Supporting Information

Rare-Earth Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and Regioselectivity Impacted by the Lewis Acidity and Size of the Support

Bianca L. Ramirez[†] and Connie C. $Lu^{\dagger,*}$

[†]Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States

*corresponding author e-mail: clu@umn.edu

	Supporting Information Table of Contents	
-		Page
Exper	rimental Section	C 2
_	General considerations	S3
_	Syntheses of Li($^{1}Pr_{2}PCH_{2}NPh$) and metal complexes 2–9	S3
_	In situ generation of (H ₂)NiGa(ⁱ Pr ₂ PCH ₂ NPh) ₃ , (HD)NiGa(ⁱ Pr ₂ PCH ₂ NPh) ₃ , and (η^2 -PhC=CPh)NiY(ⁱ Pr ₂ PCH ₂ NPh) ₃	S 6
—	Standard catalytic procedure for alkyne semihydrogenation	S 8
_	General procedure for initial rate studies	S 8
—	Standard catalytic procedure for (Z) -stilbene isomerization	S 8
_	X-ray crystallographic and structure refinement details	S9
_	Crystallographic details for monometallic complexes 2–4, and 5	S10
_	Crystallographic details for heterobimetallic complexes $6-9$, $7-DPA$, , $7-THF$, and $8'$	S11
Chara	acterization Data for Compounds 2–9, 9–H₂, and 7–(η²-PhC≡CPh)	
_	³¹ P, ¹ H, and ¹³ C NMR characterization spectra of synthesized complexes	S12
_	Cyclic voltammetry studies of heterobimetallic complexes 6–9	S26
_	Correlations of NiML ₃ complexes (1 and 6–9) E_{pa} (V) vs various M(III) parameters	S27
_	Molecular X–ray structures and geometrical parameters of monometallic complexes 2-4	S28
_	Molecular X–ray structures of 5 and 7 –THF	S30
_	X–ray Structural Parameters, Bond Lengths (Å) and Angles (deg), for Heterobimetallic Complexes 6–9	S32
_	X–ray Structural Parameters, Bond Lengths (Å) and Angles (deg), for Heterobimetallic Complexes 7–DPA and 7–THF	S33
_	Correlations of M-N, Ni-P, Ni-M bond lengths (Å) of complexes 1 and 6–9 vs various M(III) parameters	S33
Alkyn	e Semihydrogenation Catalytic Data	
_	Representative ¹ H NMR spectrum of the catalytic runs	S35
	I Rate Study Data	S40
_	Plots and fits of initial rate data	S41
_	Initial rate correlations vs various M(III) parameters	S47
Mech	anistic and Reaction Monitoring Studies	
_	Alkene isomerization studies	S50
_	Diphenylacetylene semi-hydrogenation reaction monitoring studies	S51
_	Low temperature NMR catalytic resting state studies	S59
_	Deuterium NMR Studies	S60
_	H_2 Binding Studies of NiML ₃ Complexes 6–9	S62
	rate Scope Representative ³¹ P and ¹ H NMR Spectra	S73
Refer		S78

S2

Experimental Section

General Considerations. Unless otherwise stated, all manipulations were performed under an inert argon atmosphere in a glovebox or using standard Schlenk techniques. Standard solvents were deoxygenated by sparging with inert gas and dried by passing through activated alumina columns of a SG Water solvent purification system. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. or Sigma–Aldrich, degassed via freeze–pump–thaw cycles and stored over activated 4 Å molecular sieves. The reagents Ni(COD)₂ and MCl₃ (M = Sc, Y, La, Ga) were purchased from Strem Chemicals and used without further purification. ⁱPr₂PCH₂NHPh (abbreviated **HL**),¹ NiLuL₃ (1),¹ and [*n*-Pr₄N][BAr^F₄]² were synthesized according to literature procedures. 1,3,5–Trimethoxybenzene was purified by sublimation before use. Alkyne and alkene substrates were purchased from Sigma Aldrich or Alfa Aesar and used without further purification. Liquid substrates were degassed via three free–pump–thaw cycles, brought into the glove box, and stored over activated 4 Å molecular sieves. Elemental analyses were performed by Robertson Microlit Laboratories (Ledgewood, NJ).

NMR Spectroscopy. ¹H, ²H, ¹³C, ³¹P NMR spectra were recorded on Varian 500 MHz or Bruker 400 MHz spectrometers at ambient temperature unless otherwise stated. ¹H and ¹³C chemical shifts were referenced to residual solvent. ³¹P spectra were referenced to external 85% phosphoric acid ($\delta = 0$ ppm). T_{1(min)} values were determined by fitting the pulse-recovery ¹H spectra at various temperatures using the T₁ calculation protocols in Bruker Topspin software.

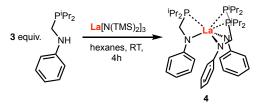

Cyclic voltammetry. Cyclic voltammograms were collected with a CH Instruments 600 electrochemical analyzer with a one–cell setup, comprising a glassy carbon working electrode, a platinum wire counter electrode, and Ag/AgCl reference electrode. Analytes were dissolved in 0.1 M [n-Pr₄N][BAr^F₄] (BAr^F₄ = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate)) in difluorobenzene, and internally referenced to the FeCp₂/FeCp₂⁺ redox couple.

Synthesis of Li(${}^{i}Pr_{2}PCH_{2}NPh$) (abbreviated Li·L). In a 20 mL scintillation vial, a solution of HL (0.500g, 2.24 mmol) in hexanes (~10 mL) was cooled to -60 °C in a dry ice/acetone coldwell. *n*-BuLi (0.896 mL, 2.5 M in hexanes, 2.24 mmol) was then added, and the mixture stirred for 1 h at room temperature. The resulting white precipitate was isolated on a fine glass fritted Büchner funnel, washed with hexanes (3 x 5 mL), and dried in vacuo to give the desired product as a white powder (0.482 g, 94 %).

¹H{³¹P} NMR (400 MHz, C₆D₆): δ 7.21 (br t, 2H, aryl), 6.67 (br d, 2H, aryl), 6.48 (br t, ³*J* = 6.9 Hz, 1H, aryl), 3.39 (s, 2H, C*H*₂P), 1.68 (br, 2H, C*H*Me₂), 1.08–1.04 (m, 12H, C*H*₃).³¹P (162 MHz, C₆D₆): δ 2.7. Due to the poor solubility of Li·L in aromatic solvents, the ¹³C NMR spectrum in C₆D₆ was not collected.

¹H{³¹P} NMR (400 MHz, THF–*d*₈): δ 6.63 (t, ³*J* = 6.9 Hz, 2H, aryl), 6.08 (d, ³*J* = 8.1 Hz, 2H, aryl), 5.70 (t, ³*J* = 7.0 Hz, 1H, aryl), 3.25 (s, 2H, CH₂P), 1.75 (m, 2H, CHMe₂), 1.10 (m, 12H, CH₃ and C'H₃). ³¹P (162 MHz, THF–*d*₈): δ –1.7. ¹³C{¹H} NMR (126 MHz, THF–*d*₈): δ 162.6 (d, *J*_C–P = 15.4 Hz, aryl), 128.6 (aryl), 113.0 (br, aryl), 105.8 (aryl), 47.3 (CH₂P), 24.0 (d, ²*J*_C–P = 14.6 Hz, PCHMe₂), 20.3 (d, ¹*J*_C–P = 12.0 Hz, CH₃), 20.1 (d, ¹*J*_C–P = 12.0 Hz, CH₃).

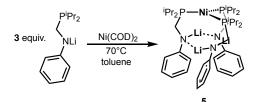
General synthetic route to monometallic complexes 2 and 3.



In a 20 mL scintillation vial, a solution of Li·L (0.200 g, 0.872 mmol) in THF (~6 mL) was added to a stirring solution of MCl₃ (0.291 mmol, M = Sc or Y) in THF (~10 mL) at room temperature and stirred overnight. After drying the solution in vacuo, the resulting crude solid was washed with hexanes (8 mL). The product was then extracted into benzene, filtered through a Celite pad, and dried in vacuo to afford the desired product.

Sc(ⁱPr₂PCH₂NPh)₃ (abbreviated ScL₃, or 2). The product was obtained as a white powder (0.175 g, 85%). Single crystals were grown by layering a concentrated benzene solution of **2** with hexanes. ¹H{³¹P} NMR (400 MHz, C₆D₆): δ 7.24 (t, ³*J* = 7.8 Hz, 6H, aryl), 7.11 (d, ³*J* = 8.3 Hz, 6H, aryl), 6.72 (t, ³*J* = 7.8 Hz, 3H, aryl), 3.57 (br, 3H, CHH'P), 3.47 (br, 3H, CHH'P), 1.97 (br, 3H, CHMe₂), 1.76 (br, 3H, C'HMe₂), 1.16–0.86 (m, 36H, CH₃). ³¹P NMR (162 MHz, C₆D₆): δ –18.8. ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 156.2 (aryl), 129.2(aryl), 116.5(aryl), 114.9(aryl), 44.7 (CH₂P), 24.5 (PCHCH₃), 24.0 (PC'HCH₃), 21.1 (CH₃), 19.8 (CH₃), 19.3 (CH₃), 18.9 (CH₃). Anal. Calcd. for **2**(H₂O)₃, C₃₉H₆₉N₃O₃P₃Sc: C 65.79; H 8.93, N 5.91. Found: C 65.31; H 9.10; N 5.82. Combustion analysis is consistent with addition of 3 water molecules.

Y(ⁱ**Pr**₂**PCH**₂**NPh**)₃ (abbreviated **YL**₃, or **3**). The product was obtained as a white powder (0.287 g, 88%). Single crystals were grown by layering a concentrated benzene solution of **3** with hexanes. ¹H{³¹P} NMR (400 MHz, C₆D₆): δ 7.26 (t, ³*J* = 7.7 Hz, 6H, aryl), 7.02 (d, ³*J* = 7.9 Hz, 6H, aryl), 6.71 (t, ³*J* = 7.3 Hz, 3H, aryl), 3.49 (s, 6H, C*H*₂P), 1.74 (br, 6H, C*H*Me₂), 0.94 (br, 36H, C*H*₃). ³¹P NMR (162 MHz, C₆D₆): δ -14.1 (d, *J*_{P-Y} = 36.5 Hz). ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 156.5 (aryl), 129.2 (aryl), 115.4 (aryl), 113.7 (aryl), 43.0 (CH₂P), 23.2 (PCHCH₃), 18.94 (CH₃). Anal. Calcd. for **3**(H₂O)₃, C₃₉H₆₉N₃P₃YO₃: C 57.84; H 8.59; N 5.19. Found: C 57.22; H 8.41; N 5.56. Combustion analysis is consistent with addition of 3 water molecules.


Synthesis of La(ⁱPr₂PCH₂NPh)₃ (abbreviated LaL₃, or 4).

In a 20 mL scintillation vial, a solution of **HL** (0.200 g, 0.896 mmol) in hexanes (~10 mL) was added to a stirring solution of La[N(TMS)₂]₃ (0.185 g, 0.296 mmol) in hexanes (~8 mL) at room temperature. The solution was stirred for 4 h during which an off–white solid precipitated. After drying the solution in vacuo, the resulting crude solid was washed with hexanes (8 mL). The product was then extracted into benzene, filtered through a Celite pad, and dried in vacuo to afford the desired product as a white powder (0.165 g, 70%). Single crystals were grown by layering a concentrated benzene solution of **4** with hexanes. ¹H{³¹P} NMR (400 MHz, C₆D₆): δ 7.32 (t, ³J =

7.8 Hz, 6H, aryl), 6.90 (d, ${}^{3}J$ = 7.9 Hz, 6H, aryl), 6.74 (t, ${}^{3}J$ = 7.2 Hz, 3H, aryl), 3.53 (s, 6H, *CH*₂P), 1.72 (app pentet, ${}^{3}J$ = 7.1 Hz, 6H, *CH*Me₂), 0.97 (dd, ${}^{3}J$ = 7.1 & 2.9 Hz, 36H, *CH*₃). 31 P NMR (162 MHz, C₆D₆): δ -12.6. 13 C{¹H} NMR (126 MHz, C₆D₆): δ 156.5 (aryl), 130.2 (aryl), 115.1 (aryl), 112.1 (aryl), 43.1 (*CH*₂P), 23.5 (*PCHCH*₃), 19.3 (*CH*₃), 18.8 (*CH*₃). Anal. Calcd. for 4(H₂O), C₃₉H₆₄N₃OP₃La: C 56.84; H 7.96; N 5.10. Found: C 56.60; H 8.32; N 5.08. Combustion analysis is consistent with addition of one water molecule.

Synthesis of Li₃·Ni(ⁱPr₂PCH₂NPh)₃ (abbreviated Li₃·NiL₃, or 5).

In a 20 mL scintillation vial, a solution of Ni(COD)₂ (0.060 g, 0.218 mmol) in toluene (~6 mL) was added to a stirring suspension of Li·L (0.150 g, 0.654 mmol) in toluene (~5 mL). The solution was heated to 70°C for 10 min to promote dissolution of Li·L and then stirred overnight at room temperature. The resulting purple precipitate was isolated on a fine glass fritted Buchner funnel, washed with toluene (5 mL) and hexanes (5 mL), and dried in vacuo to give the desired product as a purple powder (0.147 g, 90%). Single crystals were grown by recrystallization from hot toluene. ¹H{³¹P} NMR (400 MHz, C₆D₆/THF–d₈): δ 7.27 (t, ³J = 7.7 Hz, 6H, aryl), 6.97 (d, ³J = 7.9 Hz, 6H, aryl), 6.57 (t, ³J = 7.3 Hz, 3H, aryl), 3.62 (s, 6H, CH₂P), 2.14 (br, 6H, CHMe₂), 1.34–1.22 (br, 36H, CH₃). ³¹P NMR (162 MHz, C₆D₆): δ 20.1. ¹³C{¹H} NMR (126 MHz, C₆D₆/THF): δ 161.1 (aryl), 129.8 (aryl), 115.2 (aryl), 112.6 (aryl), 56.1 (CH₂P), 30.6 (PCHMe₂), 22.2 (CH₃), 19.5 (CH₃). Anal. Calcd. for **5**(H₂O)₃, C₃₉H₆₉N₃O₃P₃Li₃Ni: C 58.52; H 8.69; N 5.25. Found: C 58.48; H 8.47; N 5.21. Combustion analysis is consistent with addition of 3 water molecules.

General synthetic route to bimetallic Ni-rare earth complexes 6–8.

A solution of **2**, **3**, or **4** (0.150 g, 0.213 mmol) in toluene (~6 mL) was transferred to a Schlenk tube containing solid Ni(COD)₂ (1 equiv). The reaction was heated at 70 °C for 16 h, during which red crystals precipitated. The crystals were collected and washed with hexanes. Isolated crystals were used for determination of solid–state structure and elemental analysis. Alternatively, **6–8** can be synthesized by the addition of a solution of ML₃ (0.150 g, 0.213 mmol), where M is Sc, Y, or La, in THF (~4 mL) to a 20 mL scintillation vial charged with solid Ni(COD)₂ (0.213 mmol). The reaction was stirred for 16 h at room temperature and then dried in vacuo. Before workup, toluene (1–2 mL) was added to the crude solid and removed in vacuo twice to remove any residual THF. The crude was washed with hexanes (6 mL) and toluene (3 mL). The product was then extracted into hot toluene, filtered through a Celite pad, and dried in vacuo.

NiSc(ⁱ**Pr₂PCH₂NPh**)₃ (abbreviated **NiScL**₃, or 6). Isolated as a bright red powder or crystals (0.147 g, 90% yield, crystalline yield 75%). ¹H{³¹P} NMR (400 MHz, toluene– d_8): δ 7.13 (t, ³J = 7.6 Hz, 6H, aryl), 6.63 (m, 9H, aryl), 3.96 (s, 6H, CH₂P), 2.25 (sept, ³J = 7.3 Hz, 6H, CHMe₂), 1.03 (dd, ³J = 16.7 & 7.1 Hz, 18H, CH₃). ³¹P NMR (162 MHz, toluene– d_8): δ 3.1. Due to the poor solubility of **6** in solvents at room temperature, a ¹³C NMR spectrum was not collected. Anal. Calcd. for **6**, C₃₉H₆₃N₃P₃NiSc: C 60.79; H 8.24; N 5.45. Anal. Calcd. for **6**(H₂O)₂,

 $C_{39}H_{67}N_3O_2P_3NiSc: C 58.08; H 8.37; N 5.21.$ Found: C 57.77; H 8.27; N 4.97. Combustion analysis is consistent with addition of 2 water molecules.

NiY(ⁱ**Pr₂PCH₂NPh**)₃ (abbreviated **NiYL**₃, or 7). Isolated as red–orange powder or crystals (0.160 g, 92% yield, crystalline yield 80%). Single crystals of 7–**THF** were grown by layering hexane on a concentrated THF solution of 7 at –28 °C. ¹H{³¹P} NMR (400 MHz, toluene–*d*₈): δ 7.22 (t, ³*J* = 7.7 Hz, 6H, aryl), 6.63 (t, ³*J* = 7.2 Hz, 3H, aryl), 6.51 (d, ³*J* = 8.1 Hz, 6H, aryl), 3.93 (s, 6H, CH₂P), 2.21 (sept, ³*J* = 7.2 Hz, 6H, CHMe₂), 1.10 (d, ³*J* = 7.1 Hz, 18H, CH₃), 1.03 (d, ³*J* = 7.1 Hz, 18H, C'H₃). Due to the poor solubility of 7 in aromatic solvents at room temperature, the ¹³C NMR spectrum in C₆D₆ was not collected. ³¹P NMR (162 MHz, toluene–*d*₈): δ 2.8. Anal. Calcd. for 7(H₂O)₃, C₃₉H₆₉N₃O₃P₃YNi: C 53.91; H 8.01; N 4.83. Found: C 53.75; H 8.16; N 4.65. Combustion analysis is consistent with addition of 3 water molecules.

NMR data for 7–THF: ¹H{³¹P} NMR (400 MHz, THF– d_8): δ 6.92 (t, ³J = 7.7 Hz, 6H, aryl), 6.52 (d, ³J = 8.0 Hz, 6H, aryl), 6.31 (t, ³J = 7.2 Hz, 3H, aryl), 3.88 (s, 6H, CH₂P), 2.45 (sept, ³J = 7.2 Hz, 6H, CHMe₂), 1.29 (app t, J = 6.2 Hz, 36H, CH₃). ³¹P NMR (162 MHz, THF– d_8): δ 10.7. ¹³C{¹H} NMR (126 MHz, THF– d_8): δ 158.8 (aryl), 129.0 (aryl), 115.8 (aryl), 114.2 (aryl), 55.5 (CH₂P), 29.1 (PCHMe₂), 21.5 (CH₃), 19.7 (CH₃).

NiLa(ⁱ**Pr₂PCH₂NPh)**₃ (abbreviated **NiLaL**₃, or **8**). Isolated as an orange powder or crystals (0.156 g, 85%, crystalline yield 72 %). Single crystals of **8** were grown by recrystallization from hot *p*-xylene, and the solid-state structure is reported in the main text. Another solid-state conformer of NiLaL₃, **8'**, was crystallized from hot toluene. Refer to X-ray details in the SI. The structure of **8'** features a η^2 -(N-C_{*ipso*}) interaction between the NPh group and the La center. ¹H{³¹P} NMR (400 MHz, C₆D₆): δ 7.33 (t, ³*J* = 7.8 Hz, 6H, aryl), 6.65 (t, ³*J* = 7.2 Hz, 3H, aryl), 6.40 (d, ³*J* = 7.8 Hz, 6H, aryl), 3.93 (s, 6H, CH₂P), 2.12 (m, 6H, CHMe₂), 1.06 (dd, ³*J* = 15.6, 7.1 Hz 36H, CH₃). ³¹P NMR (162 MHz, C₆D₆): δ 1.7. Due to the poor solubility of **7** in aromatic solvents at room temperature, the ¹³C{¹H} NMR spectrum in C₆D₆ was not collected. Anal. Calcd. for **8**(H₂O), C₃₉H₆₅N₃OP₃NiLa: C 53.08; H 7.42; N 4.76. Found: C 53.02; H 7.10; N 4.16. Combustion analysis is consistent with addition of one water molecule.

