Supplementary Information

Design of activatable NIR-II molecular probe for in vivo elucidation of disease-related viscosity variations

Kun Dou[†], Weijing Huang[†], Yunhui Xiang[†], Songjiao Li[†], Zhihong Liu^{*,†,‡}

[†]Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
[‡]State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou 730000,
China.

E-mail: zhhliu@whu.edu.cn

Tel: +86-27-87217886

Fax: +86-27-68754067

Table of Contents

Materials and apparatus	S4
Synthesis and Characterization	S4
Theoretical calculations	S10
Optical experiments	S11
Determination of fluorescence quantum yields	S11
The Förster-Hoffmann equation	S12
Photostability, pH dependency and selectivity of probe	S12
Cytotoxicity Assay	S13
Fluorescence imaging of viscosity in vivo	S13
Monitoring viscosity in diabetes-induced liver injury	S14
Scheme S1. Synthesis of WD-X and 1-ethyl-2-methyl-benz[c,d] indolium salts.	S15
Table S1. Reported representative fluorescent probes for monitoring viscosity	S16
Figure S1. Structure and spatial configuration of representative (CH-1055, H1) a Flva7) fluorophores	und (CX-3,
Figure S2. Viscosity response of CH-1055	S17
Figure S3 Optical properties of WD-CH ₃	S18
Table S2. Photophysical properties of WD-CH ₃	S18
Figure S4 Optical properties of WD-NO ₂	S18
Table S3. Photophysical properties of WD-NO ₂	S19
Figure S5 Optical properties of WD-OCH ₃	S19
Table S4. Photophysical properties of WD-OCH ₃	S20
Figure S6 Optical properties of WD-NME ₂	S20
Table S5. Photophysical properties of WD-NME ₂	S21
Figure S7 Frontier molecular orbital plots and HOMO, LOMO energy of WD-X	S21
Figure S8 Absorption, fluorescence spectra of WD-CH ₃ , WD-OCH ₃ and WD-NM	ME ₂ S22
Figure S9 Investigation on the Specificity of WD-NO ₂	S23
Figure S10 Cytotoxicity of WD-NO ₂	S24
	S2

Figure S11. Fluorescence imaging of viscosity changes by exogenous drug stimulationS2	24
Figure. S12 1H NMR of phenyl(1H-pyrrol-2-yl)methanone (1)S2	25
Figure.S13 ¹ H NMR (5-chloro-1H-pyrrol-2-yl)(phenyl)methanone (2)S2	25
Figure.S14 ¹ H NMR of 3-chloro-5,7-dimethyl-6-ethyl-8-phenyl-BODIPY (4)S2	26
Figure.S15 ¹ H NMR of 2-carbaldehyde -3-chloro- 5,7-dimethyl- 6-ethyl -8-phenyl -BODIPY (5)	26
Figure.S16 ¹ H NMR and HRMS of compound (6)S2	27
Figure.S17 ¹ H NMR and HRMS of compound (7)S2	28
Figure.S18 ¹ H NMR and HRMS of compound (8)S2	29
Figure.S19 ¹ H NMR and HRMS of compound (9)S3	30
Figure.S20 ¹ H NMR and ¹³ CNMR of1-ethyl-2-methyl-benz[c,d] indolium saltS3	31
Figure.S21 ¹ H NMR and HRMS of WD-CH ₃ S3	32
Figure.S22 ¹ H NMR and HRMS of WD-OCH ₃ S3	33
Figure.S23 ¹ H NMR and HRMS of WD-NME ₂ S3	34
Figure.S24 ¹ H NMR, ¹³ C NMR and HRMS of WD-NO ₂ S3	35
Table S6 Test viscosity in the varied of the glycerol/ethanol (v/v) mixturesS3	36
Reference	36

Materials and apparatus

Unless otherwise stated, all reagents and materials were purchased from commercial accompany and used without further purification. IR-1061, Indocyanine Green (ICG), Lipopolysaccharide (LPS) purchased Sigma-Aldrich. and were from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 3-Ethyl-2,4-dimethylpyrrole, anhydrous dichloromethane and DMF were purchased from Aladdin Reagent Co., Ltd (Shanghai, China). Streptozotocin (STZ), Resveratrol (RVT), Monensin (Mon) and Nystatin (Nys) were purchased from Energy Chemical Co., Ltd (Shanghai, China). Acetonitrile (CH₃CN), Dimethyl sulfoxide (DMSO), N,N-Dimethylformamide (DMF), CH₃OH, Glycerol, Ethanol, Acetone, petroleum ether and ethyl acetate were analytical grade without further purification. Mass spectrometry was performed on Ultimate3000&Compact (Bruker, Germany), Scientific LTQ Orbitrap Elite (Thermo Fisher, America) mass spectrometers. The ¹H-NMR and ¹³C-NMR spectra were acquired over a Bruker AV-400 spectrometer. Absorption spectra were recorded on a UV-vis-NIR spectrophotometer (Shimadzu UV-2550, Japan). NIR-II fluorescence spectra were excited by 808-nm laser (Beijing Hi-Tech Optoelectronic Co., Ltd.) and recorded with a fluorometer (Fluorolog-3, Horiba Jobin Yvon, France).

