cm away from the center. After annealing the as-prepared sample at 

500 °C for 2 h with a heating rate of 10 °C min-1 under Ar with a flow rate of 40 mL 

min-1, WS2/CoS2/CC was obtained. The mass loading of WS2/CoS2 is ~2.0 mg cm-2. 

Preparation of hollow CoS2 arrays on CC. A piece of Co-MOFs/CC (2.0 × 1.5 

cm2) was immersed into an ethanol/water solution (4:1 in volume, 100 mL) at 85 °C. 

After the purple colour of the Co-MOFs disappeared (~10 min), the sample was taken 

out, washed with ethanol repeatedly, and dried at 60 °C. Then the as-prepared sample 

was placed in the center of a horizontal-tube furnace. 1.0 g of sulfur powders was 
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placed at the upstream position 15 cm away from the center. After annealing the 

as-prepared sample at 500 °C for 2 h with a heating rate of 10 °C min-1 under Ar with 

a flow rate of 40 mL min-1, CoS2/CC was obtained. The mass loading of CoS2 is ~1.5 

mg cm-2. 

Preparation of Pt/C on CC: commercial Pt/C (20 wt %, Alfa Aesar) was 

well-dispersed in diluted Nafion alcohol solution (0.5 mL of ethanol and 50 μL of 

Nafion) to form a homogeneous suspension. Then the suspension was drop casted onto 

CC and drying at room temperature. 

Characterization 

The morphology, microscopic structure and chemical composition of the samples 

were characterized by field emission scanning electron microscopy (FESEM, FEI, 

Verios G4), transmission electron microscopy (TEM, FEI, FEI Talos F200X TEM), 

X-ray diffraction (XRD, Bruker Axs, XD-3), and X-ray photoelectron spectroscopy 

(XPS, Kratos, Axis Supra), respectively. 

Electrochemical measurement 

Electrochemical measurements were taken on a CHI 660e electrochemistry 

workstation at room temperature. The HER catalytic activities of the samples were 

tested in a conventional three-electrode system. 0.5 M H2SO4, 1.0 M PBS, and 1.0 M 

KOH solutions purged with N2 were used as the acidic, neutral, and alkaline 

electrolytes, respectively. Catalysts on CC were directly used as the working electrode 

and a graphite rod was used as the counter electrode. An AgCl, a saturated calomel 

electrode (SCE), and an Hg/HgO were used as the reference electrode in 0.5 M H2SO4, 
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1.0 M PBS, and 1.0 M KOH solutions, respectively.  

The linear sweep voltammogram (LSV) curves were measured at 2 mV s-1 with 

an iR corrected. All the measured potentials were referred to reversible hydrogen 

electrode (RHE) using the following equations: E(RHE) = E(AgCl) + 0.0592 × pH + 

0.2046 (Equation S1), E(RHE) = E(SCE) + 0.0592 × pH + 0.244 (Equation S2), and 

E(RHE) = E(Hg/HgO) + 0.0592 × pH + 0.098 (Equation S3). The Tafel plots were 

calculated by the Tafel equation, η = b log j + a (Equation S4), where b is the Tafel 

slope, j is the current density, and a is the intercept relative to the exchange current 

density. The accelerated degradation tests were measured through continuous CV 

measurements in the potential range from -155 mV to 45 mV (vs RHE in 0.5 M 

H2SO4), -190 mV to 10 mV (vs RHE in 1.0 M PBS) and -130 mV to 70 mV (vs RHE 

in 1.0 M KOH) with a scan rate of 100 mV s-1 for 1000 cycles. The HER stability was 

determined by a chronopotentiometry measurement at a current density of 10 mA 

cm−2 for 24 h without any iR-drop compensation. What’s more, the electrochemical 

impedance spectroscopy (EIS) measurements were performed by applying an AC 

voltage with 5 mV amplitude in a frequency range from 0.01 Hz to 100 kHz at open 

circuit voltage which was chosed the potential at 10 mA cm-2 of LSV curves. The 

electrochemical double-layer capacitance (Cdl) was determined from the Cyclic 

Voltammetry (CV) curves measured in a potential range without redox process by Cdl 