NMR data for **8**–THF: ¹H{³¹P} NMR (400 MHz, THF– d_8 , 25°C): δ 6.93 (t, ³J = 7.8 Hz, 6H, aryl), 6.34 (d, ³J = 7.9 Hz, 6H, aryl), 6.27 (t, ³J = 7.1 Hz, 3H, aryl), 3.94 (s, 6H, CH₂P), 2.45 (sept, ³J = 7.2 Hz, 6H, CHMe₂), 1.28 (app t, J = 6.2 Hz, 36H, CH₃). ³¹P NMR (162 MHz, THF– d_8): δ 4.2. ¹³C NMR (126 MHz, THF– d_8): δ 157.8 (aryl), 129.9 (aryl), 113.5 (aryl), 113.4 (aryl), 54.9 (CH₂P), 29.0 (PCHMe₂), 21.2 (CH₃), 19.9 (CH₃).

Synthesis of NiGa(ⁱPr₂PCH₂NPh)₃ (abbreviated NiGaL₃, or 9). A solution of GaCl₃ (0.035 g, 0.201 mmol) in Et₂O (~4 mL) was added to a stirring solution of **5** (0.150 g, 0.201 mmol) in Et₂O (~4 mL), resulting in an orange–brown color. The reaction was stirred for 6 h, filtered through a Celite pad to remove LiCl, and dried in vacuo. The crude was then washed with hexanes (6 mL) and diethyl ether (4 mL). After drying in vacuo, a red-brown powder was obtained (0.096 g, 60% yield). Single crystals were grown by layering a concentrated benzene solution of **9** with hexanes. ¹H{³¹P} NMR (400 MHz C₆D₆): δ 7.21 (t, ³*J* = 7.7 Hz, 6H, aryl), 7.03 (d, ³*J* = 8.2 Hz, 6H, aryl), 6.69 (t, ³*J* = 7.2 Hz, 3H, aryl), 3.40 (s, 6H, CH₂PⁱPr₂), 2.22 (sept, ³*J* = 7.2 Hz, 6H, CHMe₂), 0.99 (app t, ³*J* = 7.9 Hz, 36H, CH₃). ³¹P NMR (162 MHz, C₆D₆): δ 31.8. ¹³C{¹H} NMR (126 MHz,

 C_6D_6): δ 153.4 (aryl), 129.5 (aryl), 115.7 (aryl), 114.6 (aryl), 50.2 (CH₂P), 29.4 (PCHMe₂), 20.7 (CH₃), 18.7 (CH₃). Anal. Calcd. for **9**(H₂O), $C_{39}H_{65}N_3OP_3GaNi$: 57.59 C, 8.05 H, 5.16 N. Found: C 57.34, H 7.89, N 4.97. Combustion analysis is consistent with addition of one water molecule.

In situ generation of (H₂)NiGa(ⁱPr₂PCH₂NPh)₃ (abbreviated (H₂)NiGaL₃, or 9–H₂). A solution of 9 (0.015 g, 0.019 mmol) in either C₆D₆ or toluene– d_8 (c. 0.5 mL) was added to a J. Young NMR tube. One freeze-pump-thaw cycle was performed to evacuate the headspace. Subsequent exposure to H₂ (1 atm) resulted in the solution changing color from dark red to orange–red. Lability of H₂ precluded elemental analysis from being obtained. ¹H NMR (400 MHz C₆D₆): δ 7.23 (t, ³*J* = 7.7 Hz, 6H, aryl), 7.14 (d, ³*J* = 9.1 Hz, 6H, aryl), 6.72 (t, ³*J* = 7.2 Hz, 3H, aryl), 3.31 (s, 6H, CH₂PⁱPr₂), 1.85 (sept, ³*J* = 7.6 Hz, 6H, CHMe₂), 0.95 (s, ³*J* = 7.8 Hz, 36H, CH₃). –2.03 (br, 2H, Ni-H₂). ³¹P NMR (162 MHz, C₆D₆): δ 48.5. *T*₁(min) (500 MHz, -20 °C) = 27.8(4) ms.

In situ generation of (HD)NiGa(ⁱPr₂PCH₂NPh)₃ (abbreviated (HD)NiGaL₃, or 9–HD). A solution of 9 (0.015 g, 0.019 mmol) in either C₆D₆ or toluene– d_8 (~0.5 mL) was added to a J. Young NMR tube. Two freeze-pump-thaw cycle was performed to evacuate the headspace. Subsequent exposure to HD (1 atm) resulted in the solution changing color from dark red to orange–red. To observe HD coupling, the NMR spectrum was collected at –62 °C. ¹H{³¹P} NMR (400 MHz, C₆D₆, –62 °C): δ 7.28 (t, ³*J* = 7.7 Hz, 6H, aryl), 7.16 (d, ³*J* = 9.1 Hz, 6H, aryl), 6.8 (t, ³*J* = 7.2 Hz, 3H, aryl), 3.26 (br, 3H, CH₂PⁱPr₂), 3.14 (br, 3H, CH₂PⁱPr₂), 1.84 (br, 6H, CHMe₂), 1.64 (br, 3H, CHMe₂), 0.90 (m, ³*J* = 7.8 Hz, 36H, CH₃). –3.07 (t, *J*_{HD} = 34.7 Hz, Ni-HD,). ³¹P{¹H} NMR (162 MHz, C₆D₆, –62 °C): δ 48.8.

In situ generation of $(\eta^2$ -PhC=CPh)NiY(ⁱPr₂PCH₂NPh)₃ (abbreviated as 7–DPA). A J. Young NMR tube was charged with 7 (0.025 g, 0.031 mmol). A solution of diphenylacetylene (0.027 g, 0.153 mmol) in C₆D₆ or toluene– d_8 (~0.5 mL) was then added to the J. Young NMR tube. The tube was then heated at 60 °C until the solution became homogeneous (~5 min). ${}^{1}H{}^{31}P{}$ NMR (400 MHz C₆D₆): δ 7.52 (dt, ³J = 7.5, 1.7 Hz, 4H, alkyne aryl CH), 7.31 (t, ³J = 7.6 Hz, 4H, aryl CH), 7.24 (t, ${}^{3}J$ = 7.6 Hz, 4H, aryl CH), 7.10 (d, ${}^{3}J$ = 8.9 Hz, 2H, aryl CH), 7.06 (d, ${}^{3}J$ = 7.5 Hz, 2H, aryl CH), 6.98 (q, ${}^{3}J$ = 6.5 Hz, 6H, alkyne aryl CH), 6.78 (t, ${}^{3}J$ = 7.2 Hz, 2H, aryl CH), 6.60 (t, ${}^{3}J$ = 7.2 Hz, 1H, aryl CH), 3.90 (m, 4H, CH₂PⁱPr₂), 3.34 (s, 2H, CH₂PⁱPr₂), 2.24 (h, ${}^{3}J$ = 6.9 Hz, 2H, CHMe₂), 2.10 (h, ${}^{3}J = 6.8$ Hz, 2H, CHMe₂), 1.71 (h, ${}^{3}J = 7.1$ Hz, 2H, CHMe₂), 1.11 (d, ${}^{3}J = 7.1$ Hz, 2H, CHMe₂), 1.11 (d, {}^{3}J = 7.1 Hz, 2H, CHMe₂), 1.11 (d, {} 7.4 Hz, 36H, CH_3), 1.00 (t, ${}^{3}J = 7.2$ Hz, 12H, CH_3), 0.94 (dd, ${}^{3}J = 11.8$, 7.1 Hz, 6H, CH_3) 0.91 (dd, ${}^{3}J = 7.1, 5.3$ Hz, 6H, CH₃), 0.71 (dd, ${}^{3}J = 7.2, 2.7$ Hz, 6H, CH₃). ${}^{31}P$ NMR (162 MHz, C₆D₆): δ 30.4 (s, 2P), -11.5 (d, ${}^{1}J_{P-Y} = 48.4$ Hz, 1P). Crystallization of 7–DPA. In a 20–mL scintillation vial, a solution of diphenylacetylene (0.109 g, 0.613 mmol) in toluene (~3 mL) was added to a stirring solution of NiYL₃ (0.050 g, 0.061 mmol) in toluene (~5 mL) at room temperature. The solution was then heated at 60 °C until the solution became homogeneous (~5 min). During heating, the solution changed color from red to light yellow. The reaction was then cooled to room temperature and filtered through a Celite pad to remove any unreacted 7. The filtrate was then concentrated to ~1 mL under vacuum and layered with hexanes (2 mL) to obtain 7-DPA as yellow crystals.

Standard catalytic procedure for alkyne semihydrogenation.

Catalyst stock solutions were prepared in toluene– d_8 to make enough individual aliquots of 5.6 µmol of catalyst (1 and 6–9), 40 equiv alkyne (0.45 M in 0.5 mL toluene– d_8) and 1,3,5-trimethoxybenzene (0.02 mmol) as an internal integration standard. If the catalyst did not fully dissolve, then the stock solution was heated at 70 °C until homogenous. All catalytic runs were performed in J. Young NMR tubes and in triplicate, unless otherwise indicated. The reaction tubes were subjected to a single freeze–pump–thaw cycle to evacuate the headspace, cooled in a LN₂ bath, and backfilled with 1 atm of H₂ 1 atm at 77 K. The mixture was allowed to warm to room temperature, resulting in 4 atm of H₂ gas.³ The reaction was mixed by inverting the NMR tube 3 times, and then heated to 70 °C in an oil bath. Conversion was monitored via ¹H NMR spectroscopy by integration of the aryl protons of the alkyne against those of the internal standard (recycle delay = 20s). For catalytic runs with 7–THF, THF- d_8 was used as the solvent.

General procedure for initial rate studies.

Catalyst stock solutions were prepared according to the procedure described above using either diphenylacetylene or (*Z*)-stilbene as the substrate. After H₂ was added, the J. Young NMR reaction tube was placed inside a Bruker AM 400 NMR instrument that was preheated to 344 K. ¹H NMR data was collected every 30 to 180 seconds until either 10 % conversion was reached or for 45-60 min. All kinetic experiments were performed in triplicate. Kinetic data was analyzed and fit to a straight line, yielding adjusted R^2 values ≥ 0.99 using Mestrenova Reaction Monitoring software and OriginLab.

Standard catalytic procedure for (Z)-stilbene isomerization.

Catalyst stock solutions were prepared according to the procedure described above using (Z)stilbene as the substrate. The procedure was also identical to that described for alkyne semihydrogenation, except that conversion was monitored via ¹H NMR spectroscopy by integration of the vinylic protons of (Z)-stilbene against those of the internal standard (recycle delay = 20s).

X-ray Crystallographic and Structure Refinement Details

A yellow plate of 2 (0.130 x 0.110 x 0.080 mm), colorless plate of 3 (0.12 x 0.08 x 0.04 mm) and 4 (0.15 x 0.15 x 0.05 mm), a red plate of 5 (0.12 x 0.04 x 0.02 mm), red blocks of 6 (0.1 x 0.08 x 0.04 mm), 7 (0.12 x 0.11 x 0.05 mm), 8 (0.12 x 0.12 x 0.08 mm), 8' (0.13 x 0.13 x 0.08 mm), and 9 (0.12 x 0.10 x 0.07 mm), an orange block of 7–THF (0.12 x 0.06 x 0.02 mm), and a yellow plate of 7–DPA(0.13 x 0.08 x 0.05 mm) were mounted on a 200 µm MiTeGen microloop and placed on a Bruker PHOTON-II CMOS or Bruker APEX-II CCD diffractometer for data collection at either 100(2) or 123(2)K. The data collection was carried out using Mo Ka radiation (graphite monochromator). The data intensity was corrected for absorption and decay (SADABS).⁴ Final cell constants were obtained from least-squares fits of all measured reflections. The structure was solved using SHELXT-2014/5⁵ and refined using refined using SHELXL-2016/6.⁶⁻⁷ A directmethods solution was calculated which provided most non-hydrogen atoms from the E-map. Full matrix least-squares/difference Fourier cycles were performed to locate the remaining nonhydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Disordered solvent molecules that were unmodelable were removed from the unit cells of 6, 8, 7–THF, and 7–DPA using the SQUEEZE function of PLATON.⁸⁻⁹

Three reflections for **3** and two reflections for 7–DPA were found to have been affected by the beamstop and were removed in their final refinement. The crystal structure of 4 contained a disordered isopropyl group and was modeled using the SAME restraint and EADP constraint. Complex 6 crystallized in the space group $R\overline{3}$ and contained a disordered toluene solvent molecule on a 3-fold rotation axis and adjacent to an inversion center. All attempts to model this solvent were unsuccessful. The SQUEEZE function removed 155 electrons from a void-space volume of 849 Å. This value is consistent with the presence of approximately three toluene molecules in the unit cell. The structure of 7 contained a toluene solvent molecule that was disordered over an inversion center. Each carbon atom was refined with 50% occupancy and modeled using the SAME restraint and EADP constraint. Complex 8 crystallized in the space group $Pa\overline{3}$ and contained a p-xylene solvent molecule on the 3-fold rotation axis and adjacent to an inversion center. Attempts to model this solvent were unsuccessful. The SQUEEZE function removed 325 electrons from a void-space volume of 1472 Å. This value is consistent with the presence of approximately six *p*-xylene molecules in the unit cell. Complex 7-THF crystallized in the space group $P\overline{1}$ and contained a disordered THF solvent molecule on an inversion axis. Attempts to model this solvent were unsuccessful. The SQUEEZE function removed 93 electrons from a voidspace volume of 371 Å. This value is consistent with the presence of approximately two THF molecules in the unit cell. In addition, a disordered aryl group was modeled using the EXYZ and EADP constraint. Complex 7–DPA contained a disordered aryl group which was modeled using the SAME restraint and EADP constraint. Additionally, 7–DPA had two disordered isopropyl groups which were modeled using the EADP constraint. Complex 7–DPA crystallized in the space group $P2_1/n$ and contained a channel of hexanes along the crystallographic b axis. Attempts to model this solvent were unsuccessful. The SQUEEZE function removed 158 electrons from a void-space volume of 834 Å. This value is consistent with the presence of approximately three hexane molecules in the unit cell. Complex 8' contained a disordered [ⁱPr₂PCH₂NPh]⁻ligand which was modeled using the SAME restraint and EADP constraint. Additionally, a toluene solvent molecule was disordered over an inversion center. Each carbon atom was placed into a PART -1 and refined using the SAME restraint.

	2 (ScL ₃)	3 (YL ₃)	4 (LaL ₃)	5 (Li ₃ ·NiL ₃)
chemical formula	$C_{39}H_{63}N_3P_3Sc$	$C_{39}H_{63}N_3P_3Y$	$C_{39}H_{63}N_3P_3La$	$C_{39}H_{63}N_3P_3Li_3Ni$
CCDC No.	1979226	1979224	1979228	1979223
fw	711.79	755.74	805.74	746.36
cryst syst	triclinic	triclinic	triclinic	trigonal
space group	Pī	ΡĪ	ΡĪ	P3c1
<i>a</i> (Å)	10.730(2)	10.7947(9)	10.4219(3)	13.807(5)
<i>b</i> (Å)	11.645(3)	11.3362(11)	11.1063(3)	13.807(5)
<i>c</i> (Å)	17.343(3)	18.6897(19)	19.6256(6)	25.285(9)
α (°)	92.598(7)	91.847(3)	83.9500(10)	90
β (°)	95.124(7)	92.356(2)	82.0920(10)	90
γ (°)	109.713(8)	117.344(2)	65.7240(10)	120
V(Å ³)	2025.2(7)	2026.4(3)	2048.08(10)	4175(3)
Ζ	2	2	2	4
D_{cald} (g cm ⁻³)	1.167	1.239	1.307	1.188
λ (Å), μ (mm ⁻¹)	0.71073, 0.330	0.71073, 1.587	0.71073, 1.189	0.71073, 0.609
Т	100(2)	100(2)	100(2)	100(2)
θ (°)	2.286 - 26.371	2.185 - 26.732	2.221 - 28.279	2.344 - 26.369
relns collected	28298	54483	39583	53542
unique relfns	6749	7167	9422	2293
data/restraint/parameters	8237/0/427	8624/0/427	10149/7/450	2858/0/152
R_1 , w R_2 (I>2 σ (I))	0.0344, 0.0725	0.0399, 0.0917	0.0209, 0.0459	0.0380, 0.0750

Table S1. Crystallographic Details for Monometallic Complexes 2–4, and 5.

	6 (NiScL ₃)	7 (NiYL3)	8 (NiLaL3)	9 (NiGaL ₃)	7–DPA	7 –THF	8 * ^{<i>a</i>}
chemical formula	C ₃₉ H ₆₃ N ₃ P ₃ ScNi	C ₃₉ H ₆₃ N ₃ P ₃ YNi C ₇ H ₈	C ₃₉ H ₆₃ N ₃ P ₃ LaNi	C ₃₉ H ₆₃ N ₃ P ₃ GaNi	C ₅₃ H ₇₃ N ₃ P ₃ YNi	C ₄₃ H ₇₁ N ₃ P ₃ OYNi	C ₃₉ H ₆₃ N ₃ P ₃ LaNi· C ₇ H ₈
CCDC No.	1979230	1979221	1979229	1979222	1979225	1979220	1979227
Fw	770.5	906.58	864.45	795.26	992.67	886.55	910.52
cryst syst	trigonal	monoclinic	cubic	triclinic	monoclinic	triclinic	monoclinic
space group	R3	$P2_1/c$	Pa3	ΡĪ	$P2_1/n$	Pī	C2/c
a (Å)	14.7276(6)	12.8967(5)	20.8114(5)	12.600(8)	19.7163(5)	10.9384(4)	21.2562(12)
<i>b</i> (Å)	14.7276(6)	14.0478(5)	20.8114(5)	18.048(7)	11.1180(3)	12.4594(4)	10.0180(6)
<i>c</i> (Å)	34.9107(17)	25.5457(9)	20.8114(5)	19.885(7)	49.2039(13)	20.0961(7)	39.979(2)
α (°)	90	90	90	65.539(6)	90	93.4220(10)	90
β (°)	90	95.0170(10)	90	88.58(2)	98.2860(10)	92.5660(10)	90.336(2)
γ (°)	90	90	90	79.34(2)	90	114.5710(10)	90
$V(Å^3)$	120	4610.4(3)	9013.7(6)	4038(3)	10673.2(5)	2479.05(15)	8513.2(9)
Ζ	6	4	8	4	8	2	8
$D_{cald} (g \ cm^{-3})$	1.171	1.306	1.274	1.308	1.236	1.188	1.421
λ (Å), μ (mm ⁻¹)	0.71073, 0.723	0.71073, 1.799	0.71073, 1.486	0.71073, 1.282	0.71073, 1.560	0.71073, 1.672	0.71073, 1.578
Т	123(2)	123(2)	125(2)	100(2)	100(2)	126(2)	100(2)
θ (°)	2.766 - 28.282	2.148 - 32.576	2.188-30.548	2.1231 - 34.337	2.120 - 27.484	2.221 - 26.731	2.165-30.600
reflns collected	41541	78598	284172	107105	185917	91591	127265
unique relfns	2944	10275	4622	25564	20031	8380	11429
data/restraint/ parameters	3614/0/146	16776/15/523	4622/0/146	33782/0/871	24509/110/1170	10522/0/494	13087/42/598
$\frac{R_1, wR_2}{(I > 2\sigma(I))}$	0.0348, 0.0794	0.0465, 0.0753	0.0301, 0.0613	0.0336, 0.0738	0.0426, 0.0838	0.0287, 0.0626	0.0248, 0.0455

Table S2. Crystallographic Details for Heterobimetallic Complexes 6–9, 7–DPA, 7–THF and 8'.

^{*a*} Complex **8**' is another solid-state conformer of **8**, which has a η^2 -(N-C_{*ipso*}) interaction between the NPh group and the La center.

¹³¹P, ¹H, and ¹³C NMR Characterization Spectra of Synthesized Complexes

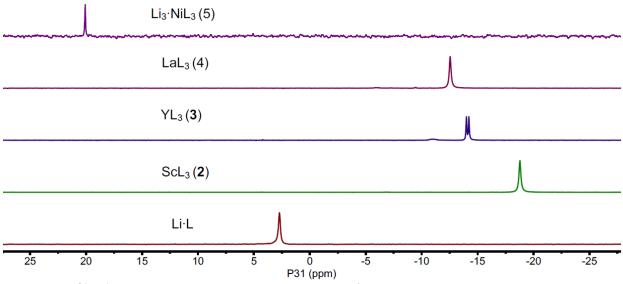


Figure S1. ³¹P{¹H} NMR (162 MHz, C₆D₆) spectra of ⁱPr₂PCH₂NLiPh and monometallic complexes 2–5.