Synthesis and Characterization

Synthesis of phenyl(1H-pyrrol-2-yl)methanone (1)

Benzoylmorpholine (4.7 g, 2.5 mmol) and 4.5 ml POCl₃ were added in 50-mL round-bottom flask. The mixture was heated to 50 °C for 30 min, chilling the solutions to room temperature and then stirring 5 h. Pyrrole (0.5 ml, 7.72 mmol), with 10 ml anhydrous CH_2Cl_2 was dropped into the reaction mixture, and mixture was further stirring for overnight. After reaction was completed, saturated sodium hydroxide was added until pH = 7. The reaction solution was extracted with CH_2Cl_2 (50 mL × 3), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (silica gel, (10:1, v/v) ethyl acetate/petroleum ether) to give 1 (3.14 g, 75 %) as a yellow crystalline solid. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H),

7.90 - 7.76 (m, 2H), 7.50 (t, J = 6.8 Hz, 1H), 7.09 (td, J = 2.7, 1.3 Hz, 1H), 6.84 - 6.82 (m, 1H), 6.65 - 5.71 (m, 1H).

Synthesis of (5-chloro-1H-pyrrol-2-yl)(phenyl)methanone (2)

Compound 1 (3 g, 17.5 mmol) and CuCl₂.2H₂O (6 g, 35 mmol) were dissolved in 90 ml anhydrous CH₃CN, and the reaction mixture was stirred at 85 °C for 12 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and poured into saturated NaCl solution, and resulting mixture was extracted with DCM (50 mL × 3). The combined organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (silica gel, (50:1, v/v) ethyl acetate/petroleum ether) to give **2** (1.1 g, 30.5 %) as a colorless solid. 1H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.49 (t, J = 7.5 Hz, 3H), 6.85 – 6.81 (m, 1H), 6.24 – 6.18 (m, 1H).

Synthesis of 3-chloro-5,7-dimethyl-6-ethyl-8-phenyl-BODIPY (4).

To a solution of anhydrous CH_2Cl_2 (25 mL) in 50-mL round-bottom flask, (0.55 g, 2.68 mmol) compound 2 and 0.75 ml POCl₃ were added. The solution was cooled to 0 °C and stirring for 30 min. Then, a solution of 3-Ethyl-2,4-dimethylpyrrole (1.0 g, 10 mmol) in dry CH_2Cl_2 (5 mL) was slowly added through a constant pressure drop of liquid funnel, and the mixture was stirred at room temperature for 12 h. Aqueous NaHCO₃ (50mL) was poured into the mixture solutions, dried with anhydrous Na₂SO₄, and concentrated under vacuum to obtained compound 3. Without further purified, the residue was dissolved in anhydrous (50mL) CH_2Cl_2 , 1ml Et₃N was added into the solution and stirred for 1 h at room temperature. Then, BF₃ • OEt₂ (0.9 mL, 6.62 mmol) was slowly dropped into the mixture and stirred at room temperature overnight. After reaction was completed, concentrated under vacuum and the rude product was purified by silica gel chromatography (silica gel, (20:1, v/v) ethyl acetate/petroleum ether) to give **4** (0.28 g, 29.8 %) as obtained orange powdery solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.43 (m, 3H), 7.35 – 7.29 (m, 2H), 6.24 (d, J = 3.8 Hz, 1H), 6.20 (d, J = 3.8 Hz, 1H), 2.63 (s, 3H), 2.35 (q, J = 7.6 Hz, 2H), 1.43 (s, s)

3H), 1.05 – 1.00 (t, J = 7.6 Hz, 3H).

Synthesis of 2-carbaldehyde-3-chloro-5,7-dimethyl-6-ethyl-8-phenyl-BODIPY (5) To a solution of anhydrous DMF (2 mL) in 25-mL round-bottom flask, 2 mL POCl₃ was added and stirred at 0°C for 30 min. After being warmed to room temperature, mixture was stirred for additional 30 min. Compound 4 (200 mg, 0.52 mmol) was dissolved in 10 ml anhydrous CH_2Cl_2 and slowly dropped into the mixture. Under ambient temperature the mixture was stirred for 36 h. After the reaction was completed, aqueous NaHCO₃ and NaOH was added into carefully, extracted with DCM (20 mL × 3). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (silica gel, (20:1, v/v) ethyl acetate/petroleum ether) to give **5** (80 mg, 37.0 %) as brown solid. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.68 – 7.42 (m, 3H), 7.34 – 7.29 (m, 2H), 6.64 (s, 1H), 2.70 (s, 3H), 2.39 (q, J = 7.6 Hz, 2H), 1.49 (s, 3H), 1.05 (t, J = 7.6 Hz, 3H).

Synthesis of compound (6)

In a clean dry flask, compound 5 (78 mg, 0.2 mmol) was dissolved in 20 mL anhydrous ethanol, 100 μ L piperidine was added and heated to refluxed for 12 h. After removed solvent under reduced pressure, and the residue was purified by silica gel chromatography (silica gel, (10:1- 8:1, v/v) ethyl acetate/petroleum ether) to give pure compound 6 as grey powdery solid (32 mg, 33 %). ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.62 – 7.38 (m, 4H), 7.36 – 7.28 (m, 2H), 6.76 (s, 1H), 3.68 – 3.61 (m, 4H), 2.59 (s, 3H), 2.36 (q, J = 7.6 Hz, 2H), 1.85 – 1.74 (m, 5H), 1.73 – 1.65 (m, 2H), 1.43 (s, 3H), 1.02 (t, J = 7.6 Hz, 3H). HRMS (ESI) calcd for C₂₅H₂₈BF₂N₃O [M + H]⁺: 436.2366, found: 436.2374.

