Supporting Information for Publication

Drug-loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and PhotodynamicTherapy of Cancer

Abhilash D. Pandya ${ }^{1}$, Anders $\emptyset_{\text {verbye }}{ }^{2}$, Priyanka Sahariah ${ }^{3}$, Vivek S. Gaware ${ }^{3}$, Håkon Høgset ${ }^{2}$, Mar Masson ${ }^{3}$, Anders Høgset ${ }^{4}$, Gunhild M. Malandsmo ${ }^{1,5}$, Tore Skotland ${ }^{2}$, Kirsten Sandvig ${ }^{2,6}$, Tore-Geir Iversen ${ }^{2 *}$
${ }^{1}$ Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital,N-0379 Oslo, Norway
${ }^{2}$ Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0379 Oslo, Norway
${ }^{3}$ Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
${ }^{4}$ PCI Biotech AS, Ullernchauséen 64, N-0379 Oslo, Norway
${ }^{5}$ Institute of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway, University of Troms \varnothing, Troms \varnothing, Norway
${ }^{6}$ Department of Biosciences, University of Oslo, Oslo, Norway
* Corresponding Author. Tel. +47 22781826, e-mail: toregiv@uio.no
ORCID IDs:
ADP: 0000-0002-7713-3050
AØ: 0000-0002-2564-3729
PS: 0000-0002-1777-9474
VSG: 0000-0001-5498-6133
HH: Not registered
MM: 0000-0003-0363-3316
AH: 0000-0002-2562-9951
GMH: 0000-0002-4797-1600
TS: 0000-0002-6524-612X
KS: 0000-0002-4174-9072
TGI: 0000-0003-1148-6117

1. Synthesis of Nucleophilic Amino-chlorin Intermediate (TPCN1P). To efficiently synthesize the amphiphilic photosensitizer ($\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$), we followed the previously optimized procedure (Supplementary Figure 1). Tetraphenylporphyrin (TPP) and p-amino-tetraphenylporphyrin (TPP were prepared as described in our previous publication ${ }^{1}$. For the current synthesis of TPCN1P the procedure was scaled up 8 times to synthesize 3.6 g of 5-(4-(2-(1-piperazinyl)acetyl)aminophenyl)-10,15,20-triphenylchlorin (TPC ${ }_{N 1 P}$). The yields in each step were not affected. $\mathrm{TPC}_{\mathrm{N} I P}$ is present in two isomeric forms, depending on the position of the reduced double bond in the porphyrin system. These will be present in approximately equal proportions ${ }^{1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.34,9.39(\mathrm{~s}, 1 \mathrm{H}), 7.86-8.65(\mathrm{~m}, 16 \mathrm{H}), 7.66-7.73(\mathrm{~m}, 9 \mathrm{H}$,$) ,$ 4.18-4.19 (br s, 4H), $3.29(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{~m}, 4 \mathrm{H}),-1.37$ (br s) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=168.37,167.48,152.61,143.14,142.22,140.86,139.20,138.32,137.19,136.99$, $135.33,134.64,133.98,133.01,132.37,132.12,131.96,128.17,127.69,126.81,123.56,123.38$, $122.79,122.08,119.22,117.94,112.41,111.65,62.63,53.50,45.59,35.90 \mathrm{ppm}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 758.3602$; found 758.3613.

Figure S1. Synthesis of Nucleophilic Intermediate 4 ($\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$). Reagents and conditions: (a) Propionic acid, reflux, 30 min (20\%); (b) NaNO_{2} (1.8 equiv), TFA, $25^{\circ} \mathrm{C}, 3 \mathrm{~min}$; (c) $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, concentrated $\mathrm{HCl}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}(54 \%)$; $\left(\mathrm{d}_{1}\right) p$-Toluenesulfonyl hydrazide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, pyridine, reflux, 24 h ; (d_{2}) o-Chloranil, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}(80 \%)$; (e) Chloroacetyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; in situ-(f) Piperazine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}(65 \%)$. Only one of the two isomers of $\mathrm{TP}_{\mathrm{CN} 1}$ and $\mathrm{TPC}_{\mathrm{N} 1 P}$ is shown. The arrow indicates the position of the reduced double bond in the other isomer.