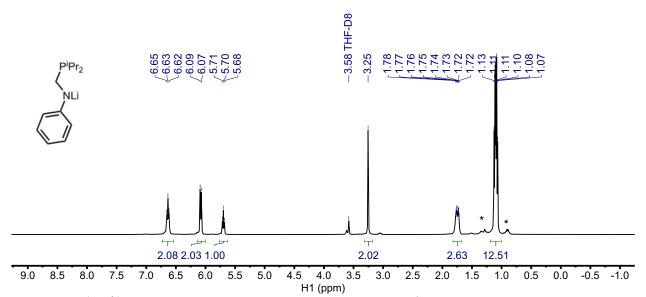


Figure S2. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, THF- d_8) spectrum of Li(${}^{i}Pr_2PCH_2NPh$). Hexanes solvent is marked by an asterisk (*).

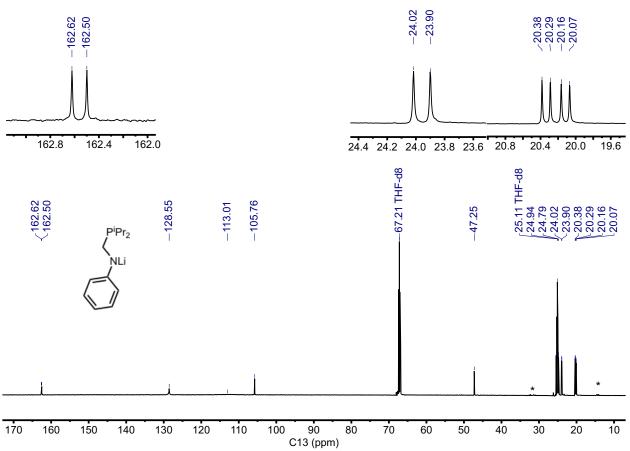


Figure S3. ¹³C{¹H} NMR (126 MHz, THF– d_8) spectrum of Li(ⁱPr₂PCH₂NPh). Hexanes solvent is marked by an asterisk (*).

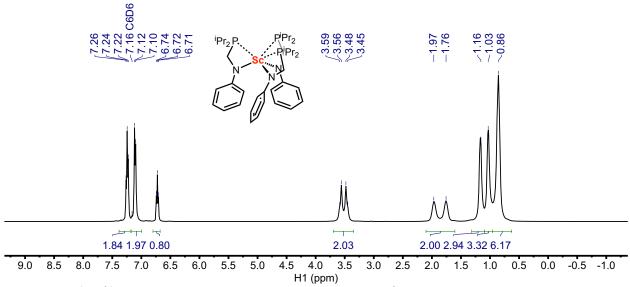


Figure S4. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, C₆D₆) spectrum of Sc(${}^{1}Pr_{2}PCH_{2}NPh$)₃ (2).

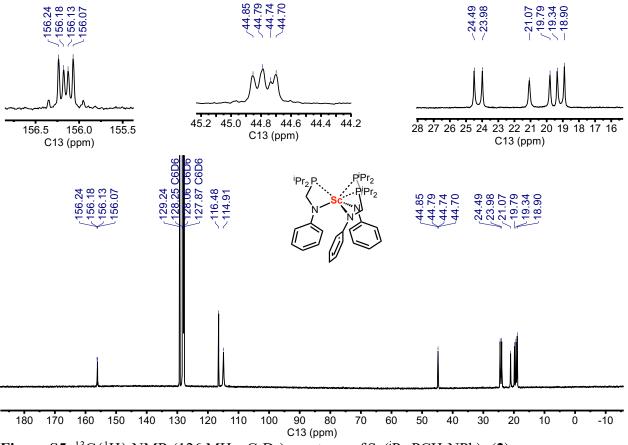


Figure S5. ¹³C{¹H} NMR (126 MHz, C₆D₆) spectrum of Sc(ⁱPr₂PCH₂NPh)₃ (2).

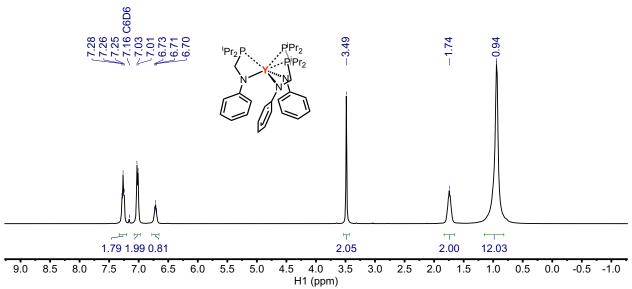


Figure S6. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, C₆D₆) spectrum of Y(${}^{1}Pr_{2}PCH_{2}NPh$)₃ (3).

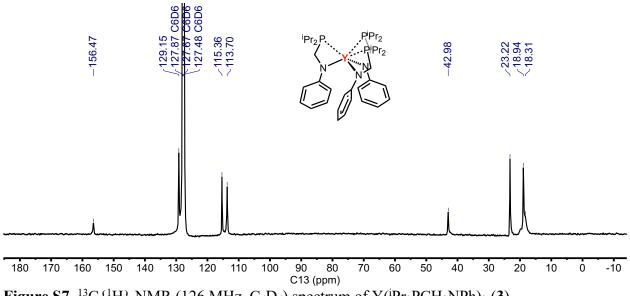


Figure S7. ¹³C{¹H} NMR (126 MHz, C_6D_6) spectrum of Y(ⁱPr₂PCH₂NPh)₃ (3).

Figure S8. ¹H{³¹P} NMR (400 MHz, C₆D₆) spectrum of La($^{i}Pr_2PCH_2NPh$)₃ (4). Hexanes solvent is marked by an asterisk (*).

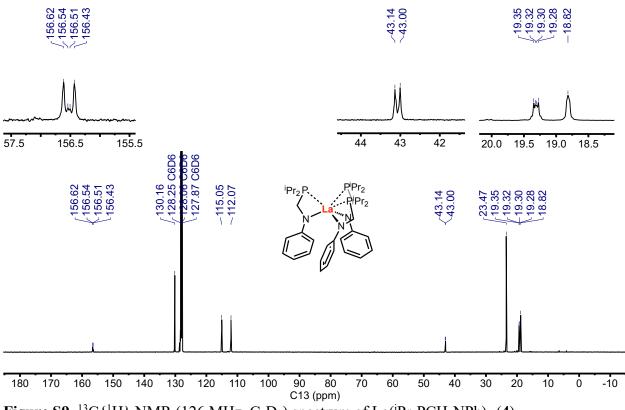


Figure S9. ${}^{13}C{}^{1}H$ NMR (126 MHz, C₆D₆) spectrum of La(${}^{i}Pr_2PCH_2NPh$)₃ (4).

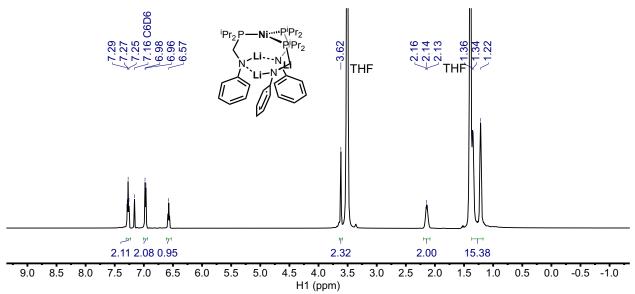
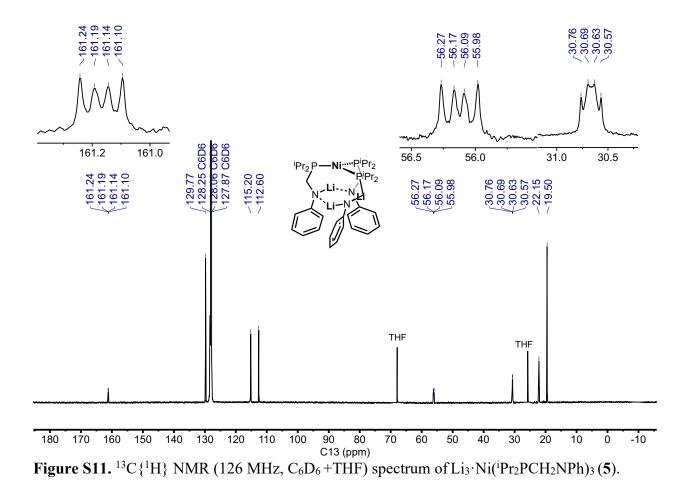
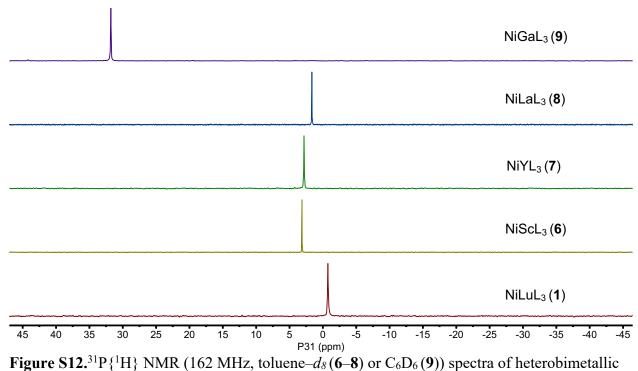
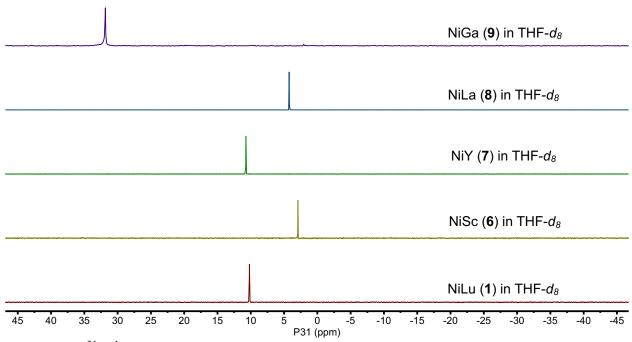





Figure S10. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, C₆D₆+THF) spectrum of Li₃·Ni(${}^{i}Pr_2PCH_2NPh$)₃(5).

complexes.

Figure S13. ³¹P{¹H} NMR (162 MHz, THF– d_8) spectra of complexes **6–8** in coordinating solvent THF– d_8 .

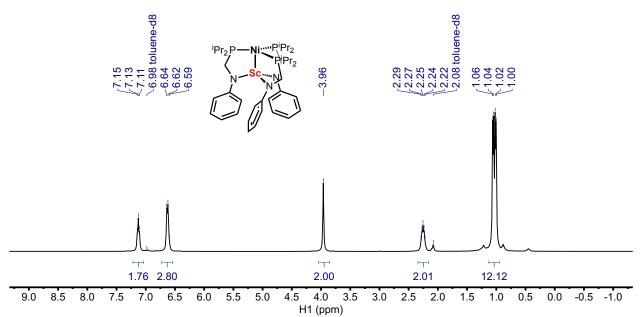


Figure S14. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, toluene– d_8) spectrum of NiSc(${}^{1}Pr_2PCH_2NPh$)₃ (6).

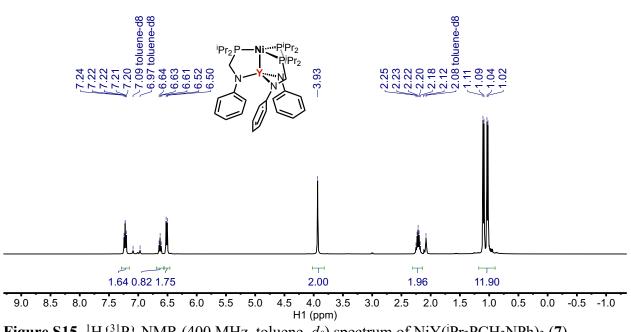


Figure S15. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, toluene– d_8) spectrum of NiY(${}^{i}Pr_2PCH_2NPh$)₃ (7).

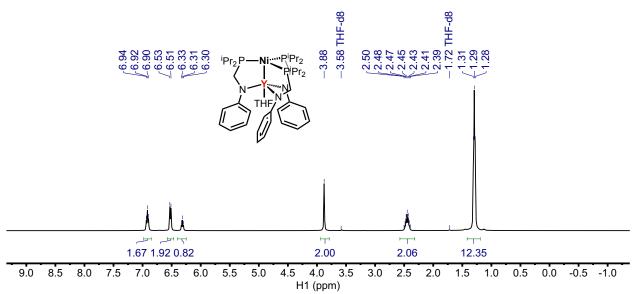
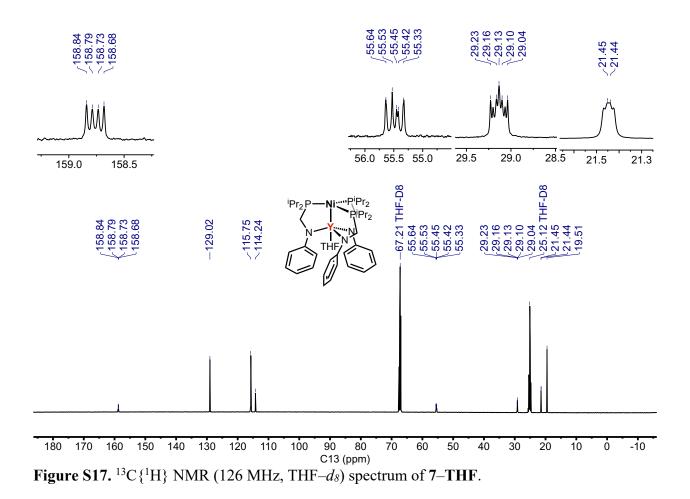
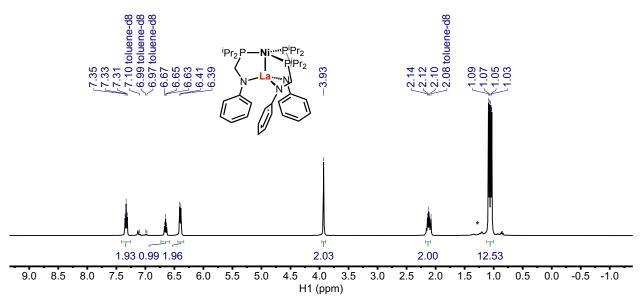
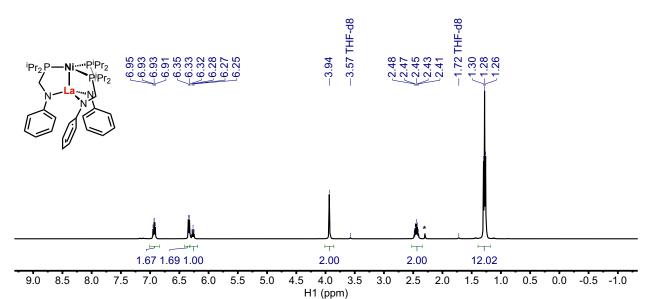





Figure S16. ¹H $\{^{31}P\}$ NMR (400 MHz, THF– d_8) spectrum of 7–THF.

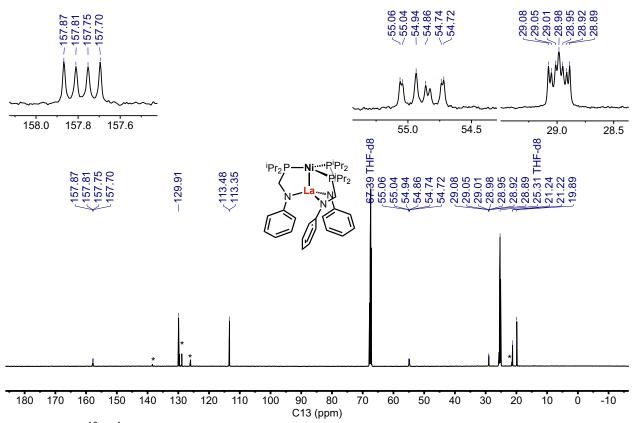
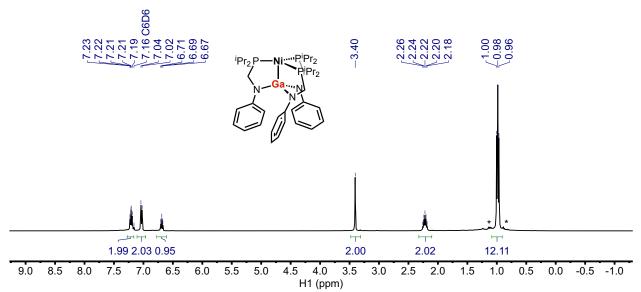
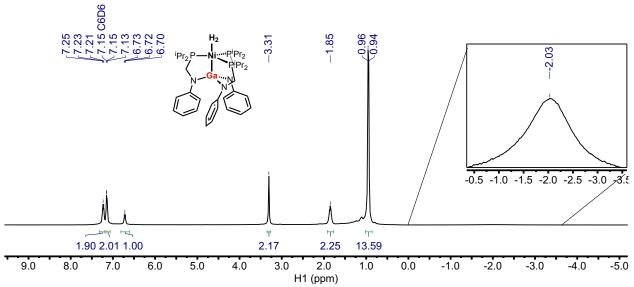


Figure S18. ¹H{³¹P} NMR (400 MHz, toluene– d_8) spectrum of NiLa(ⁱPr₂PCH₂NPh)₃ (8). Hexanes solvent is marked by an asterisk (*).

Figure S19. ¹H{³¹P} NMR (400 MHz, THF– d_8) spectrum of **8**. Toluene solvent is marked by an asterisk (*).

Figure S20. ¹³C{¹H} NMR (126 MHz, THF– d_8) spectrum of **8**. Toluene solvent is marked by an asterisk (*).

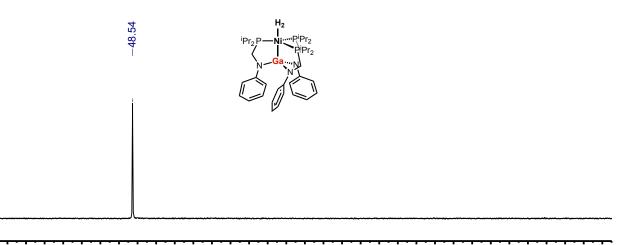

Figure S21. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, C₆D₆) spectrum of NiGa(${}^{i}Pr_{2}PCH_{2}NPh$)₃ (9). Hexanes is marked by an asterisk (*).

Figure S22. ¹³C{¹H} NMR (126 MHz, C₆D₆) spectrum of NiGa(ⁱPr₂PCH₂NPh)₃ (9). Hexanes is marked by an asterisk (*).

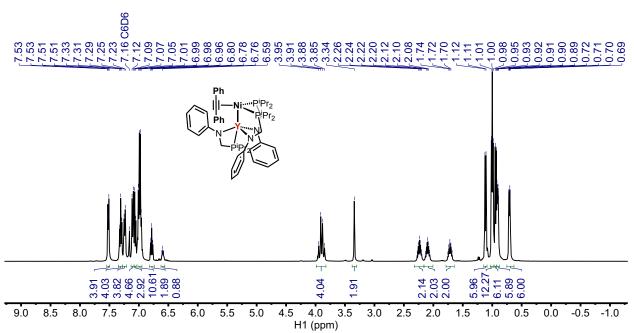
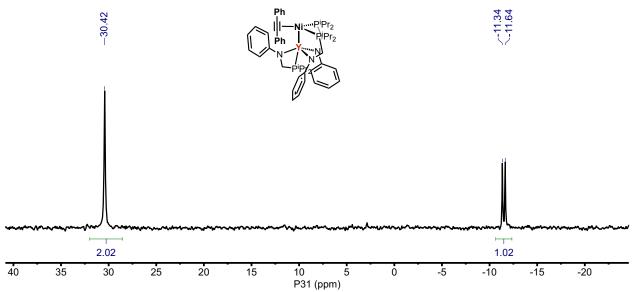


Figure S23. ¹H NMR (400 MHz, C_6D_6) spectrum of *in situ* generated 9–H₂ from exposing NiGa 9 to 1 atm of H₂.



4 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 P31 (ppm)

Figure S24. ³¹P{¹H} NMR (162 MHz, C_6D_6) spectrum of *in situ* generated 9–H₂ from exposing NiGa 9 to 1 atm of H₂.

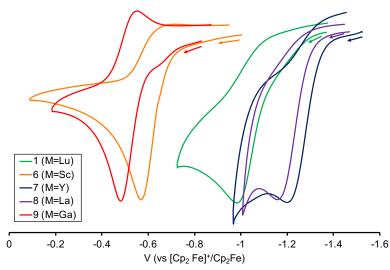


Figure S25. ${}^{1}H{}^{31}P{}$ NMR (400 MHz, C₆D₆) spectrum of *in situ* generated 7–DPA from exposing NiY 7 to 5 equiv. of diphenylacetylene.