Synthesis of compound (7)

In a 50-mL round-bottom flask, compound 6 (80 mg, 0.2 mmol) was dissolved in (20 mL) anhydrous ethanol, p-nitrobenzaldehyde (90 mg, 0.6 mmol) and 100 μ L piperidine was added into the solution. The mixture was heated to reflux for 12 h. After cooled to room temperature, excess ethanol was removed under vacuum. The solution solution was removed under vacuum.

residue was purified by silica gel chromatography (silica gel, (10:1- 8:1, v/v) ethyl acetate/petroleum ether) to give pure compound 7 as blue solid (19 mg 16.3 %) $_{\circ}$ ¹H NMR (400 MHz, CDCl3) δ 9.70 (s, 1H), 8.25 (d, J = 8.8 Hz, 2H), 7.89 (d, J = 16.8 Hz, 1H), 7.70 (d, J = 3.5 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.36 – 7.29 (m, 2H), 7.22 (d, J = 16.8 Hz, 1H), 6.97 (s, 1H), 3.84 – 3.73 (m, 4H), 2.65 (q, J = 7.5 Hz, 2H), 1.94 – 1.80 (m, 4H), 1.79 – 1.69 (m, 2H), 1.46 (s, 3H), 1.19 (t, J = 7.5 Hz, 3H). HRMS (ESI) calcd. for C₃₂H₃₁BF₂N₄O₃ [M + H]⁺: 569.2530, found: 569.2540.

Synthesis of compound (8)

Compound 6 (40 mg, 0.1 mmol), 3,4-dimethoxybenzaldehhyde (50 mg, 0.3 mmol) and 100 μ L piperidine dissolved in (20 mL) anhydrous ethanol was added into 50-mL round-bottom flask. The mixture was heated to reflux for 12 h and then cooled to room temperature. Excess ethanol was removed under vacuum, and the residue was purified by silica gel chromatography (silica gel, (10:1-8:1-6:1, v/v) ethyl acetate/petroleum ether) to give pure compound 8 as dark blue solid (10.7 mg 21.3 %). ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.66 (d, J = 16.7 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.34 – 7.30 (m, 2H), 7.23 (d, J = 16.7 Hz, 1H), 7.18 (dd, J = 8.3, 1.9 Hz, 1H), 7.14 (d, J = 1.9 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.81 (s, 1H), 3.96 (d, J = 17.8 Hz, 6H), 3.76 – 3.68 (m, 4H), 1.86 – 1.77 (m, 4H), 1.75 – 1.68 (m, 2H), 1.45 (s, 3H), 1.19 (t, J = 7.5 Hz, 3H). HRMS (ESI) calcd for C₃₄H₃₆BF₂N₃O₃ [M + H]⁺: 584.2891, found: 584.2896.

Synthesis of compound (9)

Compound 6 (40 g, 0.1 mmol) and p-dimethylaminobenzaldehyde (47 mg, 0.3 mmol) were dissolved in 20 ml anhydrous ethanol, and then100 μ L piperidine was added into the mixture. Reaction mixture was stirred at 85 °C for 12 hours. After the reaction was completed, excess ethanol was removed under reduced pressure, and the residue was purified by silica gel chromatography (silica gel, (10:1-8:1-6:1, v/v) ethyl acetate/petroleum ether) to give pure compound 9 as blue solid (10.7 mg 16.2 %).¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.56 (d, J = 16.7 Hz, 1H), 7.46 (t, J = 6.9 Hz, 3H), 7.39 (d, J = 6.8 Hz, 3H), 7.23 (d, J = 6.2 Hz, 3H), 6.73 (s, 1H), 6.65 (s, 1H), 3.60

(m, 4H), 2.99 (s, 6H), 2.58 (d, J = 7.4 Hz, 2H), 1.71 (d, J = 22.7 Hz, 4H), 1.68 – 1.56 (m, 2H), 1.37 (s, 3H), 1.11 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for $C_{34}H_{38}BF_2N_4O$ [M + H]⁺: 567.3101, found: 567.3110.

Synthesis of 1-ethylbenzo[cd]indol-2(1H)-one (2.1)

1,8-naphtholactam (0. 5 g, 3 mmol) and potassium hydroxide (0.56 g, 10 mmol) were dissolved in DMF and the mixture was stirred at 30 °C for 10 min. Then, (0.75 ml 10 mmol) CH_3CH_2I was introduced into the solution. The reaction was heated at 90 °C for 10 h. After cooling to room temperature, the solution was poured into 100 ml ice water, and precipitate was collected by filtration. The product was pure enough to carry out the next reaction directly.