= I / ν (Equation S5), where I (mA cm−2) is the charging current and ν (mV s−1) is the 

scan rate. CV curves of various samples were recorded from 0.51 to 0.61 V (vs RHE 

in 0.5 M H2SO4), 0.56 to 0.66 V (vs RHE in 1.0 M PBS) and 0.63 to 0.73 V (vs RHE 
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in 1.0 M KOH) with scan rates of 10, 20, 30, 40, and 50 mV s-1. The 

electrochemically active surface area (ECSA) was estimated from the electrochemical 

Cdl. The specific capacitance (Cs) value Cs = 0.040 mF cm-2 is adopted for the 

estimation of ECSA. The ECSA of WS2/CoS2/CC and CoS2/CC can be calculated as 

below: ECSA = Cdl-catalyst / Cs (Equation S6). All the potentials in the text, if not 

specified, were recorded relative to the RHE and the current density was normalized 

to the geometrical surface area. 
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Figure S1. SEM images of (a1-a3) Co-MOF/CC and (b1-b3) CoS2/CC. 

 

 

Figure S2. (a) TEM image of WS2/CoS2 heterostructure. (b-d) TEM 

andcorresponding high resolution TEM images of pure CoS2. 
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Figure S3. EDS spectrum and atomic ratios (Inset) of the WS2/CoS2 heterostructure. 

 

 

Figure S4. XPS survey spectra of WS2/CoS2/CC and CoS2/CC. 
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Table S1. HER performances comparison of recently reported heterostructures in 

different electrolytes. 

Catalysts 
Overpotential 

@ 10 mA cm-2 (mV) 
Eletrolytes References 

NiCo2O4/CuS 72.3 0.5 M H2SO4 
1 

MoSSe@rGO 153 0.5 M H2SO4 
2 

MoS2/Ni3S2 110 1.0 M KOH 3 

Ni2P/CoP 55 0.5 M H2SO4 
4 

WxC@WS2 146 0.5 M H2SO4 
5 

Co3S4@MoS2 210 0.5 M H2SO4 
6 

Ni(OH)2/MoS2 80 1.0 M KOH 7 

MoS2/Fe5Ni4S8 120 1.0 M KOH 8 

NiFe LDH@NiCoP 120 1.0 M KOH 9 

WS2-CoS2 245 0.5 M H2SO4 
10 

Co9S8/Ni3S2 128 1.0 M KOH 11 

MoS2/CoS2 

90 

85 

150 

0.5 M H2SO4 

1.0 M KOH 

1.0 M PBS 

12 

Mo2C@MoS2 

67 

121 

86 

0.5 M H2SO4 

1.0 M PBS 

1.0 M KOH 

13 

Mo2C/VC 122 0.5 M H2SO4 
14 

MoSe2/MoS2 162 0.5 M H2SO4 
15 

WS2/CoS2 

146 

175 

122 

0.5 M H2SO4 

1.0 M PBS 

1.0 M KOH 

In this work 
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Figure S5. Nyquist plots of WS2/CoS2/CC and CoS2/CC in (a) 0.5 M H2SO4, (b) 1.0 

M PBS, (c) 1.0 M KOH. 

 

 

Figure S6. CV and Cdl curves of WS2/CoS2/CC and CoS2/CC in (a1-a4) 0.5 M H2SO4, 

(b1-b4) 1.0 M PBS, (c1-c4) 1.0 M KOH. 
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Table S2. The electrochemically active surface area (ECSA) calculated from Cdl of 

WS2/CoS2/CC and CoS2/CC in different electrolytes. 

Catalysts 0.5 M H2SO4 1.0 M PBS 1.0 M KOH 

WS2/CoS2/CC 289.75 cm2 589.75 cm2 559.00 cm2 

CoS2/CC 45.75 cm2 157.75 cm2 201.75 cm2 

 

 

Figure S7. IR-compensated polarization curves of WS2/CoS2/CC and CoS2/CC after 

normalizing the geometric current densities to the corresponding ECSA in (a) 0.5 M 

H2SO4, (b) 1.0 M PBS, and (c) 1.0 M KOH, respectively. 
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