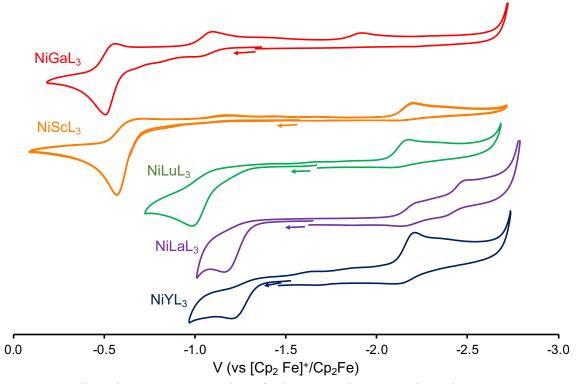


Figure S26. ³¹P $\{^{1}H\}$ NMR (162 MHz, C₆D₆) spectrum of *in situ* generated 7–DPA from exposing NiY 7 to 5 equiv. of diphenylacetylene.

Cyclic Voltammetry Studies of Heterobimetallic Complexes 6–9

Figure S27. Cyclic voltammogram overlay of the NiML₃ oxidation event for complexes **1** and **6–9** in 0.1 M [${}^{n}Pr_{4}N$][BAr^F₄] in 1,2-difluorobenzene under Ar at 100mV/s.

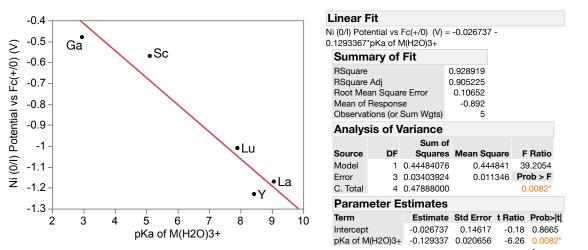


Figure S28. Cyclic voltammogram overlay of Ni–M complexes **1** and **6–9** in 0.1 M [n Pr₄N][BAr^F₄] in 1,2-difluorobenzene under Ar at 100mV/s.

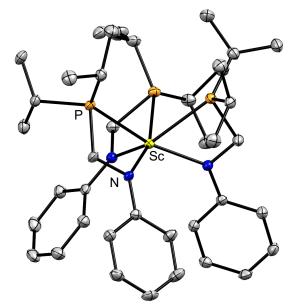
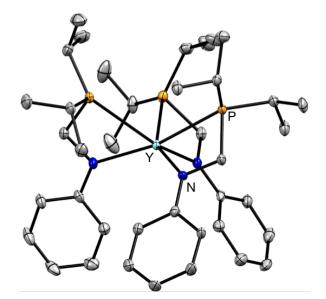

NiML ₃		M ^{3⁺} Ionic Radii (Å) ^a	Pyykko Covalent Radii (Å) ^b	Pauling Metallic Radii (Å) ^c	Codero Covalent Radii (Å) ^d	Pauling Electronegativity	p <i>K</i> a of M(H ₂ O) ³⁺ ion ^f	Charge Density (mm ³)
6 (M=Sc)	-0.57	0.745	1.48	1.429	1.7	1.36	5.11	277
7 (M=Y)	-1.23	0.9	1.63	1.616	1.9	1.22	8.43	157
1 (M=Lu)	-1.01	0.861	1.62	1.557	1.87	1.27	7.9	180
8 (M=La)	-1.17	1.032	1.8	1.69	2.07	1.1	9.06	104
9 (M=Ga)	-0.48	0.62	1.24	1.245	1.22	1.81	2.95	481
R_{adj}^2		0.77	0.70	0.83	0.66	0.60	0.91	0.73

Table S3. R_{adj}^2 correlation values between E_{pa} (V) of NiML₃ complexes (1 and 6–9) and various M(III) parameters.


^{*a*}Ionic radii for six-coordinate species. Ref. 11, ^{*b*}single–bond radii for a coordination number of three. Ref. 12&13, ^{*c*}Ref. 14, ^{*d*}Ref. 15, ^{*e*}Ref. 16, ^{*f*}Ref. 10.

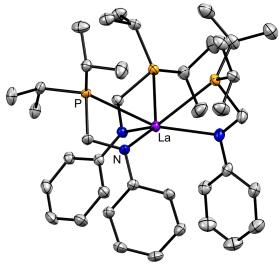

Figure S29. Plot of Ni(I/0) anodic peak potentials (E_{pa}) versus pK_a of $[M(H_2O)_6]^{3+}$ ion for complexes 1 and 6–8.

Figure S30. Molecular structure of **2** shown at 50% thermal ellipsoid probability. Hydrogen atoms and non-coordinating solvent molecules have been omitted for clarity. Atom colors: Sc, yellow; P, orange; N, blue; O, red; C, gray.

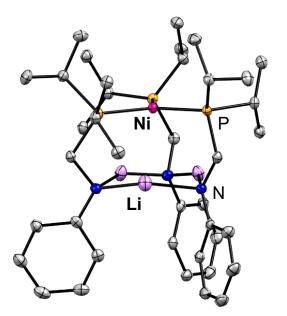

Figure S31. Molecular structure of **3** shown at 50% thermal ellipsoid probability. Hydrogen atoms and non-coordinating solvent molecules have been omitted for clarity. Atom colors: Y, light blue; P, orange; N, blue; O, red; C, gray.

Figure S32. Molecular structure of **4** shown at 50% thermal ellipsoid probability. Hydrogen atoms and non-coordinating solvent molecules have been omitted for clarity. Atom colors: La, purple; P, orange; N, blue; O, red; C, gray.

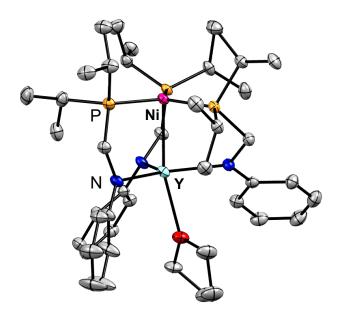
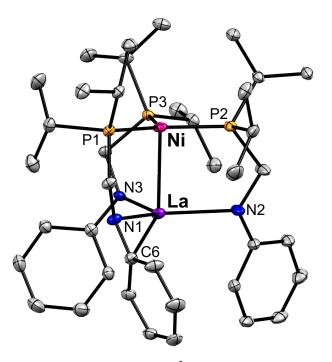

(deg) for monometa	2 (ScL ₃)	3 (YL ₃)	4 (LaL ₃)
	2.7807(7)	2.9595(7)	3.1829(4)
М-Р	2.8465(6)	2.9644(7)	3.2414(4)
	2.8674(7)	3.0053(7)	3.2028(4)
avg. M–P	2.8315(4)	2.9764(4)	3.2090(2)
	2.1063(14)	2.258(2)	2.4181(13)
M–N	2.1165(15)	2.273(2)	2.3991(13)
	2.1064(14)	2.282(2)	2.4314(13)
avg. M–N	2.1097(8)	2.271(1)	2.4162(8)
	92.595(19)	97.15(2)	92.642(10)
Р-М-Р	87.15(2)	93.19(2)	99.006(11)
	102.38(2)	100.38(2)	89.605(11)
Σ(Ρ–Μ–Ρ)	282.13(3)	290.72(3)	281.25(2)
	105.01(5)	114.38(8)	112.31(4)
N-M-N	110.17(6)	101.95(7)	119.22(4)
	108.28(5)	111.00(7)	116.70(4)
$\Sigma(N-M-N)$	324.46(9)	327.33(13)	348.22(7)

Table S4. Full table of Geometrical Parameters, Including Bond Lengths (Å) and Angles (deg) for Monometallic Complexes 2–4.



avg. Ni–M (Å):	2.927(4)
avg. Ni-P (Å):	2.2008(9)
avg. Li–N (Å):	1.987(4)
Σ (P–Ni–P) (deg):	359.993(1)
avg. Li to N ₃ -plane:	0.268(5)
Ni to P ₃ -plane:	0.0101(7)

Figure S33. Molecular structure of **5** shown at 50% thermal ellipsoid probability. Hydrogen atoms and non-coordinating solvent molecules have been omitted for clarity. Atom colors: Li, light purple; Ni, pink; P, orange; N, blue; O, red; C, gray.

Figure S34. Molecular structure of 7–THF shown at 50% thermal ellipsoid probability. Hydrogen atoms and non-coordinating solvent molecules have been omitted for clarity. Atom colors: Y, light blue; Ni, pink; P, orange; N, blue; O, red; C, gray.

La-C6 distance (Å): 2.929(15)

Figure S35. A different solid-state conformer of NiLaL₃, **8**', that features a η^2 -(N-C_{*ipso*}) interaction between the NPh group and the La center. Crystals of **8**' were isolated from hot toluene recrystallization. Thermal ellipsoids shown at 50% probability. Hydrogen atoms and noncoordinating solvent molecules have been omitted for clarity. Atom colors: La, purple; P, orange; N, blue; O, red; C, gray.

	6 (NiScL ₃)	7 (NiYL ₃)	8 (NiLaL ₃)	9 (NiGaL ₃)
Ni-M	2.3569(7)	2.4823(3)	2.5732(4)	2.3342(11); 2.3448(12)
ľ Pyykkö	0.91	0.91	0.89	1.00; 1.00
	2.2184(4)	2.2167(6)	2.2352(5)	2.2116(9); 2.1920(10)
Ni-P	2.2184(4)	2.2274(6)	2.2352(5)	2.2154(8); 2.1993(7)
	2.2184(4)	2.2362(6)	2.2352(5)	2.2048(9); 2.1933(7)
avg. Ni-P	2.2184(2)	2.2268(3)	2.2352(3)	2.2106(5); 2.1949(5)
	2.1021(14)	2.2503(17)	2.4288(18)	1.9188(13); 1.9234(13)
M–N	2.1021(14)	2.2591(17)	2.4288(18)	1.9045(13); 1.9159(12)
	2.1021(14)	2.2639(17)	2.4288(18)	1.9208(13); 1.9254(13)
avg. M–N	2.1021(8)	2.2578(9)	2.4288(10)	1.9147(8); 1.9216(7)
	119.844(2)	121.11(2)	119.913(2)	119.89(3); 119.76(2)
P-Ni-P	119.845(2)	118.34(2)	119.913(2)	120.61(2); 119.39(3)
	119.843(2)	120.30(2)	119.913(2)	116.80(2); 118.69(2)
Σ(P-Ni-P)	359.532(2)	359.75(4)	359.739(3)	357.30(4); 357.84(4)
	115.69(3)	116.28(6)	119.943(3)	115.69(5); 117.18(5)
N-M-N	115.69(3)	120.03(6)	119.943(3)	116.95(5): 114.78(5)
	115.69(3)	118.50(6)	119.943(3)	112.81(6); 114.07(5)
Σ(N-M-N)	347.07(5)	354.81(10)	359.829(5)	345.45(9); 346.03(9)
M to N ₃ -plane	0.4427(15)	0.2994(10)	-0.058(60)	0.4280(7); 0.4207(7)
Ni to P ₃ -plane	0.0881(6)	0.0645(4)	-0.066(18)	0.2108(3); 0.1873(3)

 Table S5. Table of X-ray Structural Parameters, Bond Lengths (Å) and Angles (deg), for

 Heterobimetallic Complexes 6–9.

	7–DPA	7 –THF	8 ²
Ni–M	2.6799(4); 2.7263(4)	2.5905(3)	2.6602(2)
r _{Pyykkö}	0.98; 1.0	0.95	0.92
	2.2168(7); 2.2417(7)	2.1856(6)	2.2272(4)
Ni–P	2.2278(7); 2.2100(8)	2.1885(6)	2.2208(5)
	_	2.2111(5)	2.1934(16)
avg. Ni–P	2.2222(5); 2.2259(5)	2.1951(3)	2.2138(6)
0	2.239(2); 2.221(2)	2.2330(15)	2.4217(13)
M–N	2.2892(19); 2.299(2)	2.3181(16)	2.4319(14)
	2.293(2); 2.293(3)	2.3438(16)	2.4212(5)
avg. M–N	2.274(1); 2.271(2)	2.2983(9)	2.4249(7)
0	107.88(3); 107.35(3)	116.81(2)	119.616(17)
P–Ni–P	_	121.88(2)	118.71(3)
	_	121.23(2)	121.33(4)
Σ(P–Ni–P)	_	359.92(3)	359.66(5)
	118.97(7); 116.48(7)	104.13(5)	120.15(5)
N-M-N	99.75(7); 101.47(7)	115.23(6)	113.94(4)
	131.87(7); 134.27(8)	140.47(5)	125.84(4)
Σ(N-M-N)	350.59(12); 352.22(13)	359.83(9)	359.93 (12)
M to N ₃ -plane	_	0.0487(8)	-0.118(2)
Ni to P ₃ –plane	_	0.0369(3)	-0.071(3)
Y-0	_	2.3984(13)	_
Y–P	2.9894(7); 2.9897(7)		_
$C_{DPA} \equiv C_{DPA}$	1.286(3); 1.276(4)	_	_
Ph–C≡C	142.9(2)/136.4(2); 148.5(3)/142.1(3)	_	_

Table S6. Table of X–ray Structural Parameters, Bond Lengths (Å) and Angles (deg), for <u>Heterobimetallic Complexes</u> 7–DPA, 7–THF, and 8'

^a A different solid-state conformer of NiLaL₃, **8**', that features a η^2 -(N-C_{ipso}) interaction between the NPh group and the La center.

Table S7. <i>R²_{adj}</i> correlation values for M-N, Ni-P, Ni-M bond lengths (Å) of complexes 1 a	nd
6–9 vs different M(III) parameters.	

NiML ₃	M-N bond length (Å)	l Ni-P bond) length (Å)	Ni-M bond length (Å)	M ^{3⁺} Ionic Radii (Å)ª	Pyykkö Covalent Radii (Å) ^ь	Pauling Metallic Radii (Å)º	Codero Covalent Radii (Å) ^d	Pauling Electronegativity ^e	p <i>K</i> a of M(H ₂ O) ³⁺ ion ^f	Charge Density (mm ³)
6 (M=Sc)	2.102	2.2184	2.3569	0.745	1.48	1.429	1.7	1.36	5.11	277
7 (M=Y)	2.258	2.2268	2.4823	0.9	1.63	1.616	1.9	1.22	8.43	157
1 (M=Lu)	2.213	2.2188	2.4644	0.861	1.62	1.557	1.87	1.27	7.9	180
8 (M=La)	2.429	2. 2352	2.5732	1.032	1.8	1.69	2.07	1.1	9.06	104
9 (M=Ga)	1.918	2.2027	2.3395	0.62	1.24	1.245	1.22	1.81	2.95	481
M-N bond length R^2_{adj}				0.99	0.99	0.96	0.93	0.90	0.88	0.92
Ni-P bond length R^2_{adj}				0.91	0.93	0.93	0.92	0.92	0.78	0.90
Ni-M bond length R_{adj}^2				0.93	0.83	0.83	0.68	0.60	0.83	0.70

^{*a*}Ionic radii for six-coordinate species. Ref. 11, ^{*b*}single–bond radii for a coordination number of three. Ref. 12&13, ^{*c*}Ref. 14, ^{*d*}Ref. 15, ^{*e*}Ref. 16, ^{*f*}Ref. 10.

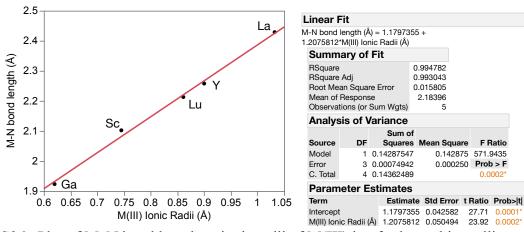


Figure S36. Plot of M–N bond length vs ionic radii of M(III) ion for heterobimetallic complexes 1 and 6–9.

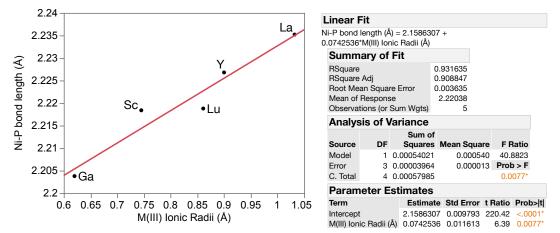


Figure S37. Plot of Ni–P bond length vs ionic radii of M(III) ion for heterobimetallic complexes 1 and 6–9.

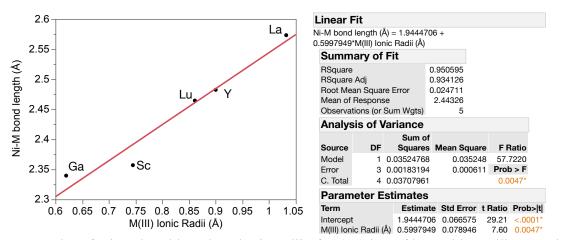
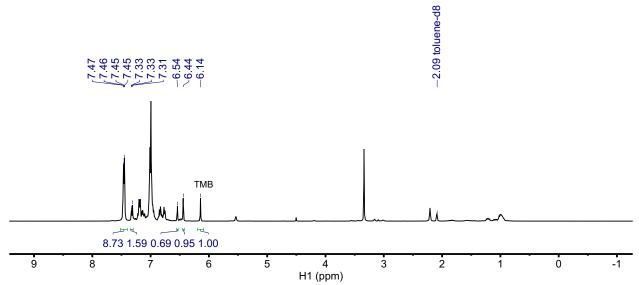
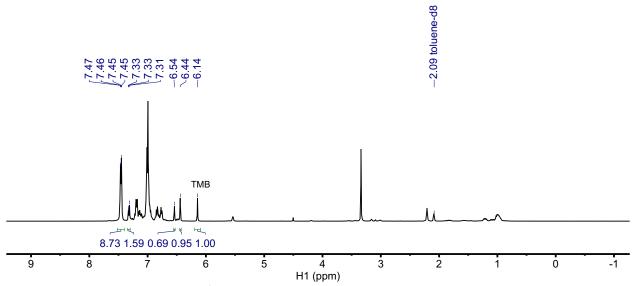


Figure S38. Plot of Ni–M bond length vs ionic radii of M(III) ion of heterobimetallic complexes 1 and 6–9.

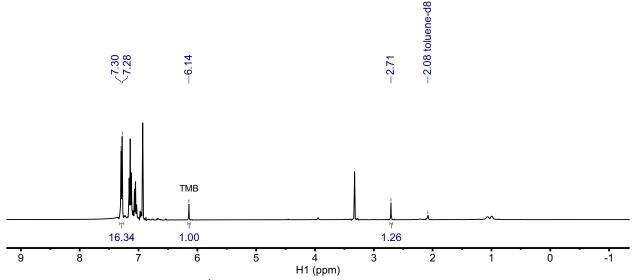
Alkyne Semihydrogenation Catalytic Data

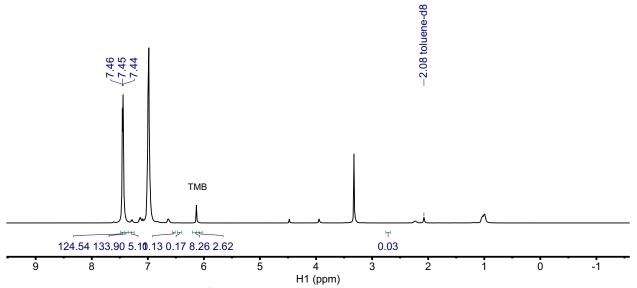

Catalysis was monitored via ¹H NMR spectroscopy by integrating selected peaks for various (by)products relative to those of the internal standard (1,3,5-trimethoxybenzene (TMB), recycle delay = 20s).