Synthesis of 1-ethyl-2-methyl-benz[c,d] indolium salts

A solution of **2.1** (0.5 g, 2.5 mmol) and Methyl magnesium chloride (3.0 M solution in tetrahydrofuran (THF), 1 mL, 3 mmol) dissolved in anhydrous THF (20 mL) was stirred at 55 °C for 1 h under a nitrogen atmosphere. After reaction was completed, mixture was cooled down, neutralized by addition of 1M hydrochloric acid and saturated potassium iodide solution to obtained orange solid (0.37 g 75 %). ¹H NMR (400 MHz, DMSO) δ 8.99 (d, J = 6.3 Hz, 1H), 8.81 (d, J = 7.6 Hz, 1H), 8.67 – 8.50 (m, 1H), 8.46 (d, J = 7.7 Hz, 1H), 8.21 – 8.09 (m, 1H), 8.06 – 7.94 (m, 1H), 4.73 (q, J = 7.1 Hz, 2H), 4.19 (s, 3H), 1.56 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 139.08 (s), 135.64 (s), 131.49 (s), 131.41 (s), 130.25 (s), 129.44 (s), 124.43 (s), 121.46 (s), 120.49 (s), 106.06 (s), 42.55 (s), 34.89 (s), 15.31 (s).

Synthesis of compound WD-CH₃

Compound 6 (12.3 mg, 0.02 mmol) and 1-ethyl-2-methylbenzo[cd]indol-1-ium (10 mg, 0.03 mmol) were dissolved in 20 mL absolute EtOH. The reaction mixture was heated to refluxed for 2 h. The solution was removed under reduced vacuum. The crude compound was purified by silica gel flash chromatography (silica gel, 100:1-50:1 v/v CH₂Cl₂/MeOH) to afford compound WD-CH₃ (11 mg 61%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 7.4 Hz, 1H), 8.33 (d, J = 14.9 Hz, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.95 – 7.81 (m, 3H), 7.70 (t, J = 7.0 Hz, 1H), 7.63 – 7.52 (m, 3H), **s**

7.40 – 7.30 (m, 2H), 7.03 (d, J = 14.8 Hz, 1H), 6.85 (s, 1H), 4.67 (q, J = 7.1 Hz, 2H), 3.83 – 3.58 (m, 4H), 2.59 (s, 2H), 2.34 (q, J = 7.6 Hz, 2H), 1.90 – 1.71 (m, 6H), 1.49 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.6 Hz, 3H). HRMS (ESI) calcd for $C_{34}H_{38}BF_2N_4O^+$: 613.3309, found: 613.3322.

Synthesis of compound WD-OCH₃

In a 50 mL round-bottom flask, compound 8 (22.8 mg, 0.03 mmol) and 1-ethyl-2-methylbenzo[cd]indol-1-ium (15 mg, 0.045 mmol) were dissolved in 20 mL absolute EtOH. The reaction mixture was refluxed for 2 h. The solution was then removed to give the crude product. Crude compound was purified by silica gel flash chromatography (silica gel, 100:1-50:1 v/v CH₂Cl₂/MeOH) to afford compound WD-OCH₃ (18.1 mg 57 %). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 7.4 Hz, 1H), 8.33 (d, J = 14.8 Hz, 1H), 8.25 (d, J = 8.1 Hz, 1H), 7.93 (t, J = 7.3 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.74 – 7.58 (m, 2H), 7.58 – 7.55 (m, 3H), 7.41 – 7.30 (m, 3H), 7.17 (d, J = 1.9 Hz, 1H), 7.10 (d, J = 1.8 Hz, 1H), 7.00 (d, J = 14.8 Hz, 1H), 6.90 – 6.84 (m, 1H), 4.65 (q, J = 7.5 Hz, 2H), 3.91 (d, J = 15.2 Hz, 6H), 3.78 (d, J = 5.3 Hz, 4H), 2.63 (q, J = 7.5 Hz, 2H), 1.81 (m, , 6H), 1.49 (t, J = 7.1 Hz, 3H), 1.42 (s, 3H), 1.15 (t, J = 7.6 Hz, 3H). HRMS (ESI) calcd for C₄₈H₄₈BF₂N₄O₂⁺: 761.3833, found: 761.38275

Synthesis of compound WD-NME₂

Compound 9 (22.2 mg, 0.03 mmol) and 1-ethyl-2-methylbenzo[cd]indol-1-ium (15 mg, 0.045 mmol) were dissolved in 20 mL absolute EtOH. The reaction mixture was heated to refluxed for 2 h. After removal of the solvent, the crude product was purified by silica gel flash chromatography (silica gel, 100:1-50:1 v/v CH₂Cl₂/MeOH) to afford compound WD-NME₂ (16.2 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 7.4 Hz, 1H), 8.32 (d, J = 14.6 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.96 – 7.88 (m, 1H), 7.84 – 7.77 (m, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.57 – 7.54 (m, 3H), 7.53 – 7.49 (m, 2H), 7.47 (d, J = 3.3 Hz, 1H), 7.45 (d, J = 2.1 Hz, 1H), 7.38 – 7.31 (m, 2H), 6.83 (d, J = 14.7 Hz, 1H), 6.74 (s, 1H), 6.62 (d, J = 11.6 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 5.3 Hz, 4H), 2.64 (q, J = 7.5 Hz, 2H), 1.89 – 1.78 (m, 6H), 1.47 (t, J = 6.9 Hz, 3H), 1.40 (s, 3H), 1.15 (t, J = 7.5 Hz, 3H).HRMS (ESI)