2. Synthesis of TPC-CS conjugate polymers with varying amounts of TPC.

Details of the different syntheses are given in 2.1-2.6 below; all structures described are shown in Figure S2.

Figure S2. Synthetic scheme for ($\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$)-chitosan-TMA conjugates: (a) TBDMSCl, imidazole, DMSO, $25^{\circ} \mathrm{C}$, 24 h ; (b) Bromoacetyl bromide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c)(i) $\mathrm{NMe}_{3}(31-35$ wt $\%$ in $\mathrm{EtOH}, 4.2 \mathrm{M}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, 24 h ; (ii) $1.25 \mathrm{M} \mathrm{HCl}-\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$. (d) $\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (e) $\mathrm{NMe}_{3}\left(31-35 \mathrm{wt} \%\right.$ in $\mathrm{EtOH}, 4.2 \mathrm{M}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h} ;$ (f) 1.25 $\mathrm{M} \mathrm{HCl}-\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
2.1. Synthesis of 3,6-O-di-tert-butyldimethylsilyl (TBDMS) chitosan (2). TBDMS chitosan (compound 2) was synthesized from chitosan mesylate salt $\mathbf{1}$ using a previously reported method ${ }^{2}$.

2.2. Synthesis of \boldsymbol{N}-bromoacetyl-3,6-di- O-tert-butyldimethylsilyl-chitosan (3). Compound 3

 was synthesized using a previously published method ${ }^{3}$. Briefly, compound $2(1 \mathrm{~g}, 2.53 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ under N_{2} atmosphere. This solution was cooled to $-20{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.76 \mathrm{ml}, 12.66 \mathrm{mmol})$ was added, followed by a slow dropwise addition ofbromoacetyl bromide ($0.89 \mathrm{ml}, 10.13 \mathrm{mmol}$). The stirring was continued for 1 hat $-20^{\circ} \mathrm{C}$ before the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and concentrated in vacuo. The obtained crude residue was triturated and stirred with $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{ml})$, filtered and washed with fresh $\mathrm{CH}_{3} \mathrm{CN}(3 \times 20 \mathrm{ml})$, and dried. The dry material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$ and brine $(25 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford the bromoacetyl compound $3(1.1 \mathrm{~g}, 92 \%)$ as a faint yellow powder. This material was carried over to the next step without further purification.

2.3 Synthesis of N-[(2-(N, N, N-trimethylammoniumyl)acetyl)] chitosan (CS-TMA)

(4).Compound 4 was synthesized using a previously published method ${ }^{3}$.Freshly prepared bromoacyl compound $\mathbf{3}(2.0 \mathrm{~g}, 3.87 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2} atmosphere. Excess $\mathrm{Me}_{3} \mathrm{~N}(4.2$ molar in EtOH$)(15 \mathrm{ml})$ was added, and the resulting mixture was stirred for 24 h at $25^{\circ} \mathrm{C}$. The reaction mixture was concentrated in vacuo to isolate the corresponding compound N -(2-($\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylammoniumyl)acetyl)-3,6-di- O -TBDMSchitosan. Deprotection of this material using $1.25 \mathrm{M} \mathrm{HCl}-\mathrm{MeOH}(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 12 h , followed by ion-exchange, dialysis and freeze-drying afforded N-(2-(N, N, N-trimethyl ammoniumyl)acetyl) chitosan 4 as the light brown solid. Yield: $0.90 \mathrm{~g}, 87 \%$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{D} 2 \mathrm{O}): ~ \delta 2.08\left(\mathrm{NCOCH}_{3}\right), 3.36\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.54-3.88(\mathrm{H}-2-\mathrm{H}-6), 4.21\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.66$ (H-1) ppm.