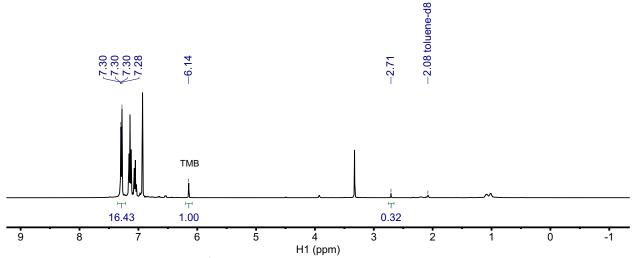
¹H NMR proton resonances used in quantification of diphenylacetylene starting material conversion and product yields (toluene– d_8 , 400 MHz):

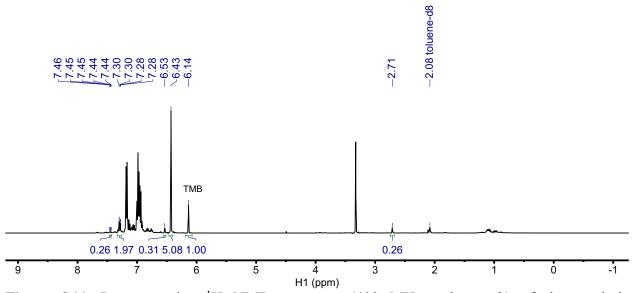

diphenylacetylene: 7.45 (m, 4H)

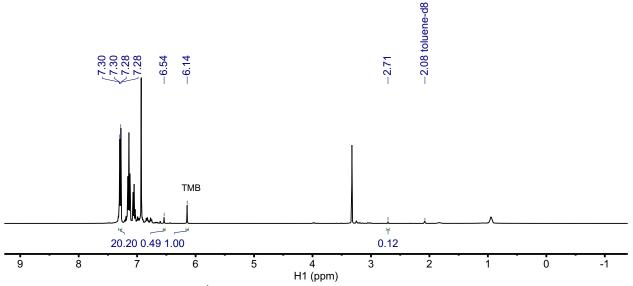
(E)-stilbene: 7.29 (dd, J = 8.3, 1.3 Hz, 4 H)


- (Z)-stilbene: 6.43 (s, 2 H)
- 1, 2–diphenylethane: 2.71 (s, 4H)
- 1,2,3,4-tetraphenyl-1,3-butadiene: 6.53 (s, 2H)
- 1,3,5-trimethoxybenzene (internal standard, TMB): 6.14 (s, 3H)


Figure S39. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by Ni(COD)₂ + HL₃ (Table 1, entry 1: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.


Figure S40. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by **5** (Table 1, entry 2: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.


Figure S41. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by **1** (Table 1, entry 3: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.


Figure S42. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by **6** (Table 1, entry 4: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

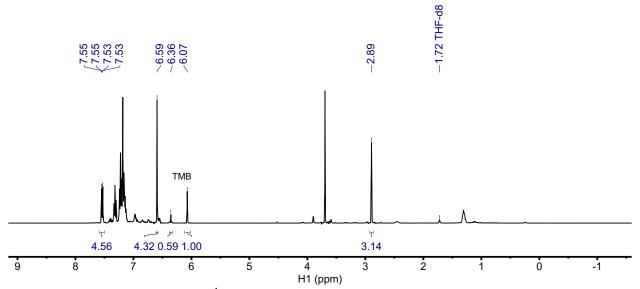

Figure S43. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by 7 (Table 1, entry 5: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

Figure S44. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by **8** (Table 1, entry 6: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

Figure S45. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene by **9** (Table 1, entry 7: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

Figure S46. Representative ¹H NMR spectrum (400 MHz, THF– d_8) of the catalytic semihydrogenation of diphenylacetylene by 7–THF (Table 1, entry 8: 2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

Initial Rate Studies

Initial rate studies of syn-hydrogenation of diphenylacetylene

Kinetic data was collected every 180 seconds at 344 K until either 10 % conversion of diphenylacetylene or for 1 h. The conversion of diphenylacetylene was monitored via ¹H NMR spectroscopy by quantitative integration of the aryl proton at 7.42 ppm (m, 4H) against that of the internal 1,3,5-trimethoxybenzene standard. With the single exception of **6**, *Z*-stilbene was the only observed product during the initial rate studies, so that:

Rate of DPA syn-hydrogenation = $\frac{d[Z-stilbene]}{dt} = -\frac{d[DPA]_{observed}}{dt}$ (eq. 1)

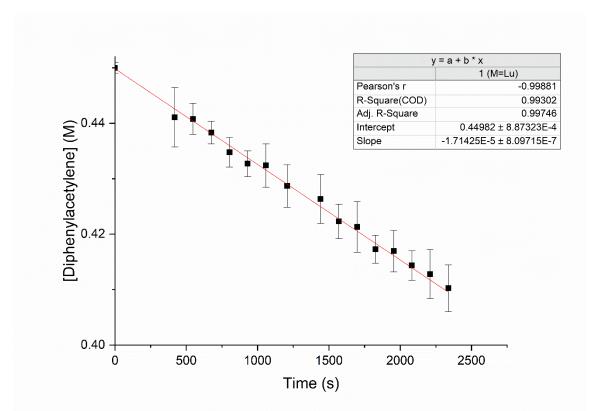
However, for **6**, competitive formation of the 1,2,3,4-tetraphenyl-1,3-butadiene (referred to as the *Z*,*Z*-diene) and *E*-stilbene (derived from *Z*-stilbene isomerization) was observed. Since the *Z*,*Z*-diene is the product of 1 mol H_2 and 2 mol DPA, then the observed rate with respect to [DPA] is equivalent to:

$$-\frac{d[\text{DPA}]_{observed}}{dt} = \frac{d[Z-stilbene]}{dt} + \frac{d[E-stilbene]}{dt} + 2 \frac{d[Z,Z-diene]}{dt} \quad (\text{eq. 2})$$

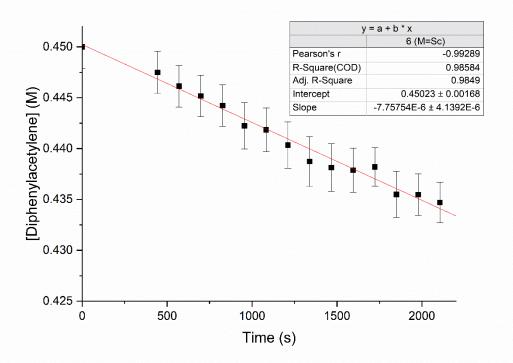
On the other hand, DPA syn-hydrogenation, which involves the key step of a single DPA insertion into Ni–H bond, will also lead to the Z,Z-diene product. Therefore, the rate of DPA syn-hydrogenation is no longer equal to $-\frac{d[DPA]_{observed}}{dt}$, and is instead:

Rate of DPA syn-hydrogenation =
$$\frac{d[Z-stilbene]}{dt} + \frac{d[E-stilbene]}{dt} + \frac{d[Z,Z-diene]}{dt}$$
 (eq. 3)

Substituting equation 3 into equation 2,


Rate of DPA syn-hydrogenation =
$$-\frac{d[DPA]_{observed}}{dt} - \frac{d[Z,Z-diene]}{dt}$$
 (eq. 4)

The rate of Z,Z-diene was monitored via ¹H NMR spectroscopy by quantitative integration of the vinylic proton at 6.53 ppm (s, 2H) against that of the internal 1,3,5-trimethoxybenzene standard.

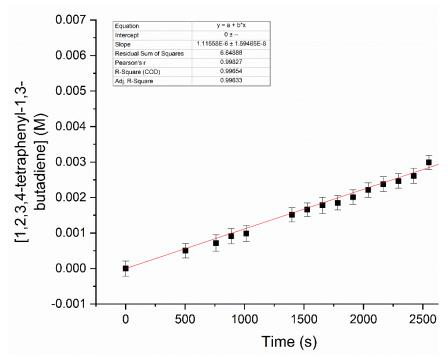
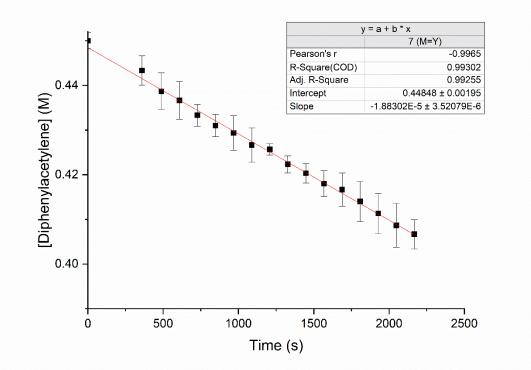
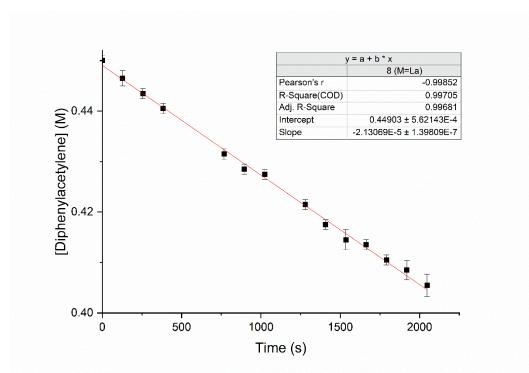

Rate of DPA syn-hydrogenation =
$$-\left(-7.8(4) \times 10^{-6} \frac{10^{-6}M}{s}\right) - \left(1.1(1) \times 10^{-6} \frac{M}{s}\right) = 6.7(4) \times 10^{-6} M/s$$

Initial rate studies of isomerization of *cis*-stilbene

Kinetic data was collected every 30–60 seconds at 344 K until either 10 % conversion of *cis*–stilbene or for 45 min. The conversion of *cis*–stilbene was monitored via ¹H NMR spectroscopy by quantitative integration of the vinyl proton at 6.43 ppm (s, 2H) against that of the internal 1,3,5-trimethoxybenzene standard.

Figure S47. Initial rate kinetic data for the syn-hydrogenation of diphenylacetylene for NiLuL₃ **1**. Data is an average of 3 independent runs.

Figure S48. Initial rate kinetic data for the consumption of diphenylacetylene for NiScL₃ 6. Data is an average of 3 independent runs.

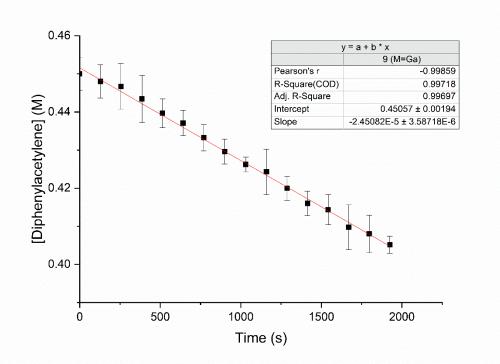

Figure S49. Initial rate kinetic data for the production of 1,2,3,4-tetraphenyl-1,3-butadiene for NiScL₃ 6. Data is an average of 3 independent runs.

Figure S50. Initial rate kinetic data for the syn-hydrogenation of diphenylacetylene for NiYL₃ 7. Data is an average of 3 independent runs.

Figure S51. Initial rate kinetic data for the syn-hydrogenation of diphenylacetylene for NiLaL₃ **8**. Data is an average of 3 independent runs.

Figure S52. Initial rate kinetic data for the syn-hydrogenation of diphenylacetylene for NiGaL₃ **9**. Data is an average of 3 independent runs.

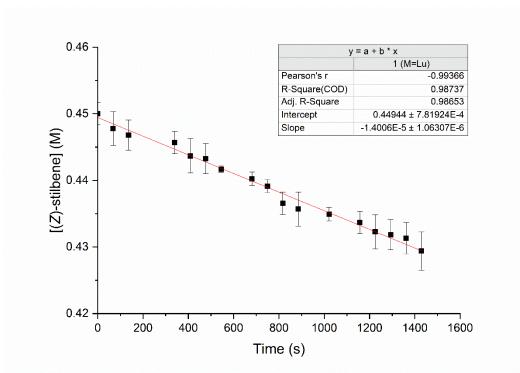


Figure S53. Initial rate kinetic data for the cis to trans isomerization of (Z)-stilbene for NiLuL₃ 1. Data is an average of 3 independent runs.

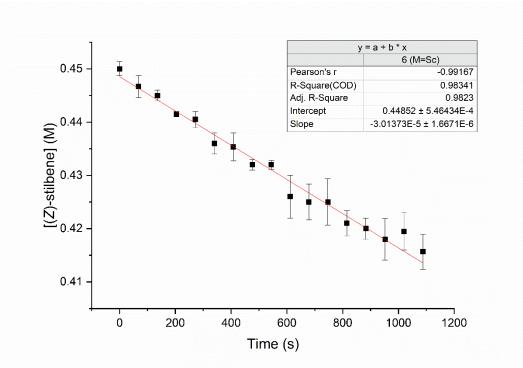
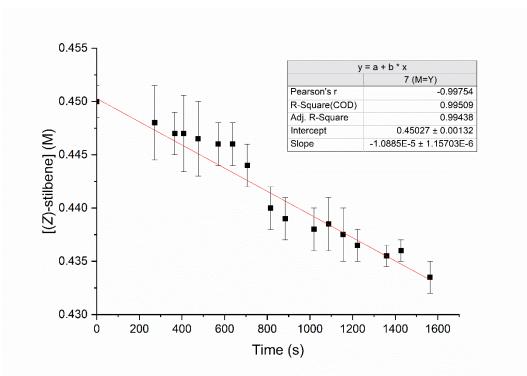



Figure S54. Initial rate kinetic data for the cis to trans isomerization of (Z)-stilbene for NiScL₃ 6. Data is an average of 3 independent runs.

Figure S55. Initial rate kinetic data for the cis to trans isomerization of (Z)–stilbene for NiYL₃7. Data is an average of 3 independent runs.

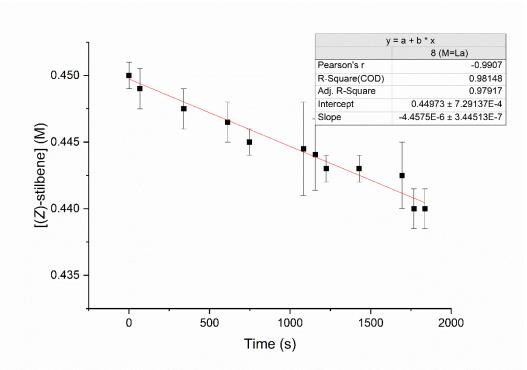


Figure S56. Initial rate kinetic data for the cis to trans isomerization of (Z)-stilbene for NiLaL₃ 8. Data is an average of 3 independent runs.

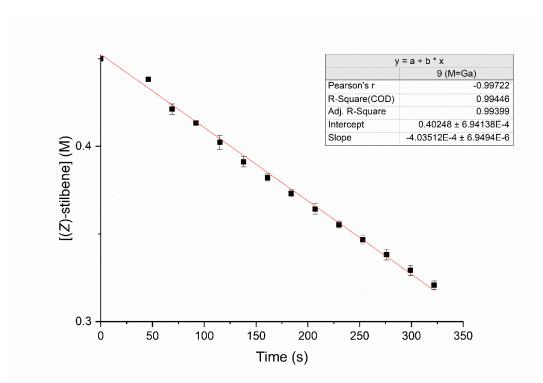
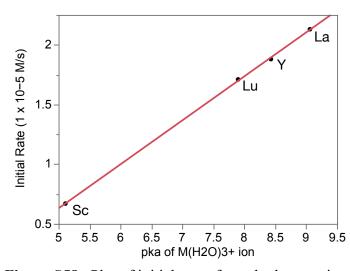


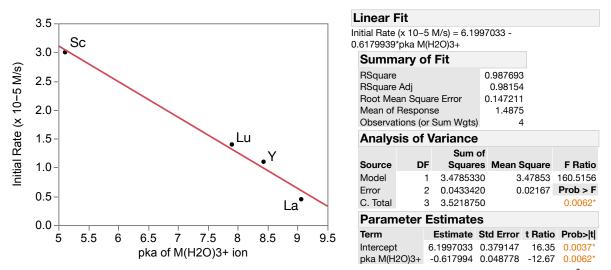
Figure S57. Initial rate kinetic data for the cis to trans isomerization of (Z)-stilbene for NiGaL₃ 9. Data is an average of 3 independent runs.

NiML ₃	Initial Rate (10 ⁻⁵ M/s)	E _{pa} (V)	M ^{3⁺} Ionic Radii (Å)ª	Pyykkö Covalent Radii (Å) ^b	Pauling Metallic Radii (Å) ^c	Codero Covalent Radii (Å) ^d	Pauling Electronegativity ^e	p <i>K</i> a of M(H ₂ O) ³⁺ ion ^f	Charge Density (mm ³)
6 (M=Sc)	0.67	-0.57	0.745	1.48	1.429	1.7	1.36	5.11	277
7 (M=Y)	1.88	-1.23	0.9	1.63	1.616	1.9	1.22	8.43	157
1 (M=Lu)	1.71	-1.01	0.861	1.62	1.557	1.87	1.27	7.9	180
8 (M=La)	2.13	-1.17	1.032	1.8	1.69	2.07	1.1	9.06	104
9 (M=Ga)	2.45	-0.48	0.62	1.24	1.245	1.22	1.81	2.95	481
Ni-RE R_{adj}^2		0.94	0.85	0.82	0.94	0.87	0.81	0.99	0.96
Ni-M R_{adj}^2		0.05	0.01	0.01	0.00	0.04	0.08	0.00	0.03

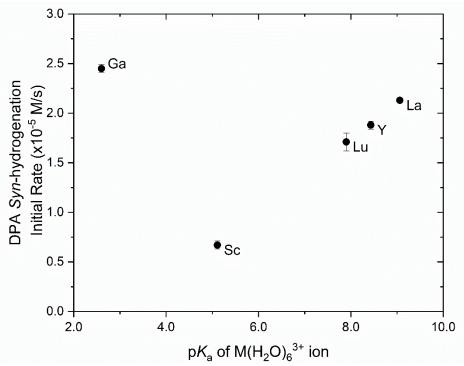

Table S8. R_{adj}^2 correlation values for initial rate of syn-hydrogenation of complexes 1 and 6-9 vs different M(III) parameters.

^{*a*}Ionic radii for six-coordinate species. Ref. 11, ^{*b*}single–bond radii for a coordination number of three. Ref. 12&13, ^{*c*}Ref. 14, ^{*d*}Ref. 15, ^{*e*}Ref. 16, ^{*f*}Ref. 10.

Table S9. R_{adj}^2 correlation values for initial rate of Z to E isomerization of complexes 1 and 6-9 vs different M(III) parameters.


NiML ₃	Initial Rate (-1x10⁻⁵ M/s)	E _{pa} (V)	M ^{³⁺} Ionic Radii (Å)ª	Pyykkö Covalent Radii (Å) ^ь	Pauling Metallic Radii (Å) ^c	Codero Covalent Radii (Å) ^d	Pauling Electronegativity ^e	p <i>K</i> a of M(H ₂ O) ³⁺ ion ^f	Charge Density (mm ³)
6 (M=Sc)	3.00	-0.57	0.745	1.48	1.429	1.7	1.36	5.11	277
7 (M=Y)	1.10	-1.23	0.9	1.63	1.616	1.9	1.22	8.43	157
1 (M=Lu)	1.40	-1.01	0.861	1.62	1.557	1.87	1.27	7.9	180
8 (M=La)	0.450	-1.17	1.032	1.8	1.69	2.07	1.1	9.06	104
9 (M=Ga)	40.4	-0.48	0.62	1.24	1.245	1.22	1.81	2.95	481
Ni-RE R_{adj}^2		0.84	0.87	0.84	0.96	0.90	0.83	0.98	0.99
Ni-M R_{adj}^2		0.33	0.50	0.67	0.67	0.83	0.88	0.61	0.82

^{*a*}Ionic radii for six-coordinate species. Ref. 11, ^{*b*}single–bond radii for a coordination number of three. Ref. 12&13, ^{*c*}Ref. 14, ^{*d*}Ref. 15, ^{*e*}Ref. 16, ^{*f*}Ref. 10.



L	inear I	Fit								
	itial Rate 3683699					21 +				
	Summary of Fit									
	RSquare RSquare	Adj	-		0.99	9726 9589				
	Root Mean Square Er Mean of Response Observations (or Sum					3013 .5975 4				
	Analysis of Varian			ance						
				Sum o	of					
	Source	DF		Square	s Mo	ean Sc	luare	FRa	tio	
	Model	1	1.3	235936	3	1.2	3594	7298.3	375	
	Error	2	0.	000338	7	0.0	0017	Prob :	> F	
	C. Total	3	1.	236275	0			0.00	01*	
	Parameter Estimates									
	Term			Estin	nate	Std E	rror	t Ratio	Pro	b> t
	Intercept	t		-1.211	1321	0.033	516	-36.14	0.0	*8000
	pka of M	(H2O)3+	ion	0.3683	3699	0.004	312	85.43	0.0	0001*
~f	dinha	mulaa	at	lana	170	nV	of	N/LI	0	N.3+

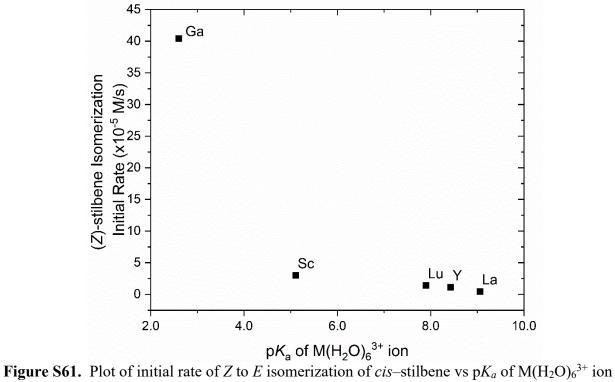

Figure S58. Plot of initial rate of syn–hydrogenation of diphenylacetylene vs pK_a of M(H₂O)₆³⁺ ion by complexes **1** and **6–8**.