calcd for C₄₈H₄₈BF₂N₄O₂⁺: 740.4044. Found: 740.40399

Synthesis of compound WD-NO₂

Compound 7 (22.4 mg, 0.03 mmol) and 1-ethyl-2-methylbenzo[cd]indol-1-ium (15 mg, 0.1 mmol) were dissolved in 20 mL anhydrous EtOH. The reaction mixture was the reaction was refluxed and stirred at 90 °C for 2 h. Excess solvent was removed through reduced pressure, and residue was purified by silica gel flash chromatography (silica gel, 100:1-50:1 v/v CH₂Cl₂/MeOH) to afford compound WD-NO₂ (18.8 mg 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 7.3 Hz, 1H), 8.36 (d, J = 8.0 Hz, 2H), 8.29 (d, J = 8.8 Hz, 2H), 8.03 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 16.8 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.64 (s, 3H), 7.46 (d, J = 3.5 Hz, 2H), 7.38 (d, J = 16.7 Hz, 2H), 7.24 (s, 1H), 4.84 (q, J = 16.7 Hz 2H), 3.87 (m, 4H), 2.69 (q, J = 7.4 Hz, 2H), 1.90 (m, 6H), 1.51 (s, 3H), 1.44 – 1.39 (t, J = 13.4 Hz 3H), 1.22 (t, J = 15.3 Hz, 4H).

¹³C NMR (101 MHz, CD_2Cl_2/CD_4OD) δ 165.07 (s), 161.00 (s), 155.13 (s), 149.22 (s), 145.69 (s), 144.34 (s), 142.85 (s), 140.65 (s), 140.27 (s), 139.14 (s), 137.70 (s), 137.32 (s), 136.89 (s), 134.89 (s), 132.61 (s), 131.93 (s), 131.42 (s), 131.26 (s), 130.88 (s), 130.32 (s), 129.42 (s), 125.61 (s), 117.12 (s), 110.50 (s), 67.20 (s), 42.74 (s), 31.06 (s), 28.21 (s), 25.23 (s), 19.82 (s), 16.29 (s), 14.97 (s), 13.25 (s). HRMS (ESI) calcd for $C_{46}H_{43}BF_2N_5O_2^+$: 746.3472, found: 746.3480.

Theoretical calculations

Theoretical calculations were performed to further understand the viscosity sensing mechanism. Based on the density functional theory (DFT), the values of the rotatable dihedral angle between BODIPY fluorophore and 1-ethyl-2-methyl-benz[c,d] iodolium salt, related charge density on connecting bonds as well as the geometry for molecular ground-state were carried out at the B3LYP/ 6-31G* level. In addition, to verify that the Nitro (electron-withdrawing) and Methoxy & Diethylamino (electron-donating groups) were participated in the π -conjugation and extended the bathochromic shift of absorption and fluorescence emission, frontier molecular orbital plots, including the energy levels for highest occupied molecular orbital (HOMO) and S10

lowest unoccupied molecular orbital (LUMO) of **WD-X** were carried out with the time dependent DFT (TDDFT) with the optimized structure of the ground (DFT/6-31G(d)). All data were collected using the Gaussian 09 software.

Optical experiments

WD-X, including **WD-CH**₃, **WD-NO**₂, **WE-OCH**₃ and **WD-NME**₂ were dissolved in DMSO to prepare the stock solution with a concentration of 1 mM. Photophysical properties, such as absorption/emission spectra, were measured by adding the stock solution (10 μ L, 1.0 mM) to 0.5 mL of various solvents (MeOH, EtOH, CH₃CN, Acetone, DMF, DMSO, CH₂Cl₂, H₂O/CH₃CN, Glycerol) to obtain the final concentration of 20 μ M. For the viscosity determination, solvents with different viscosity were obtained by mixing ethanol and glycerol in different proportions. The value of viscosity was recorded by NDJ-8 rotational viscometer. Solutions of **WD-X** with different viscosity were prepared by adding the 10 μ L of stock solution to 0.5 mL of mixture solvent (ethanol-glycerol) with the final concentration of 20.0 μ M. These solutions were sonicated for 10 min to eliminate air bubbles. The absorption/emission spectra of the **WD-X** solutions with different viscosity were measured on a UV-vis-NIR spectrophotometer (Shimadzu UV-2550, Japan) and Near-II fluorescence spectrophotometer with 808 nm excitation wavelength at a constant temperature of 25 °C.

Determination of fluorescence quantum yields

The fluorescence quantum yields were determined by plotting the integrated fluorescence intensity vs absorbance value. In this work, the quantum yields of **WD-X** in various solvents were determined with the reference of IR 1061 ($\Phi = 1.7$ % in CH₂Cl₂).¹ The quantum yields were calculated using the equation: $\Phi_{sam} = \Phi_{ref} \times (K_{sam}/k_{ref}) \times (n_{sam}/n_{ref})^2$, where, subscripts sam and ref denote test sample and reference, respectively. Φ is the fluorescence quantum yield, *K* is the slop of the plot, and *n* is the refractive index of the solvent. In order to maximize illumination homogeneity and optical transparency, all absorbance in tests were kept below 0.08 at 808 nm and the emission spectrum was collected in the range of 900-1400 nm.

The Förster-Hoffmann equation

According to the Forster-Hoffmann equation, the quantitative relationship between **WD-NO₂** and the solvent viscosity can be described as $log(I) = c + x log \eta$, where I is the fluorescence intensity at 982 nm, η is the viscosity, c is a constant, and x represents a probe-dependent constant.