2.4. General procedure for synthesis of [N-(2-(4-(N-(4-(10,15,20-Triphenylchlorin-5-yl)phenylamino) carbonyl methyl) piperazin-1-yl)acetyl)][N-(2-bromoacetyl)] chitosan $\left(\mathbf{T P C}_{\mathrm{N} 1 \mathrm{P}}\right)(\mathrm{Br})$ chitosan (5i-iii).

This synthesis was performed using a previously published method ${ }^{1}$. Compound $\mathbf{3}$ (1 equiv) and the nucleophilic amino-chlorin intermediate ($\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$) $(0.01,0.03$ and 0.10 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ under N_{2} and with protection from light. An exact equimolar quantity of $\mathrm{Et}_{3} \mathrm{~N}$ with respect to $\mathrm{TPC}_{\mathrm{N} 1 \mathrm{P}}$ was added, and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The full consumption of the starting material was confirmed by TLC as previously reported. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{ml})$ and brine $(25 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford
compound $\mathbf{5 i}$ iiii as a brown solid. This material was carried over to the next step without further purification.

2.5. General procedure for synthesis of [N-(2-(4-(N-($\mathbf{(4 - (1 0 , 1 5 , 2 0 - T r i p h e n y l c h l o r i n - 5 - ~}$ yl)phenylamino) carbonyl methyl)piperazin-1-yl)acetyl)][N-(2-(N, N, N-trimethyl ammoniumyl)acetyl)]-3,6-di- O-tert-butyldimethylsilyl-chitosan bromide (TPCN1P)-Di-TBDMS-chitosan-TMA (6i-iii).

This synthesis was performed using a previously published method ${ }^{1}$.Compound $\mathbf{3}$ (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ under N_{2} with protection from light. Excess $\mathrm{Me}_{3} \mathrm{~N}(31-35 \mathrm{wt} \%$ in $\mathrm{EtOH}, 4.2 \mathrm{M})(15 \mathrm{ml})$ solution was added to the reaction mixture, and it was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was concentrated in vacuo, and the crude material was completely dried under high vacuum, yielding the crude compound $\mathbf{6 i}$ iiii as a brown solid. The material $\mathbf{6 i - i i i}$ was used directly for the next step without further purification.

2.6. Synthesis of [N-(2-(4-(N-(4-(10,15,20-Triphenylchlorin-5-yl)phenylamino) carbonyl methyl)piperazin-1-yl)acetyl)][N-(2-(N, N, N-trimethylammoniumyl)acetyl chitosan chloride (TPCN1P).chitosan-TMA (7i-iii).

Compounds $\mathbf{6 i}$-iii were stirred in $1.25 \mathrm{M} \mathrm{HCl}-\mathrm{MeOH}(25 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then diluted and ion-exchanged by the addition of $5 \% \mathrm{NaCl}$ (aqueous) (40 ml) to the solution. It was then stirred for 1 h before it was dialyzed against $8 \% \mathrm{NaCl}$ (aqueous) for 24 h , and then again against deionized water for 2 days. The clean brown solution was subsequently freeze-dried to afford the corresponding final nanoconjugates 7i-iii as brown fluffy material. In some cases, the reaction was repeated in order to get rid of traces of TBDMS groups from the chitosan backbone. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}, 96: 4$): $\delta=7.82-8.59$ (m, β-pyrrole-CH, triphenylHo \& R-NHTPC-phenyl-Ho,m), 7.69-7.74 (m, triphenyl-Hm,p), 4.46 (br s, H-1), 4.09-4.11 (m, $\mathrm{CH}_{2} \mathrm{CONGlc}$ and chlorin β-pyrrole- CH_{2}), 3.31-3.70 (br m, partially overlapped with HDO peak, H-2 GlcNAc, H-3, H-4, H-5, H-6, H-6', H-2 GlcNHCO, TPCNHCOCH 2 -pip, piperazine ring$\left.\left.\mathrm{CH}_{2}\right), 3.20-3.24\left(\mathrm{~s},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$ ppm.