Figure S59. Plot of initial rate of *Z* to *E* isomerization of *cis*–stilbene vs pK_a of M(H₂O)₆³⁺ by complexes 1 and 6–8.

Figure S60. Plot of initial rate of *syn*-hydrogenation of diphenylacetylene vs pK_a of M(H₂O)₆³⁺ ion by complexes 1 and 6–9.

by complexes 1 and 6–9.

Mechanistic and Reaction Monitoring Studies

(Z)-stilbene isomerization catalysis

¹H NMR proton resonances used in quantification of starting material conversion and product yields (toluene– d_8 , 400 MHz):

(E)-stilbene: 7.29 (dd, J = 8.3, 1.3 Hz, 4 H)

(Z)-stilbene: 6.43 (s, 2 H)

1, 2-diphenylethane: 2.71 (s, 4H)

HH	catalyst (2.5 mol %) H ₂ (4 atm)	H H H	
Ph Ph	toluene, 70°C 16 h	Ph Y ⁺ Ph X H H H	

entry	catalyst	Z–stilbene conversion (%) ^{b,c}	E-stilbene:1,2-diphenylethane (%) ^{b,c}
1	1 (M = Lu)	92	85:7
2	6 (M = Sc)	>99	99:0
3	7 (M = Y)	80	76:4
4 ^d	8 (M = La)	35	21:14
5	9 (M = Ga)	>99	97:3

^{*a*}Catalytic Conditions: 2.5 mol % precatalyst, 0.45 M Z–stilbene in ca. 500 μ L of toluene–*d*₈, 4 atm H₂, heated to 70 °C. ^{*b*}Conversion at 16 h for triplicate runs based on ¹H NMR integration against an internal trimethoxybenzene standard (0.02 mmol). ^{*c*}Averaged over triplicate runs (±0.5 error bars).^dCatalyst decomposition observed by ³¹P and ¹H NMR spectroscopy.

Table S11. Cis-stilbene isomerization at 16 h for complexes 6, 7, and 9 in absence of H ₂
--

	$\overset{H}{\underset{Ph}{\longrightarrow}}\overset{H}{\underset{Ph}{\longrightarrow}}$	catalyst (2.5 mol %) toluene, 70°C 16 h	- Ph
entry	catalyst	Z–stilbene conversion (%) ^{b,c}	E–stilbene (%) ^{b,c}
1	1 (M = Lu)	<1	<1
2	$6 \ (\mathbf{M} = \mathbf{S}\mathbf{c})$	13	13
3	7 (M = Y)	<1	<1
4	8 (M = La)	<1	<1
5	9 (M = Ga)	28	28

^{*a*}Catalytic Conditions: 2.5 mol % precatalyst, 0.45 M Z–stilbene in ca. 500 μ L of toluene– d_8 under Ar heated to 70 °C. ^{*b*}Conversion or yield at 16 h for duplicate runs based on ¹H NMR integration against an internal 1, 3,5–trimethoxybenzene standard (0.02 mmol). ^{*c*}Averaged over duplicate runs (±0.5 error bars).

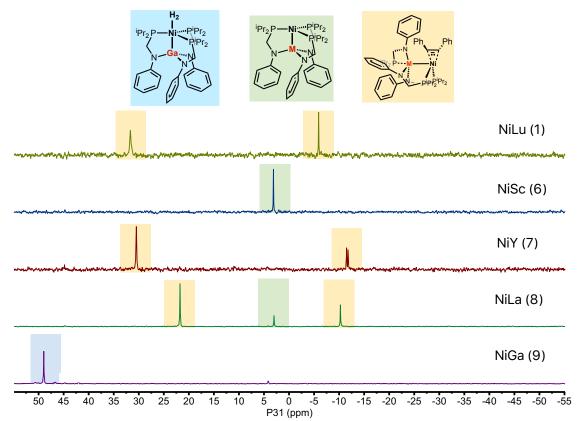
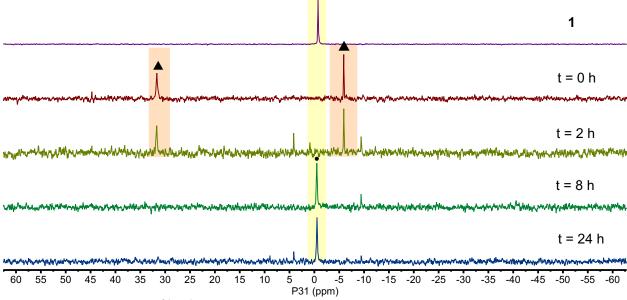
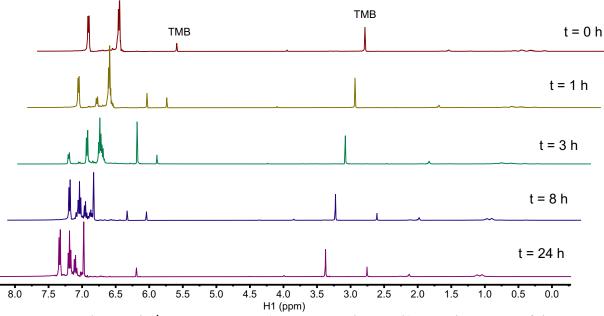
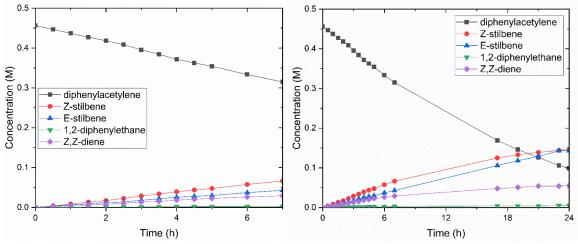

	SI_0 I IIII0			011010100			
	entry	alkene	variation on conditions	E:Z:alkane ^a			
	1	trans-stilbene	none	99:<1:0			
	2	cis-stilbene	catalyst omitted	<1:99:0			
aErom	^a Erom ¹ UNMP integration against an internal trimathough any standard at a 24 h timenoint						

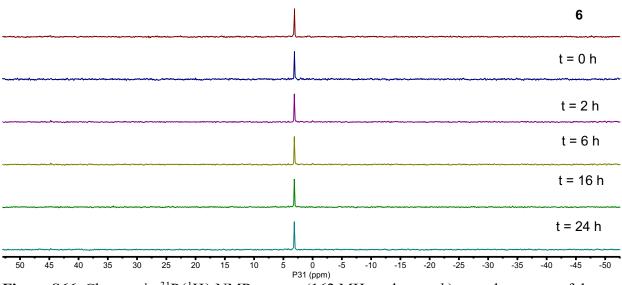
Table S12. Alkene isomerization studies of 7 (NiYL₃) with varying conditions

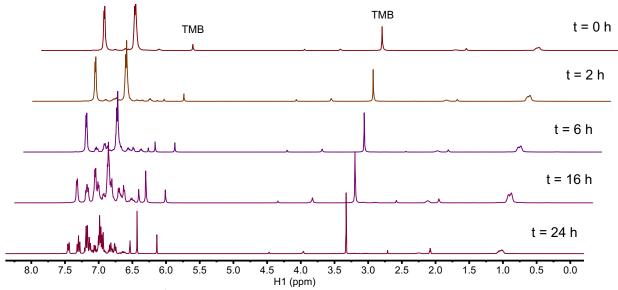

^aFrom ¹H NMR integration against an internal trimethoxybenzene standard at a 24 h timepoint.

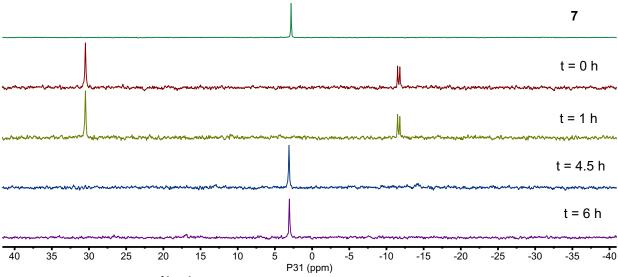
General procedure for alkyne semi-hydrogenation reaction monitoring studies

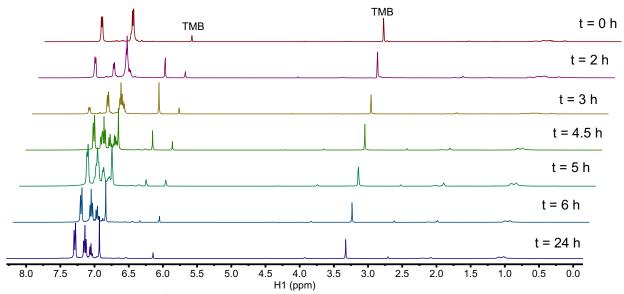

Each catalytic run was set up as described under "Standard Catalytic Runs for Alkyne Semihydrogenation" in the Experimental Section. ¹H and ³¹P{¹H} NMR time points were gathered every 30 min to 2 h for the first 8 h. All experiments were performed in triplicate.


Figure S62. ³¹P{¹H} NMR spectra (162 MHz, toluene–*d*₈) for complexes **6–9** at t = 0 h for the semihydrogenation of diphenylacetylene (40 equiv). For complexes **1**, **7**, and **8**, a diphenylacetylene adduct can be observed. For all diphenylacetylene adducts, the downfield shift (20-35 ppm) integrates to 2P, whereas the upfield shift (<0 ppm) integrates to 1P.


Figure S63. Changes in ³¹P{¹H} NMR spectra (162 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiLuL₃ **1**. Naked Ni-Lu **1** is marked by a circle (•) and the DPA adduct (**1**-DPA) is marked by a triangle (\blacktriangle).


Figure S64. Changes in ¹H NMR spectra (400 MHz, toluene– d_8) over the course of the semihydrogenation of diphenylacetylene (40 equiv) with NiLuL₃ **1**.


Figure S65. Time course of the semihydrogenation of DPA (40 equiv) with **6** at 70 °C: (left) 0 to 7 h, and (*right*) 0 to 24 h. The product 1,2,3,4-tetraphenyl-1,3-butadiene is abbreviated as Z,Z-diene.


Figure S66. Changes in ³¹P{¹H} NMR spectra (162 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiScL₃ **6**.

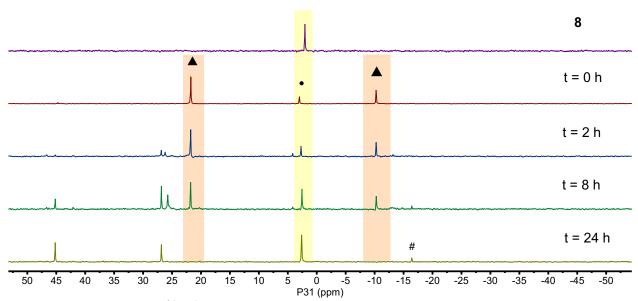

Figure S67. Changes in ¹H NMR spectra (400 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiScL₃ **6**.

Figure S68. Changes in ${}^{31}P{}^{1}H$ NMR spectra (162 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiYL₃ 7.

Figure S69. Changes in ¹H NMR spectra (400 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiYL₃ 7.

Figure S70. Changes in ³¹P{¹H} NMR spectra (162 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiLaL₃ **8**. Naked Ni-La **8** is marked by a circle (•) and the DPA adduct (**8**-DPA) is marked by a triangle (\blacktriangle). At 24 h, the only decomposition peak that could be definitively assigned was the singlet at –16.5 ppm, which corresponds to free diisopropylphosphine.¹⁷

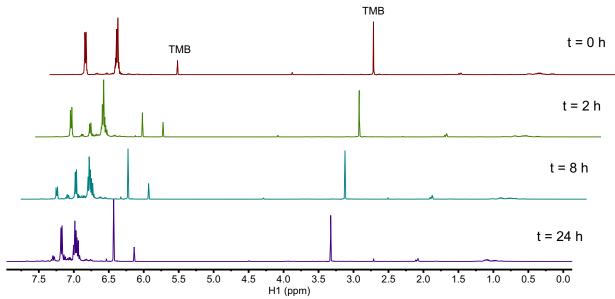
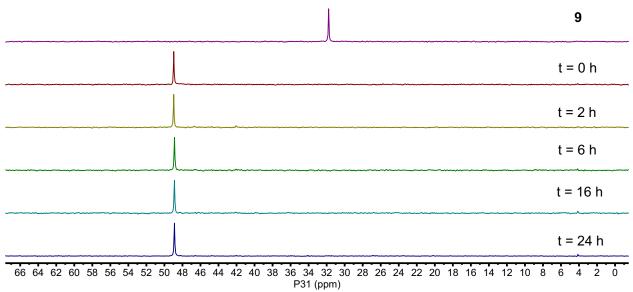
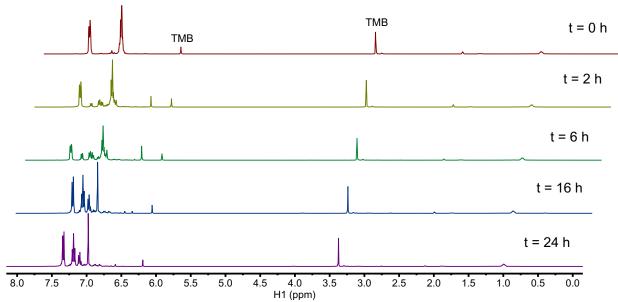
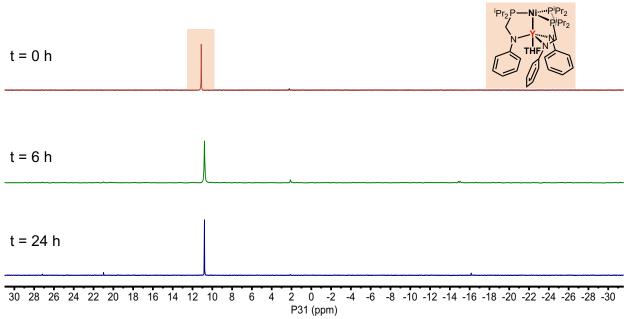
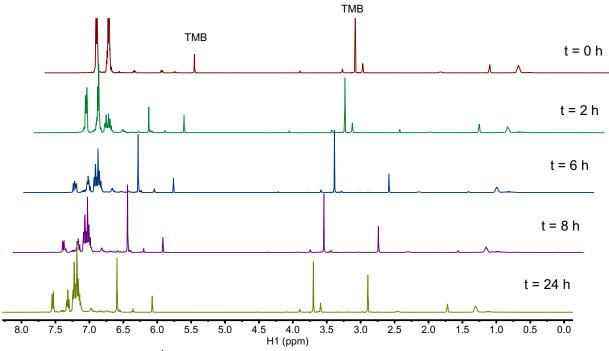


Figure S71. Changes in ¹H NMR spectra (400 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiLaL₃ 8.


Figure S72. Changes in ${}^{31}P{}^{1}H$ NMR spectra (162 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiGaL₃ 9.

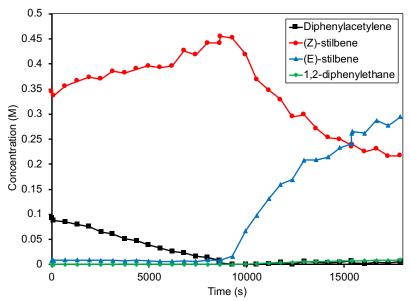

Figure S73. Changes in ¹H NMR spectra (400 MHz, toluene– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiGaL₃ **9**.

Figure S74. Changes ${}^{31}P{}^{1}H$ NMR (162 MHz, THF– d_8) spectra over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiYL₃–THF (7–THF).

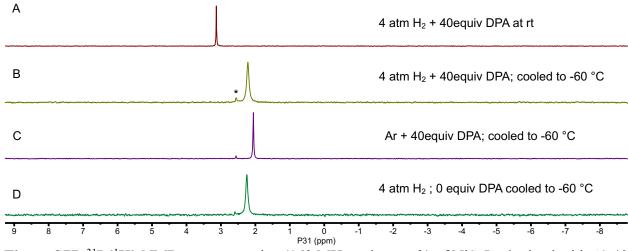


Figure S75. Changes in ¹H NMR spectra (400 MHz, THF– d_8) over the course of the semihydrogenation of 40 equiv diphenylacetylene with NiYL₃–THF (7–THF).

Figure S76. Semihydrogenation reaction time course of 10 equiv DPA and 30 equiv (Z)–stilbene with NiYL₃ 7 (equivalents with respect to catalyst).

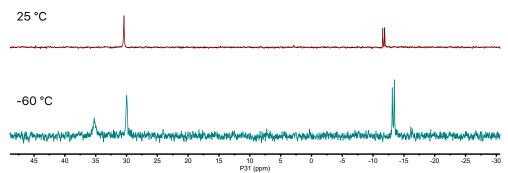
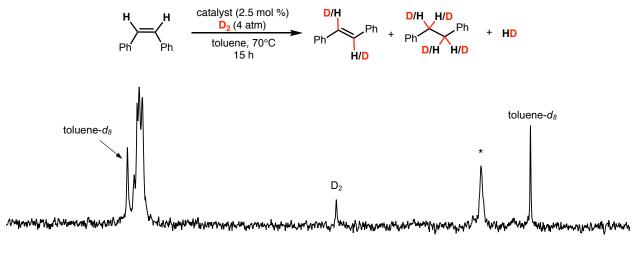

Low Temperature NMR Catalytic Resting State Studies

Figure S77. ³¹P{¹H} NMR spectra overlay (162 MHz, toluene– d_8) of NiScL₃ **6** mixed with A) 40 equiv DPA under 4 atm H₂ at rt, B) 40 equiv DPA under 4 atm H₂ at –60 °C, C) 40 equiv DPA under Ar at –60 °C, D) 0 equiv DPA under 4 atm H₂ at –60 °C. At low T, no evidence of a Ni-DPA adduct is observed, indicating NiScL₃ **6** does not favor binding of DPA. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh denoted by an asterisk (*).


Figure S78. ³¹P{¹H} NMR spectra overlay (162 MHz, toluene– d_8) of NiGaL₃ **9** mixed with A) 40 equiv DPA under 4 atm H₂ at rt and –60 °C. The NMR data is consistent with **9**–H₂.

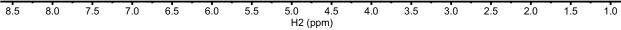
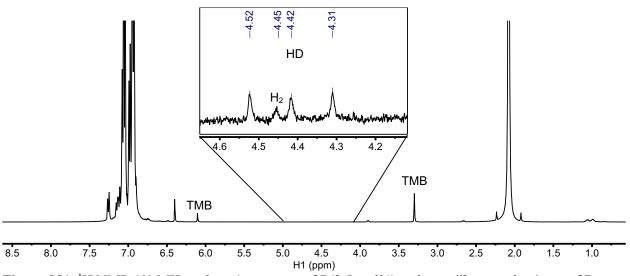
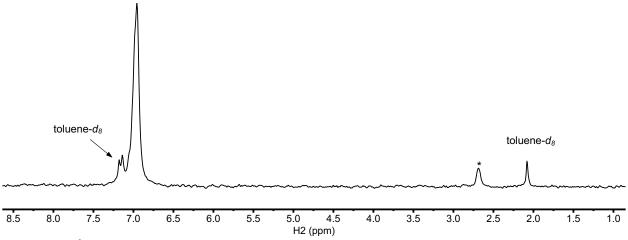


Figure S79. ³¹P{¹H} NMR spectra overlay (162 MHz, toluene– d_8) of NiYL₃ 7 mixed with A) 40 equiv DPA under 4 atm H₂ at rt and –60 °C. At –60 °C, 7–DPA is the major species in solution. Upon cooling, all ligand arms of 7–DPA become locked leading to three ³¹P resonances at 32.2, 30.3, and –13.3 ($J_{Y-P} = 53.1$ Hz) ppm with an integration of 1:1:1.


Deuterium Labeling Studies

A J. Young NMR tube was charged with a solution of *cis*-stilbene (40 μ L, 0.224 mmol) and 7 or 9 (0.0056 mmol) in 0.5 mL of toluene. The sample was subjected to one freeze-pump-thaw cycles and D₂ gas (1 atm) was added at 77 K on a high-vacuum line. The sample was warmed to ambient temperature, resulting in 4 atm of D₂ gas. The samples were then heated at 70°C in an oil bath (resulting in 4.6 atm of D₂ gas). After heating for 15 h, a ²H and ¹H NMR spectra were collected.