Photostability, pH dependency and selectivity of probe

Firstly, the photostability of the **WD-X** compounds was investigated, using the commercially available dye ICG as a reference. Probes and ICG were dissolved in the mixture solution of PBS/CH₃CN (V/V = 1:1), and the final concentration was 20.0 μ M. Under 808 nm laser at a fluency rate of 0.1 W/cm², the change of fluorescence intensity was recorded within 0-40 min. The emission intensity of **WD-X** and ICG was measured every 2.5 min. Then, to examine the selectivity of **WD-NO₂**, Cys, Hcy, GSH, H₂O₂, NO, HCIO, ONOO⁻, NTR, HSO₃⁻, HS⁻, Na₂S₂, Cu²⁺, Zn²⁺, Ca²⁺, were individually added into the mixture solution of PBS/CH₃CN (V/V = 1:1) containing **WD-NO₂** (20.0 μ M). In addition, to further assess the stability of probe to biological environments, **WD-NO₂** solutions of different pH values (4.32-8.05) were prepared by adding the stock solution of **WD-NO₂** (10 μ L,1.0 mM) to 0.5 mL of various buffer solutions with different pH values to gain the final concentration of 20.0 μ M. All the solutions were measured on Fluorolog-3 Near-II spectrofluorometer with excitation at 808 nm and emission spectra were collected at 870-1400 nm.

Cytotoxicity Assay.

MTT assay was performed to evaluate the cytotoxicity of probe **WD-NO**₂. HeLa cells were plated in 96-well plates and incubator for 24 h to adhere. Then, various concentrations of probe (0, 3, 5, 10, 15, 20, 25, 30 μ M) were added into the media, and then incubated for another 24 h. Next, 10 μ L of methylthiazolyl tetrazolium (MTT) (5 mg mL⁻¹) was added to each of the wells and incubated for 4 h, 100 μ L DMSO was added to dissolve the formazan crystals. The absorbance was measured at 570 nm with Microplate Reader (Thermo Fisher Scientific, USA). The cell viability

was calculated as (%) = (OD570 (Experiments) – OD570 (Blank)) / (OD570 (Control) – OD570 (Blank)). All experiments were performed in 9 replicates. The cell viability was expressed by the average values \pm standard deviation (SD).

Fluorescence imaging of viscosity in vivo

All animal procedures were performed in accordance with the Guidelines for Care and Use of Laboratory Animals of Wuhan University and approved by the Animal Ethics Committee of Wuhan University. Four-week old female Kunming mice were purchased from Hubei Provincial Center for Disease Control. All groups contained n = 3 mice. In order to verify $WD-NO_2$ could be used for monitoring viscosity fluctuation in vivo, mice were divided into four groups and injected with monensin, nystatin or LPS respectively in abdomen to produce viscosity changing models. Before imaging, all mice were fasted for 12 hours for avoiding the possible impact of food fluorescence. In addition, the abdominal fur was removed by an electric shaver before imaging. The first group was intraperitoneally injected with WD-NO₂ (100 100 μ L of 1:20 DMSO/saline v/v, 0.3 mM) as the negative control. The second group was given an injection of monensin (0.5 mg/mL, 100 μ L) into the peritoneal cavity followed by intraperitoneal injection of WD-NO₂ (100 µL, 0.3 mM) after 24 hours. The mice in group c were intraperitoneally injected with nystatin (0.5 mg/mL, 100 μ L), and 24 h later was loaded with **WD-NO₂** (100 μ L, 0.3 mM). The mice in group d were intraperitoneally injected with LPS (1 mg/mL, 100 µL) followed by intraperitoneal injection of WD-NO₂ (100 µL, 0.3 mM) 24 h later. Ex: 808 nm laser (50 mW/cm^2) , exposure time: 200 ms, 1000 nm LP.

Monitoring viscosity in diabetes-induced liver injury

Four-week old female Kunming mice were purchased from Hubei Provincial Center for Disease Control. All groups for study contained n = 3 mice. After overnight fasting, the mice were intraperitoneally injected with STZ freshly dissolved in 0.01 mol/L citrate buffer (pH 4.5) at a dose of 150 mg/kg body weight to induce diabetic model. The diabetes of mice were confirmed by the presence of hyperglycemia (blood glucose level $\geq 16.7 \text{ mmol/L}$) 72 h after STZ injection and the level of blood glucose was detected by blood glucose meter. Once the model was determined to be successful, the mice were kindly kept during the next 7 days. Afterwards, all the diabetic mice were selected and divided into three groups. In the control group, normal mice were only i.v. injected with **WD-NO**₂ (100 µL, 0.3 mM). In the experiment groups, diabetic mice were intraperitoneally injected with saline and resveratrol (RVT) at a dose of 10 mg/kg, as well as treated with oral metformin (Metf) at a dose of 100 mg/kg body weight for 7 consecutive days, respectively. Before imaging, the abdominal fur was removed by an electric shaver. Then, **WD-NO**₂ (100µL, 0.3 mM) dissolved in DMSO/saline (v/v = 1: 20) was intravenously injected into the mice. NIR-II imaging of the liver region was performed on an in vivo master with Ex=808 nm (50 mW/cm²), exposure time: 200 ms, 1000 nm LP. Scheme S1. Synthesis of WD-X and 1-ethyl-2-methyl-benz[c,d] indolium salts.