Figure S3. Size distributions of MRT-loaded TPC-CS NPs containing different amounts of bound PS bound, i.e. $10 \%, 3 \%$ or 1% of side chains of CS were conjugated to TPC. Polydispersity index, PDI= 0.25 (0.10), 0.45 (0.03 and 0.01).

Figure S4. Increased loading concentration of MRT (5-20\% (w/w) relative to TPC-CS) during preparation of TPC-CS NPs resulted in slightly decreased MRT encapsulation efficiency. Mean $M R T \pm S D(n=3)$ measured in solubilized micellar formulations using HPLC.

Figure S5. Size distribution of the empty, MRT- and CBZ-loaded TPC-CS NPs measured by NanoSight instrument. The drug loaded NPs contained $10 \%(\mathrm{w} / \mathrm{w})$ of the drugs. The NP formulations were stored for 5 days and sonicated immediately prior to NTA measurement. In red, standard deviations calculated by the NTA software.

Figure S6. TPC-CS NPs mediate PCI of the toxin gelonin. MDA-MB-231 cells were incubated with TPC-CS NPs $(0.20 \mu \mathrm{~g} / \mathrm{ml})$, gelonin ($3 \mu \mathrm{~g} / \mathrm{ml}$) and TPC-CS NPs + gelonin at $37^{\circ} \mathrm{C}$ for 18 h . The cells were washed and chase at $37^{\circ} \mathrm{C}$ for 2 h prior to light exposure. Cytotoxic effect was evaluated 30 min post light exposure by measuring protein synthesis (incorporation of $\left[{ }^{3} \mathrm{H}\right]$ leucine) as previously described ${ }^{4}$.Mean values \pm SD ($\mathrm{n}=3$).

B.

Figure S7. Live-cell imaging of TPC-CS NPs (in red) and AF594-dextran (green) in HeLa cells. The cells were incubated with (A) TPC-CS NPs ($25 \mu \mathrm{~g} / \mathrm{ml}$) and AF594-dextran ($50 \mu \mathrm{~g} / \mathrm{ml}$), or (B) only AF594-dextran for 1 h at $37^{\circ} \mathrm{C}$. Then, the cells were washed and chased for 2 h at 37 ${ }^{\circ} \mathrm{C}$ before time-lapse confocal microscopy imaging: laser excitation at 405 nm and 561 nm with 20 sec . imaging interval for 10 min . Plasma membrane blebs appeared after 60 sec and expanded up to 160 sec . Fluorescence of both TPC and AF594-dextran began to fade at the same time and disappeared after $300 \sec (\mathrm{~A})$, whereas the AF594-dextran fluorescence were stably retained over the laser illumination period (10 min) in the cells without uptake of TPC-CS NPs (B).

References

(1) Gaware, V. S.; Hakerud, M.; Juzeniene, A.; Hogset, A.; Berg, K.; Masson, M., Endosome Targeting meso-Tetraphenylchlorin-Chitosan Nanoconjugates for Photochemical Internalization. Biomacromolecules 2017, 18 (4), 1108-1126.
(2) Song, W.; Gaware, V. S.; Rúnarsson, Ö. V.; Másson, M.; Mano, J. F., Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydrate Polymers 2010, 81 (1), 140144.
(3) Sahariah, P.; Gaware, V.; Lieder, R.; Jónsdóttir, S.; Hjálmarsdóttir, M.; Sigurjonsson, O.; Másson, M., The Effect of Substituent, Degree of Acetylation and Positioning of the Cationic Charge on the Antibacterial Activity of Quaternary Chitosan Derivatives. Marine Drugs 2014, 12 (8), 4635-4658.
(4) Iversen, T. G.; Skretting, G.; Llorente, A.; Nicoziani, P.; van Deurs, B.; Sandvig, K., Endosome to golgi transport of ricin is independent of clathrin and of the rab9- and rab11-gtpases. Mol Biol Cell 2001, 12 (7), 2099-2107.