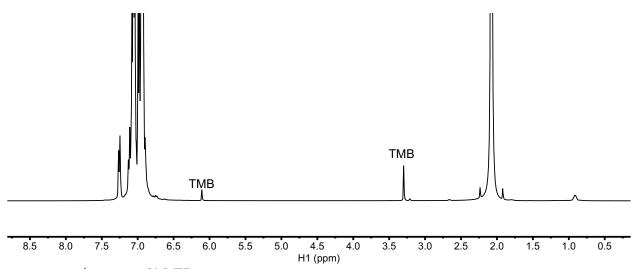
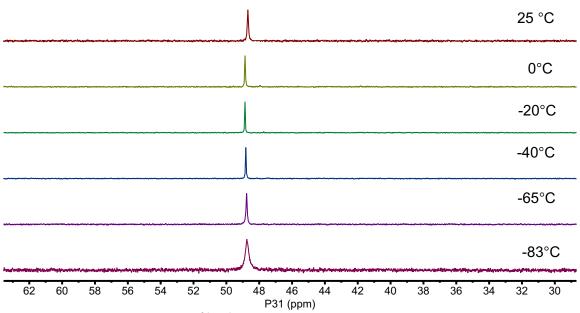

Figure S80. ²H NMR (61 MHz, toluene) spectrum of 7 (2.5 mol%) and *cis*-stilbene under 4 atm of D_2 after 15 h at 70 °C. (* denotes alkane (sp³-CD₂) protons).

Figure S81. ¹H NMR (61 MHz, toluene) spectrum of 7 (2.5 mol%) and *cis*-stilbene under 4 atm of D_2 after 15 h at 70 °C.

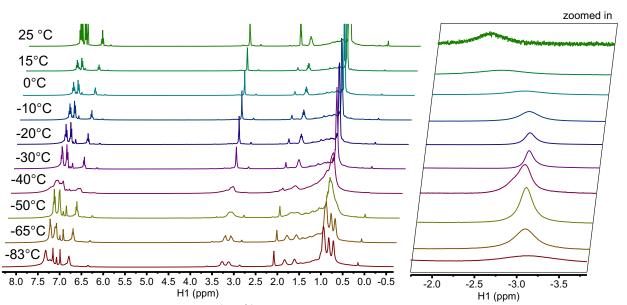
Figure S82. ²H NMR (61 MHz, toluene) spectrum of 9 (2.5 mol%) and *cis*-stilbene under 4 atm of D_2 after 15 h at 70 °C (bottom). (* denotes alkane (sp³-CD₂) protons).

Figure S83. ¹H NMR (61 MHz, toluene) spectrum of **9** (2.5 mol%) and *cis*-stilbene under 4 atm of D_2 after 15 h at 70 °C. No free HD or H₂ can be observed at the completion of the experiment due to the strong preference of **9** to bind HD, H₂, and D₂.

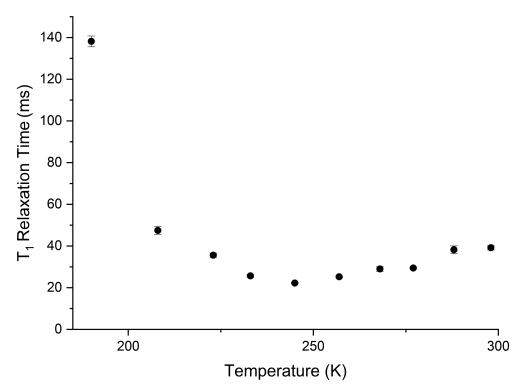
H₂ Binding Studies of NiML₃ Complexes 6-9

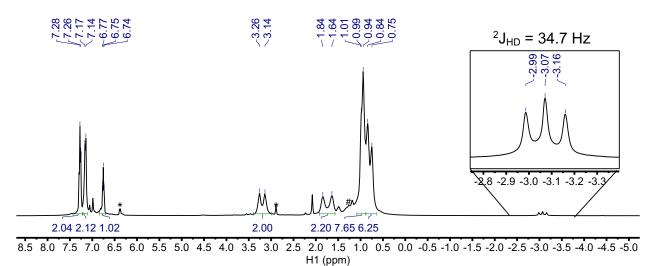

At ambient temperature and 1 atm H₂, NiGa (9) cleanly generates the Ni(η^2 -H₂) adduct 9–H₂. Complex 9–H₂ is characterized by a ³¹P{¹H} singlet at 48.5 ppm, and a broad ¹H resonance at –2.03 ppm, which is typical of a Ni(η^2 -H₂) adduct (Figure S23 and S24).¹⁸⁻¹⁹ The H-H bond is intact in 9–H₂ as evidenced by a short T₁(min) value of 28(1) ms (500 Hz) (Figure S86).¹⁸ An H–H distance of 0.86 Å (*c.f.* 0.74 Å in free H₂) was determined from the *J*_{H–D} value of 35 Hz for the corresponding HD adduct (Figure S87).¹⁹ The H₂ binding was reversible as evacuating a solution of 9–H₂ regenerates 9.

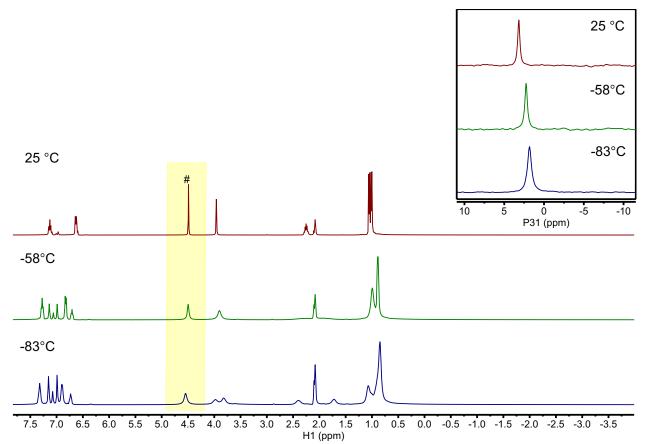
In contrast, Ni-rare earth compounds 6, 7, and 8 show no formation of Ni(η^2 -H₂) adducts at ambient temperature and 1 atm H₂.²⁰ Therefore, to maximize H₂ binding, samples of 6, 7, and 8 in toluene– d_8 and THF– d_8 were subjected to 4 atm H₂ (at room temperature) and characterized *in situ* by low-temperature NMR spectroscopy. Of note, the low T NMR spectra for 6, 7, and 8 have notably weaker signal intensities due to their generally poor solubility in non-coordinating solvents.

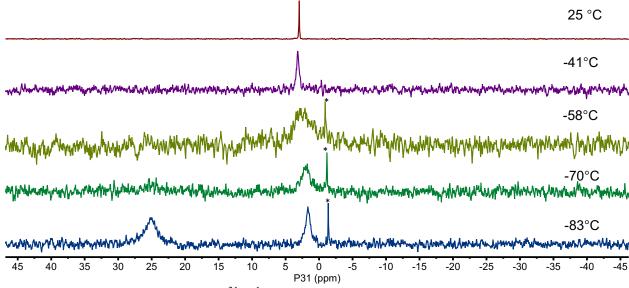

At -83 °C and 4 atm H₂ in toluene– d_8 , no metal bound H₂ species can be observed for Ni-Sc **6** or Ni-Y 7 by either ³¹P or ¹H NMR (Figures S88 and S91). As both **6** and **7** can catalyze hydrogenation reactions, it is evident that these complexes indeed bind H₂, however the study of any H₂ adducts can't be performed using our available resources. However, in THF– d_8 , an equilibrium between Ni-Sc **6** and a new species was observed at -80 °C in an approximate 1:1.4 ratio based on the appearance of two broad ³¹P peaks at 1.1 and 25.1 ppm, respectively (Figure S89). A similar equilibrium is observed between 7–THF (10.4 ppm) and a new species (18.9 ppm) with an approximate 1:0.8 ratio (Figure S92). Examination of the ¹H NMR spectra of **6** and **7**–THF each contain a broad resonance at -2.1 and -1.2 ppm, respectively, suggestive of Ni(η^2 -H₂) adducts (Figures S90 and S93). For both **6** and **7**–THF, T₁(min) relaxation time measurements could not be obtained due to the broadness of the resonance at -83 °C and lack of an observable H₂ resonance in the ¹H NMR spectra at higher temperatures.

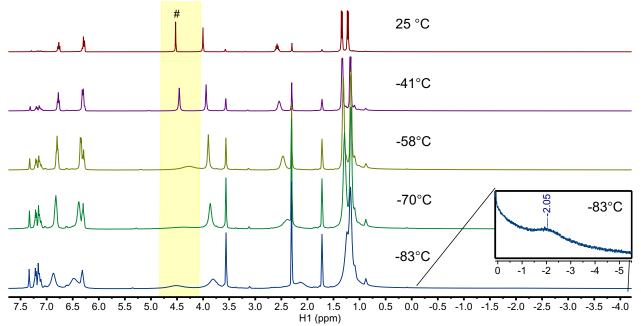
Complex Ni-La 8 serves as an outlier to the other Ni-rare earth bimetallic complexes. In toluene- d_8 , cooling to -50 °C under 4 atm H₂ leads to an equilibrium between the C₃ symmetric Ni-La 8 and an asymmetric species in both the ³¹P{¹H} and ¹H NMR spectra (Figures S94 and S95). The species is best described by a triplet in the ${}^{31}P{}^{1}H$ NMR spectrum at 27.9 and a broad singlet at -2.1 ppm which integrate 1P to 2P, respectively (Figure S98). It's worth noting that the same species is observed with Ni-La 8 under an Ar atmosphere, which suggests that the appearance of this species is not attributed to H₂ binding. We propose that this asymmetry arises from the formation of a $\eta^2 C_{ipso}$ -N bonding interaction between NPh and La, which is observed in the solid state structure of 8' (Figure S35). At room temperature, this interaction rapidly exchanges between the 3 aryl rings, leading to the appearance of a C₃-symmetric species (Figure S99). Of note, cooling to -83 °C, leads to the appearance of another sharper singlet at 4.0 ppm. At this time, we do not know what NiLa species leads to this resonance, however, because we can observe the same $^{31}P{^{1}H}$ resonance signal under Ar, the peak is not related to the binding of H₂ (Figure S100). In THF- d_{8} , the ³¹P resonance shifts 6.5 ppm downfield to 10.7 ppm upon cooling and is identical whether under 4 atm H₂ or Ar (Figures S101). Therefore, the shift in ${}^{31}P{}^{1}H{}$ resonance is associated with THF binding to form 8-THF rather than H₂ binding. By ¹H NMR, a discrete bound H₂ proton resonance is not observed indicating at the conditions attainable, an 8-H₂ species can't be observed (Figure S102).

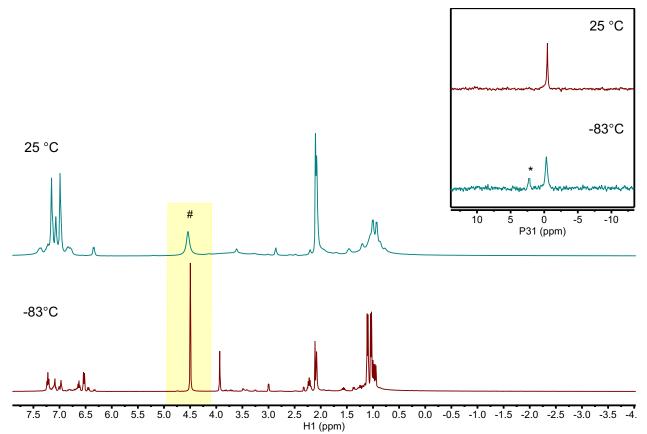

Overall, the strength of the H₂ interaction with the Ni(0) center decreases in the order, $9 \gg 6 > 7 > 8$. Since the Ni center is more electron-deficient in NiGa 9 than in the Ni-rare earth complexes, this family of compounds adheres to the trend that was previously established for bimetallic Ni-group 13 complexes.²⁰⁻²¹ Namely, the more Lewis acidic metalloligands lead to more stable and easily accessible Ni(η^2 -H₂) adducts.

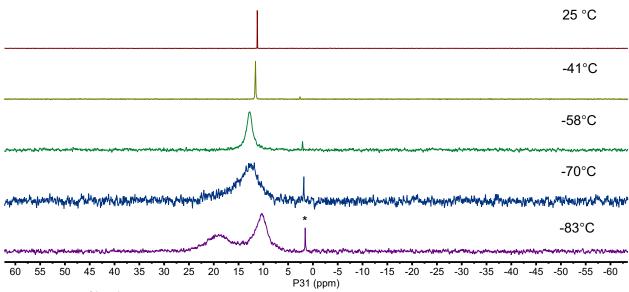

Figure S84. Variable temperature ${}^{31}P{}^{1}H$ NMR (162 MHz, toluene– d_8) spectra of NiGa 9 under 1 atm H₂ at rt. The absence of any substantial shift in the ${}^{31}P$ resonance indicates all 9 in solution is fulling binding H₂ to form 9–H₂.

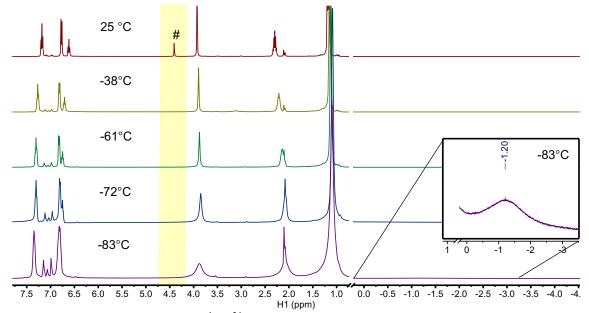

Figure S85. Variable temperature ${}^{1}H{}^{31}P$ NMR (400 MHz, toluene– d_8) spectra of NiGa 9 under 1 atm H₂ (at rt) cooled to -83°C.

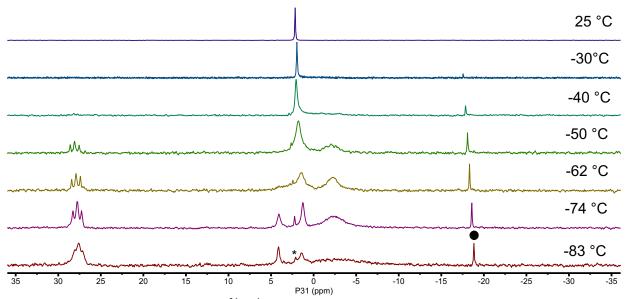

Figure S86. Plot of the T₁ relaxation times of the bound H₂ resonance of $9-H_2$ at various temperatures from 180 K to 298 K (400 MHz, toluene– d_8).

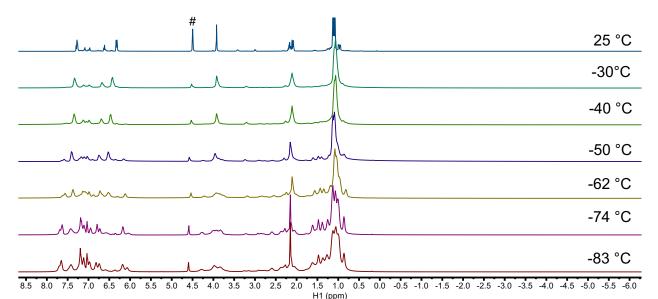

Figure S87. ¹H{³¹P}NMR (400 MHz, toluene– d_8) spectrum of NiGa 9 under 1 atm HD cooled to –62 °C to observe in situ 9–HD. No scrambling of HD to H₂ and D₂ was observed.

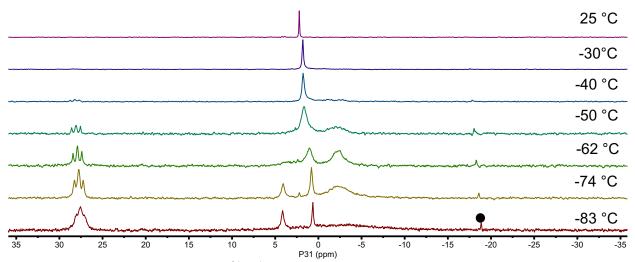

Figure S88. Variable temperature ${}^{1}H{}^{31}P{NMR}$ and ${}^{31}P{}^{1}H{}$ NMR (inset) (400 MHz (${}^{1}H{}$), 162 MHz (${}^{31}P{}$), toluene– d_8) spectra of NiSc **6** under 4 atm H₂ (at rt) cooled to 190 K. The ${}^{1}H{}$ resonance of free H₂ in toluene– d_8 is denoted by a pound sign (#). Upon cooling, there is no shift in the proton resonance of H₂ or the observation of a Ni(H₂) adduct resonance which would indicate strong binding with H₂. In addition, upon cooling, little variation in the ${}^{31}P{}$ NMR resonance is observed, indicating that any H₂ binding taking place is too weak to observe with the achievable conditions.

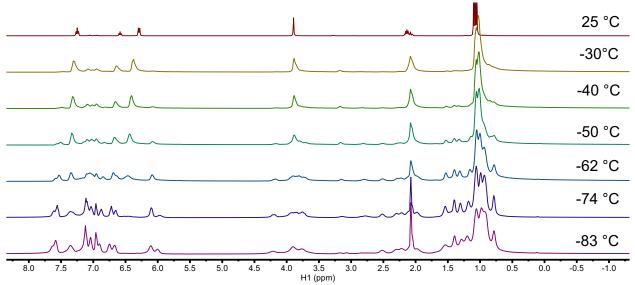

Figure S89. Variable temperature ³¹P{¹H} NMR (162 MHz, THF–*d*₈) spectra of NiSc **6** under 4 atm H₂ (at rt) cooled to 190 K. Initially, the ³¹P resonance broadens upon cooling. At –83°C, the H₂ exchange becomes slower such that a slow exchange regime is achieved in which both **6** and **6**–(H₂) can be observed. In turn, a discrete bound **6**–(H₂) phosphorus resonance (25.0 ppm) appears at –83°C. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened.

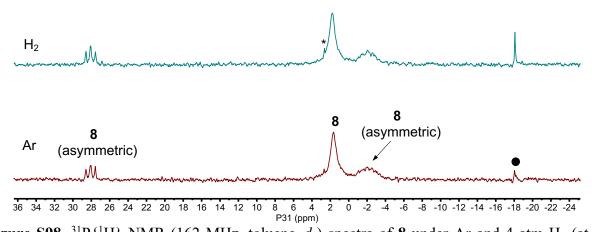

Figure S90. Variable temperature ${}^{1}H{}^{31}P{}$ NMR (400 MHz, THF–*d*₈) spectra of NiSc **6** under 4 atm H₂ at rt. The resonance of free H₂ (marked by an (#) at 4.55 ppm) broadens and shifts slightly upfield upon cooling to -83° C. At -83° C, the resonance shifts back downfield to that of free H₂ (4.55 ppm) and a discrete bound **6**-H₂ proton resonance (-2.1 ppm) appears. A reliable T₁ value could not be obtained due to the broadness of the bound H₂ resonance at 190 K.

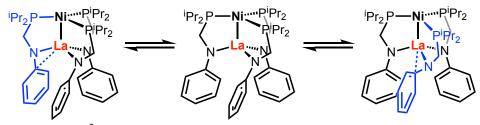

Figure S91. ¹H{³¹P}NMR and ³¹P NMR (inset) (400 MHz (¹H), 162 MHz (³¹P), toluene– d_8) overlay of NiY **7** under 4 atm H₂ (at rt) cooled to 190 K. The ¹H resonance of free H₂ in toluene– d_8 is denoted by a pound sign (#). Upon cooling, there is no shift in the proton resonance of H₂ or the observation of a Ni(H₂) adduct resonance which would indicate strong binding with H₂. Furthermore, upon cooling, little variation in the ³¹P NMR resonance is observed, indicating that any H₂ binding taking place is too weak to observe with the achievable conditions. Signals for **7** appear weak in spectra due to its poor solubility in aromatic solvents. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened.

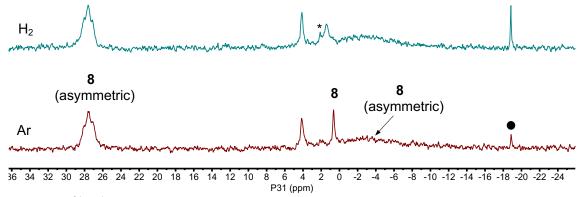

Figure S92. ³¹P{¹H} NMR (162 MHz, THF– d_8) overlay of 7–THF 4 atm H₂ (at rt) cooled to – 83°C. Initially, the ³¹P resonance broadens upon cooling. At –83°C, the H₂ exchange becomes slower such that a slow exchange regime is achieved in which both 7–THF and (H₂)7–THF can be observed. In turn, a discrete bound (H₂)7–THF phosphorus resonance (19.0 ppm) appears at – 83°C. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened.