Synthesis of 1-ethyl-2-methyl-benz[c,d] indolium salts

a: POCl₃/pyrrole/CH₂Cl₂ b: CuCl₂.2H₂O/CH₃CN c: POCl₃/3-Ethyl-2,4-dimethylpyrrole/CH₂Cl₂ d: Et₃N/BF₃ • OEt₂/CH₂Cl₂ e: DMF/POCl₃ f: pyridine/EtOH g: EtOH h: p-nitrobenzaldehyde/EtOH j: 3,4-dimethoxybenzaldehyde/EtOH i: p-dimethylaminobenzaldehyde/EtOH k CH₃CH₂I/KOH/DMF l: CH₃MgBr/THF

Probe	λabs	λex/nm	λem/nm	Stokes-shifts	Bioimaging application
	(nm)			/nm	
MCN ²	400	400	470	70	cells, tissue & zebrafish
BMVC ³	480	470	560	80	cells
Mito-V ⁴	525	511	583	58	cells
NI-VIS ⁵	550	560	670	120	cells, tissue & zebrafish
NLV-1 ⁶	680	650	719	69	cell, zebrafish, mice
WD-CH ₃	755	808	1006	251	Mice
WD-NO ₂	809	808	1026	217	(inflammation, diabetes)
WD-OCH ₃	815	808	1052	237	
WD-NME ₂	838	808	1100	262	

Table S1. Reported representative fluorescent probes for monitoring viscosity

Figure S1. Structure and spatial configuration of representative (CH-1055, H1) and (CX-3, Flva7) fluorophores.

Figure S2 Viscosity response of CH-1055

Figure S2. Fluorescence spectra of 10 μ M CH-1055 in ethanol-glycerol systems at various ratios

Figure S3. (A) UV-Vis-NIR spectra, fluorescence emission spectra (B) and normalized fluorescence intensity (C) of WD-CH₃ (20 μ M) in different solvents.

Dyes	solvents	λabs (nm)	ε (M ⁻¹ cm ⁻¹)	λem (nm)	Stokes-shifts	Ф (%)
					(nm)	
WD-CH ₃	CH ₃ OH	757	28700	964	207	0.048
	EtOH	760	13200	978	218	0.208
	CH ₃ CN	756	31100	1024	268	0.074
	Acetone	760	30700	1010	250	0.090
	DMF	768	12700	982	214	0.186
	DMSO	775	18800	986	211	0.268
	CH ₂ Cl ₂	770	31300	1000	230	0.141
	H ₂ O/CH ₃ CN	755	25700	1006	251	0.075
	Glycerol	768	36600	960	192	0.625

Table S2. Photophysical properties of WD-CH₃

Figure S4 Optical properties of WD-NO₂

Figure S4. (A) UV-Vis-NIR spectra, fluorescence emission spectra (B) and normalized fluorescence intensity (C) of WD-NO₂ (20 μ M) in different solvents. EX = 808 nm, emission spectra were collected at 880-1400 nm.

Dyes	solvents	λabs	ε (M ⁻¹ cm ⁻¹)	λem	Stokes-shifts	Φ (%)
		(nm)		(nm)	(nm)	
	CH ₃ OH	814	10700	1014	200	0.065
	EtOH	809	6500	1002	193	0.078
	CH ₃ CN	811	10700	1034	223	0.237
	Acetone	808	8700	1028	220	0.344
WD-NO ₂	DMF	817	ND	1010	195	ND ^a
	DMSO	815	7800	1008	193	0.568
	CH ₂ Cl ₂	837	17300	1038	201	0.271
	H ₂ O/CH ₃ CN	809	10400	1026	217	0.230
	Glycerol	818	27600	982	164	1.662

Table S3. Photophysical properties of WD-NO₂

a = not detected

Figure S5 Optical properties of WD-OCH₃

Figure S5. (A) UV-Vis-NIR spectra, Fluorescence emission spectra (B) and normalized fluorescence intensity (C) of WD-OCH₃ (20μ M) in different solvents.

Dyes	solvents	λabs (nm)	ε (M ⁻¹ cm ⁻¹)	λem (nm)	Stokes-shif	Φ (%)
					ts (nm)	
WD-OCH ₃	CH ₃ OH	812	28300	958	146	0.058
	EtOH	818	25300	1040	222	0.118
	CH ₃ CN	820	35800	1054	234	0.137
	Acetone	821	35200	1052	231	0.140
	DMF	831	18700	1042	211	0.232
	DMSO	831	31800	1040	209	0.194
	CH ₂ Cl ₂	830	43900	1062	232	0.111
	H ₂ O/CH ₃ CN	815	47000	1052	237	0.069
	Glycerol	830	64800	1024	182	0.405

Table S4. Photophysical properties of WD-OCH₃

Figure S6 Optical properties of WD-NME₂

Figure S6. (A) UV-Vis-NIR spectra, fluorescence emission spectra (B) and normalized fluorescence intensity(C) of WD-NME₂ (20 μ M) in different solvents.

Dyes	solvents	λabs (nm)	ε (M ⁻¹ cm ⁻¹)	λem (nm)	Stokes-shifts	Ф (%)
					(nm)	
	CH ₃ OH	839	55300	1068	229	0.048
	EtOH	843	45300	1074	231	0.075
WD-NME ₂	CH ₃ CN	841	65800	1088	247	0.031
	Acetone	842	64200	1070	228	0.039
	DMF	859	30700	1056	197	0.102
	DMSO	859	38800	974	115	0.104
	CH ₂ Cl ₂	846	74900	1092	246	0.033
	H ₂ O/CH ₃ CN	838	60000	1100	262	0.029
	Glycerol	850	61600	1070	225	0.135

Table S5. Photophysical properties of WD-NME₂

|--|

Figure S7. Frontier molecular orbital plots and HOMO, LOMO energy of **WD-X** (**WD-CH**₃, **WD-NO**₂, **WD-OCH**₃, **WD-NME**₂). Green and red shapes are corresponding to the different phases of the molecular wave functions for HOMO and LUMO orbitals.

Figure S8 Absorption and fluorescence spectra of WD-CH₃, WD-OCH₃ and WD-NME₂

Figure S8. Absorption and fluorescence spectra of (20 μ M) WD-CH₃ (A-B), WD-OCH₃ (C-D) and WD-NME₂ (E-F) in ethanol and glycerol (95%); normalized absorbance of 20 μ M WD-X (G) in glycerol (95%).

Figure S9. (A) Fluorescence intensity response of **WD-NO**₂ (20 μ M) carried out in phosphate buffered solution (10 mM) with different pH (4.32, 5.06, 6.17, 7.03, 7.40, 8.05). (B) Fluorescence response of **WD-NO**₂ (20 μ M) toward various species. For reactive sulfide species: Cys, Hcy and GSH (1 mM), HSO₃⁻, HS⁻ and Na₂S₂ (100 μ M). For reactive oxygen/nitrogen species: H₂O₂, NO, HClO, ONOO⁻ (100 μ M). K⁺, Cu²⁺, Zn²⁺, Ca²⁺, (1 mM), NTR (1 μ g/mL) and 0.5 mM NADH. 1. ethanol; 2, Cys; 3, Hcy; 4, GSH; 5, H₂O₂; 6, NO; 7, HClO; 8, ONOO⁻; 9, HSO₃⁻; 10, HS⁻; 11, Na₂S₂; 12, K⁺; 13, Cu²⁺; 14, Zn²⁺; 15, Ca²⁺; 16, NTR+ NADH; 17, glycerol. (C) Normalized emission decay of **WD-X** and ICG at their emission maximaum under laser irradiation (808 nm, 100 mW/cm²) for different irradiation time.

Figure S10 Cytotoxicity of WD-NO₂

Figure S10. The MTT experiment of WD-NO₂ with different concentrations (0 μ M, 3 μ M, 5 μ M, 10 μ M, 15 μ M, 20 μ M, 25 μ M and 30 μ M) for HeLa cells.

Figure S11. Fluorescence imaging of viscosity changes by exogenous drug stimulation.

Figure S11. (A) Fluorescence imaging of viscosity changes by exogenous drug stimulation. (A-a) mice were only intraperitoneally injected with **WD-NO₂** (100 μ L, 0.3 mM). In vivo imaging of livers of mice treated with various drugs: monensin

(A-b), nystatin (A-c) and LPS (A-d). All groups for study contained n = 3 mice. Ex: 808 nm laser (50 mW/cm²), exposure time: 200 ms, 1000 nm LP. (B): Normalized relative fluorescence intensity of the above groups of mice.

Figure. S12 1H NMR of phenyl(1H-pyrrol-2-yl)methanone (1)

Figure.S13 ¹H NMR (5-chloro-1H-pyrrol-2-yl)(phenyl)methanone (2)

Figure.S15 ¹H NMR of 2-carbaldehyde -3-chloro- 5,7-dimethyl- 6-ethyl -8-phenyl

S26

Figure.S16 ¹H NMR and HRMS of compound (6)

Figure.S18 ¹H NMR and HRMS of compound (8)

Figure.S19 ¹H NMR and HRMS of compound (9)

Figure.S21 ¹H NMR and HRMS of WD-CH₃

Figure.S22 ¹H NMR and HRMS of WD-OCH₃

Figure.S24 ¹H NMR, ¹³C NMR and HRMS of WD-NO₂

Table S6 Viscosity of the various glycerol/ethanol (v/v) mixtures

Glycerol/ Ethanol (v : v)	η(cp)
0:10	1.52
1:9	3.53
2:8	11.7
3:7	16.3
4:6	25.6
5:5	92.1
6:4	149
7:3	331
8:2	621
9:1	798
19: 1	925

Reference

(1) (a) Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. *Angew. Chem. Int. Ed.* **2013**, *52*, 13002; (b) Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; Ye, D.; Fan, Q.; Huang, W. *Theranostics* **2019**, *9*, 4168.

(2) Ning, P.; Dong, P.; Geng, Q.; Bai, L.; Ding, Y.; Tian, X.; Shao, R.; Li, L.; Meng, X. J. Mater. Chem. B. **2017**, *5*, 2743.

(3) Zou, Z.; Yan, Q.; Ai, S.; Qi, P.; Yang, H.; Zhang, Y.; Qing, Z.; Zhang, L.; Feng, F.; Yang, R. Anal.

Chem. 2019. 91,8574.

- (4) Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Chem. Commun. **2019**, 55, 7410.
- (5) Zhang, Y.; Li, Z.; Hu, W.; Liu, Z. Anal. Chem. **2019**, *91*, 10302.
- (6) Guo, R.; Yin, J.; Ma, Y.; Li, G.; Wang, Q.; Lin, W. Sensors. Actuat. B- Chem. 2018, 271, 321.