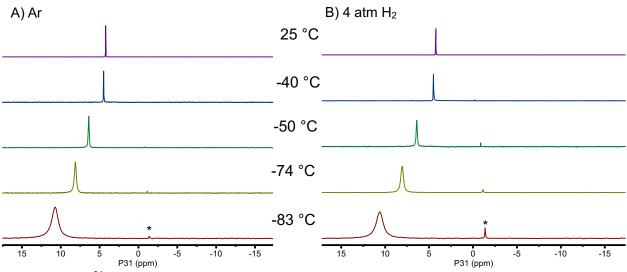

Figure S93. Variable temperature ${}^{1}H{}^{31}P{}$ NMR (400 MHz, THF– d_8) spectra of 7–THF under 4 atm H₂ at rt. The ${}^{1}H$ resonance of free H₂ in toluene– d_8 is denoted by a pound sign (#). Initially, the ${}^{1}H$ resonance disappears upon cooling due to fast exchange of H₂ with 7–THF. At –83°C, the H₂ exchange becomes slower such that a slow exchange regime is achieved in which (H₂)7–THF can start to be observed. In turn, a discrete bound (H₂)7–THF proton resonance (–1.2 ppm) appears at –83°C. A reliable T₁ value could not be obtained due to the broadness of the bound H₂ resonance at 190 K.

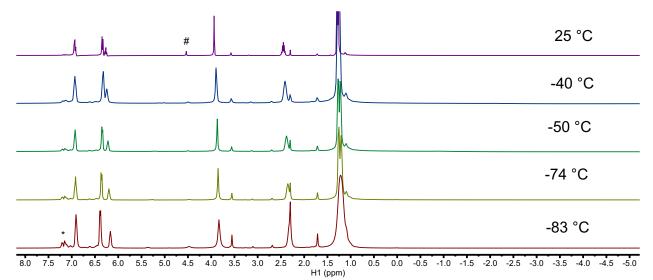

Figure S94. Variable temperature ³¹P{¹H} NMR (162 MHz, toluene– d_8) spectra of NiLa **8** under 4 atm H₂ (at rt) cooled to –83°C. The spectra of **8** becomes asymmetric upon cooling, but returns to C₃ symmetry upon warming back to rt. An in-depth discussion of the VT profile can be found at the beginning of this section. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh is denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened. In addition, isopropyl phosphine, a decomposition product for **8**, is denoted by a circle (•), which is only largely observable at low temperatures where the complex signals have greatly broadened.


Figure S95. Variable temperature ${}^{1}H{}^{31}P{}$ NMR (400 MHz, toluene– d_8) spectra of NiLa 8 under 4 atm H₂ at rt. The spectra of 8 becomes asymmetric upon cooling, but returns to C₃ symmetry upon warming back to rt. No discrete bound H₂ proton resonance is observed and the free H₂ ${}^{1}H$ resonance does not shift. An in-depth discussion of the VT profile can be found at the beginning of this section.


Figure S96. Variable temperature ³¹P{¹H} NMR (162 MHz, toluene– d_8) spectra of NiLa **8** under Ar at rt. The spectra of **8** becomes asymmetric upon cooling, but returns to C₃ symmetry upon warming back to rt. An in-depth discussion of the VT profile can be found at the beginning of this section. Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh is denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened. In addition, isopropyl phosphine, a decomposition product for **8**, is denoted by a circle (•), which is only largely observable at low temperatures where the complex signals have greatly broadened.


Figure S97. Variable temperature ${}^{1}H{}^{31}P{}$ NMR (400 MHz, toluene– d_8) spectra of NiLa 8 under Ar at rt. The spectra of 8 becomes asymmetric upon cooling, but returns to C₃ symmetry upon warming back to rt. An in-depth discussion of the VT profile can be found at the beginning of this section.


Figure S98. ³¹P{¹H} NMR (162 MHz, toluene– d_8) spectra of **8** under Ar and 4 atm H₂ (at rt) cooled to -50 °C. The similarity between the two spectra indicates that H₂ binding does not contribute to any of the observed species. Isopropylphosphine, a decomposition product for **8**, is denoted by a circle (•). Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh is denoted by an asterisk (*).


Figure S99. Proposed η^2 -(C_{*ipso*}-N) bonding interaction between NPh and La in **8**', which is in equilibrium with C_3 symmetric **8** in non-coordinating solvents. At room temperature, this interaction rapidly exchanges between the 3 aryl rings, leading to the appearance of a C₃-symmetric species.

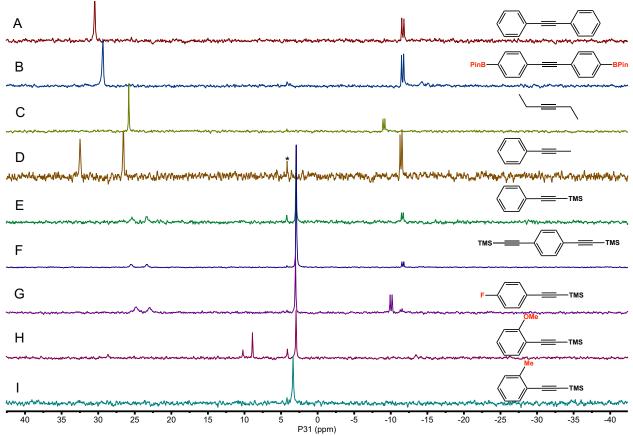

Figure S100. ³¹P{¹H} NMR (162 MHz, toluene– d_8) spectra of **8** under Ar and 4 atm H₂ (at rt) cooled to –83 °C. The similarity between the two spectra indicates that H₂ binding does not contribute to any of the observed species. Isopropylphosphine, a decomposition product for **8**, is denoted by a circle (•). Residual water in H₂ gas results in the formation of a small amount of Pr₂PCH₂NHPh is denoted by an asterisk (*).

Figure S101. ³¹P{₁H} NMR (162 MHz, THF– d_8) overlays of **8** under A) Ar and B) 4 atm H₂ (at rt) cooled to –83°C. Upon cooling, independent of the gas atmosphere, the ³¹P resonance shifts 6.5 ppm downfield to 10.7 ppm. Due to the identical shift and broadening between the 4 atm H₂ and Ar spectra, the shift in ³¹P resonance is associated with THF binding to form **8**–THF rather than H₂ binding. Residual water in H₂ gas or THF– d_8 results in the formation of a small amount of Pr₂PCH₂NHPh denoted by an asterisk (*), which is only observable at low temperatures where the complex signals have greatly broadened.

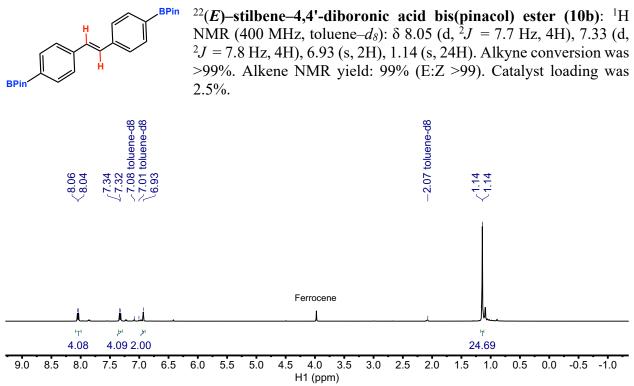
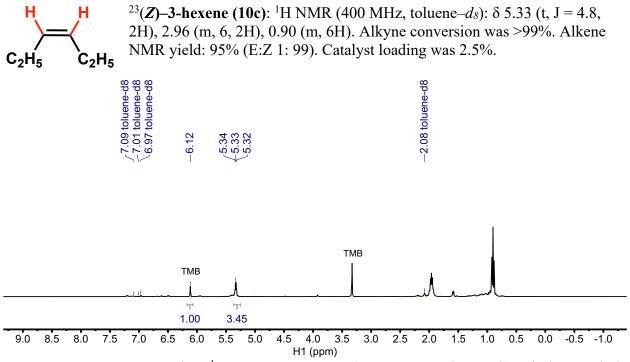


Figure S102. Variable temperature ${}^{1}H{}^{31}P{}NMR$ (400 MHz, THF– d_8) spectra of **8** under 4 atm H₂ at rt. The ${}^{1}H$ resonance of free H₂ in THF– d_8 is denoted by a pound sign (#). Upon cooling, a discrete bound H₂ proton resonance is not observed and the free H₂ ${}^{1}H$ resonance does not shift. Therefore, with at the conditions attainable, an **8**(H₂) species can't be observed. Residual toluene solvent is denoted by an asterisk (*).



Substrate Scope Representative ¹H NMR Spectra

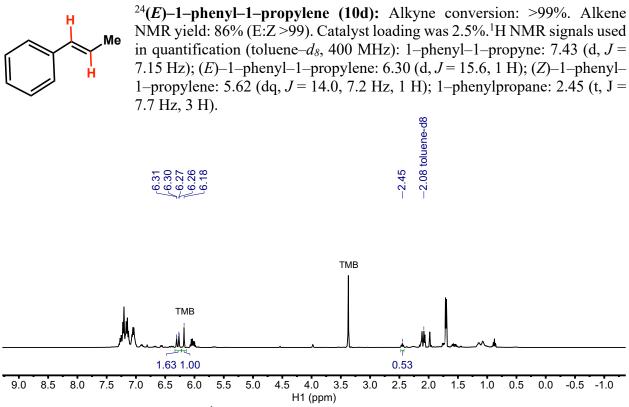

Figure S103. ³¹P{¹H} NMR (162 MHz, toluene–*d*₈) spectra overlay of NiYL₃ 7 treated with 40 equiv. of various alkynes: A) diphenylacetylene, B) diphenylacetylene-4,4'-diboronic acid bis(pinacol) ester, C) 3–hexyne, D) 1-phenyl-2-propyne, E) 1-phenyl-2-trimethylsilylacetylene, F) 1,4-bis[1,1-bis(trimethylsilyl)ethenyl]benzene, G) (4-fluorophenylethynyl)trimethylsilane, H) 2-[(Trimethylsilyl)ethynyl]anisole, I) 2-[(Trimethylsilyl)ethynyl]toluene.

Figure S104. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of diphenylacetylene-4,4'-diboronic acid bis(pinacol) ester by 7 (2.5 mol %, 70°C, 24 h). Ferrocene used as integration standard.

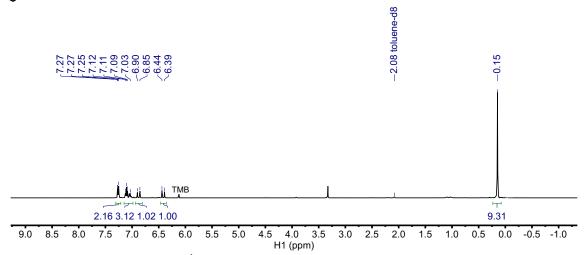


Figure S105. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 3–hexyne by 7 (2.5 mol %, 70°C, 8 h).

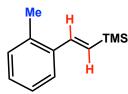
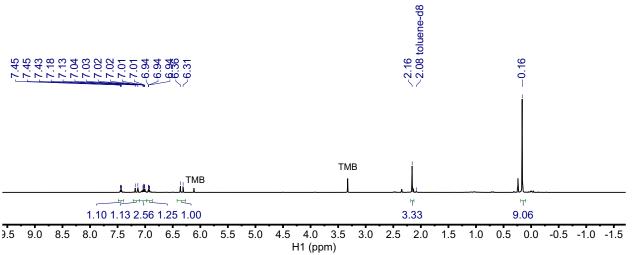
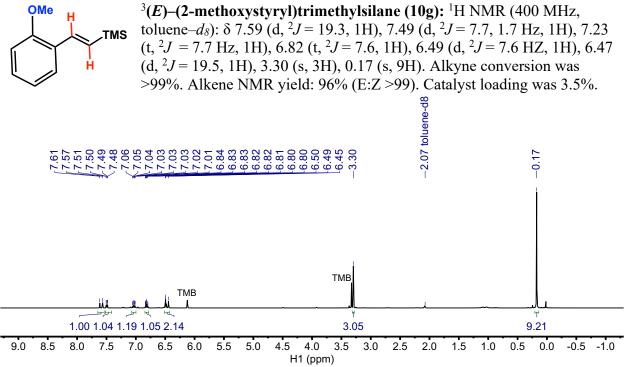
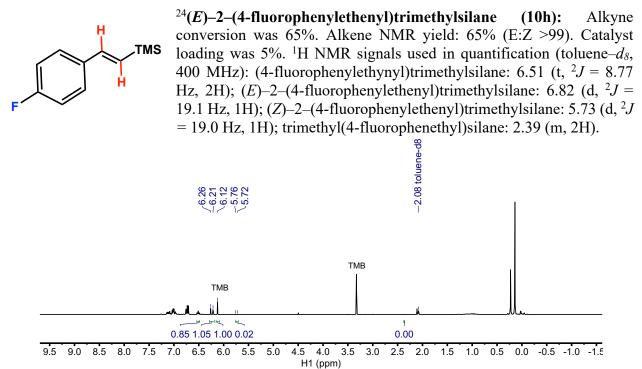


Figure S106. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 1-phenyl-2-propyne by 7 (2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.


²³(*E*)–1-phenyl-2-(trimethylsilyl)ethene (10e): ¹H NMR (400 MHz, toluene– d_8): δ 7.26 (d, J = 7.6, 2H), 7.11 (t, J = 7.5, 2H), 7.04 (t, 1H), 6.88 (d, J = 19.1, 1H), 6.42 (d, J = 19.2, 1H), 0.15 (s, 9H). Alkyne conversion was >99%. Alkene NMR yield: 97% (E:Z >99). Catalyst loading was 2.5%.


Figure S107. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 1-phenyl-2-trimethylsilylacetylene by 7 (2.5 mol %, 70°C, 24 h).


³(*E*)-trimethyl(2-methylstyryl)silane (10f): ¹H NMR (400 MHz, toluene– d_8): δ 7.44 (d, J = 7.3, 1.9 Hz, 1H), 6.39 (d, J = 19.0 Hz, 1H), 7.10–6.87 (m, 3H), 6.34 (d, J = 19.0 Hz, 1H), 2.16 (s, 3H), 0.16 (s, 9H). Alkyne conversion was >99% after 60h. NMR yield: 96% (E:Z >99). Catalyst loading was 2.5%.

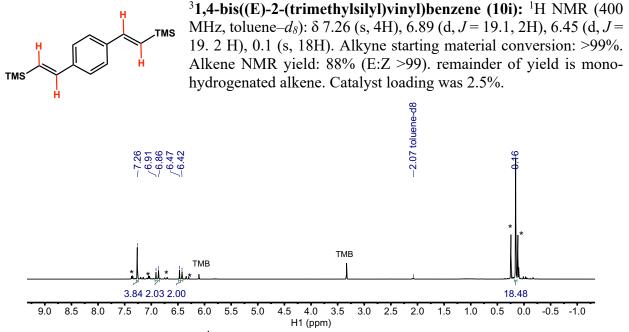

Figure S108. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 2-[(Trimethylsilyl)ethynyl]toluene by 7 (5 mol %, 70°C, 24 h).

Figure S109. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 2-[(Trimethylsilyl)ethynyl]anisole by 7 (3.5 mol %, 70°C, 24 h).

Figure S110. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of (4-fluorophenylethynyl)trimethylsilane by 7 (2.5 mol %, 70°C, 24 h). Integrations used to quantify conversion are labeled.

Figure S111. Representative ¹H NMR spectrum (400 MHz, toluene– d_8) of the catalytic semihydrogenation of 1,4-bis[1,1-bis(trimethylsilyl)ethenyl]benzene by 7 (2.5 mol %, 70°C, 48 h). The mono–hydrogenated product trimethyl-[2-[4-[(*E*)-2-trimethylsilylethenyl]phenyl]ethynyl]silane (12 % NMR yield) is marked by an asterisk (*).

References

(1) Ramirez, B. L.; Sharma, P.; Eisenhart, R. J.; Gagliardi, L.; Lu, C. C. Bimetallic nickellutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. *Chem. Sci.* **2019**, *10*, 3375-3384.

(2) Thomson, R. K.; Scott, B. L.; Morris, D. E.; Kiplinger, J. L. Synthesis, structure, spectroscopy and redox energetics of a series of uranium(IV) mixed-ligand metallocene complexes. *Comptes Rendus Chimie* **2010**, *13*, 790-802.

(3) Tokmic, K.; Fout, A. R. Alkyne Semihydrogenation with a Well-Defined Nonclassical Co-H₂ Catalyst: A H₂ Spin on Isomerization and E-Selectivity. *J. Am. Chem. Soc.* **2016**, *138*, 13700-13705.

(4) Blessing, R. An Empirical Correction for Absorption Anisotropy. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **1995**, *51*, 33.

(5) Sheldrick, G. SHELXT - Integrated Space-group and Crystalstructure Determination. *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *A71*, 3.

(6) Sheldrick, G. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C: Struct. Chem.* **2015**, *C71*, 3.

(7) Hubschle, C. B.; Sheldrick, G. M. ShelXle: A Qt Graphical User Interface for SHELXL *J. Appl. Crystallogr.* **2011**, *44*, 1281.

(8) Spek, A. Structure Validation in Chemical Crystallography. *Acta Crystallogr. Sect. D: Biol. Crystallogr.* **2009**, *65*, 148.

(9) Spek, A. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Crystallographica Section C* **2015**, *71*, 9-18.

(10) Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A., *Shriver and Atkins' Inorganic Chemistry*. 5th ed.; Oxford University Press: New York, 2010. For Y, Lu, La: the p K_a for hydrolysis of M³⁺; titration of 0.004-0.009 M M(ClO₄)₃ with 0.2M Ba(OH)₂; I = 0.3(NaClO₄) was used. For Sc and Ga; the p K_a for hydrolysis of M³⁺; I = 0.5 or 1(NaClO₄) was used.

(11) Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A* **1976**, *32*, 751-767.

(12) Pyykkö, P. Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary. *J. Phys. Chem. A* **2015**, *119*, 2326-2337.

(13) Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1–118. *Chem. Eur. J.* **2009**, *15*, 186-197.

(14) Pauling, L. Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc. 1947, 69, 542-553.

(15) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. *Dalton Trans.* **2008**, 2832-2838.

(16) Perrin, D. D., *Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution*. Oxford, UK, 1982.

(17) Rinehart, N. I.; Kendall, A. J.; Tyler, D. R. A Universally Applicable Methodology for the Gram-Scale Synthesis of Primary, Secondary, and Tertiary Phosphines. *Organometallics* **2018**, *37*, 182-190.

(18) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. Assessment of the "T1 criterion" for distinguishing between classical and nonclassical transition-metal hydrides: hydride relaxation rates in tris(triarylphosphine)osmium tetrahydrides and related polyhydrides. *J. Am. Chem. Soc.* **1991**, *113*, 4173-4184.

(19) Luther, T. A.; Heinekey, D. M. Synthesis, Characterization, and Reactivity of Dicationic Dihydrogen Complexes of Osmium and Ruthenium. *Inorg. Chem.* **1998**, *37*, 127-132.

(20) Cammarota, R. C.; Lu, C. C. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. *J. Am. Chem. Soc.* **2015**, *137*, 12486-12489.

(21) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Leveraging molecular metal–support interactions for H₂ and N₂ activation. *Coord. Chem. Rev.* **2017**, *334*, 100-111.

(22) Baltus, C. B.; Chuckowree, I. S.; Press, N. J.; Day, I. J.; Coles, S. J.; Tizzard, G. J.; Spencer, J. Olefin cross-metathesis/Suzuki–Miyaura reactions on vinylphenylboronic acid pinacol esters. *Tetrahedron Letters* **2013**, *54*, 1211-1217.

(23) Pinkas, J.; Gyepes, R.; Císařová, I.; Kubišta, J.; Horáček, M.; Mach, K. Steric Effects in Reactions of Decamethyltitanocene Hydride with Internal Alkynes, Conjugated Diynes, and Conjugated Dienes. *Organometallics* **2014**, *33*, 3399-3413.

(24) Wang, Y.; Qin, C.; Jia, X.; Leng, X.; Huang, Z. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1-Alkenes to trans-2-Alkenes. *Angew. Chem. Int. Ed.* **2017**, *56*, 1614-1618.